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Methodology for Classifying the Structural State of 
Uninspected Pipes in Sewer Networks Based on Support 

Vector Machines

Metodología para clasificar la condición estructural de tuberías no 
inspeccionadas de las redes de alcantarillado basada en máquinas de 

soporte vectorial

Nathalie Hernández 1, Miguel A. Cañón2, and Andrés Torres 3

ABSTRACT 
The nearly unmitigated growth of cities has placed ever-greater pressure on urban water systems regarding climate change, 
environmental pollution, resource limitations, and infrastructure aging. Therefore, the development of methods to classify and assess 
the structural state of urban drainage infrastructure becomes very important, given that they can be used as support tools for proactive 
management plans. This paper presents a method for predicting and classifying the structural state of uninspected sewer pipes using 
Support Vector Machines, based on the physical characteristics, age, and geographical location of the pipes. According to the results, 
the methodology: (i) correctly classified more than 75% of uninspected pipes; (ii) identified pipes in critical structural states, with low 
importance prediction error for 69% of pipes; and (iii) provided a guide for establishing the number or percentage of pipes that require 
inspection or intervention.

Keywords: Support Vector Machine, sewer asset management, structural state, sewer systems

RESUMEN
El crecimiento casi descontrolado de las ciudades ha puesto una creciente presión en los hidrosistemas urbanos en términos de cambio 
climático, contaminación ambiental, limitaciones presupuestales y envejecimiento de la infraestructura. Por lo tanto, la exploración de 
diferentes métodos para clasificar y evaluar la condición estructural de los alcantarillados ha adquirido gran importancia, dado que estos 
pueden ser utilizados para herramientas de apoyo para planes de gestión proactiva. Este trabajo presenta un método para predecir 
y clasificar la condición estructural de tuberías de alcantarillado no inspeccionadas usando Máquinas de Soporte Vectorial basado 
en las características físicas, edad y ubicación geográfica de las tuberías. De acuerdo con los resultados, la metodología: (i) clasificó 
correctamente más del 75 % de tuberías no inspeccionadas; (ii) identificó las tuberías que estaban en condiciones estructurales críticas, 
con errores de predicción de baja importancia para el 69 % de las tuberías; y (iii) proporcionó una guía para establecer el número o 
porcentaje de tuberías que requieren inspección o intervención.

Palabras clave: Máquina de Soporte Vectorial, gestión patrimonial de alcantarillados, condición estructural, sistemas de alcantarillado
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Introduction

Urban drainage systems present alarming rates of aging and 
deterioration in both developed and developing countries 
(Osman et al., 2012). Essentially, most sewer networks are 
more likely to fail each day (Ward and Savic, 2012) due to 
structural deterioration. In turn, this impacts the level of 
service and quality of life (Osman et al., 2012; Micevski et 
al., 2002; Liu and Kleiner, 2013; Caradot et al., 2017). 

Multiple factors affect pipe deterioration: physical 
characteristics (diameter, length, depth, material, joint 
type), installation-construction processes, external factors 
(soil fracture potential, soil use, and environmental 
characteristics), and other factors (e.g., age, sewer pipe use, 
and maintenance methods) (Davis et al., 2001).  Recently, 
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other factors have been reported, including climate change, 
land-use change, and demographic growth (Kleidorfer et al., 
2013). Numerous investigations have shown that older pipes 
have been structurally under-designed and thus do not meet 
the demands of urban growth. Likewise, past construction 
practices have been inadequate. These two factors have led 
to frequent failures in sewer pipes (Sægrov and Schilling, 
2002). In short, underground urban service networks are 
considered to be complex systems due to the action and 
interaction of the aforementioned factors (Hao et al., 2012), 
which have not been thoroughly studied (Lee et al., 2013).

In light of the above, urban system stakeholders are faced 
with important challenges in order to achieve a rational, 
efficient, effective, and sustainable management and 
maintenance of this infrastructure, while also considering 
the diversity of actors involved (budget limitations, 
environmental regulations, and urban water infrastructure 
benefits) (Baik et al., 2006; Cardoso et al., 2012; Younis and 
Knight, 2012). Globally, some methodologies have been 
proposed for managing urban drainage systems, namely 
project CARE-S (Computer Aided Rehabilitation of Sewer and 
Storm Water Networks), which was integrated by and for 
various European cities. CARE-S entails methods and models 
for three levels of long-term sewage management (Sægrov 
and Schilling, 2002). Mashford et al. (2010) developed 
a methodology for the city of Adelaide (Australia) using 
information from CCTV inspections to classify the structural 
condition of pipes via Support Vector Machines (SVMs) and 
Artificial Neural Networks (ANNs). Machine learning tools 
have shown promise for predicting the service condition of 
sewer networks. These tools are based on a few physical 
pipe characteristics (diameter, pipe age, type of road over 
sewer pipelines, slope, and top of pipe level) (e.g., Mashford 
et al., 2010). Moreover, various studies have shown that 
classifying through SVMs is adequate, and robust variables 
with non-linear processes are used. All this, in comparison 
with conventional methods such as ANNs (Zhang et al., 
2009) and Kernel independent component analysis (Zhang 
et al., 2008).

In many countries, including Colombia, stakeholders have 
traditionally addressed the maintenance and operation of 
assets with a reactive focus (that is, acting after the failure). 
However, reactive maintenance can be significantly costlier 
than proactive maintenance (Rodríguez et al., 2012). 
Wirahadikusumah et al. (2001) identify the primary reason 
for relying on a reactive approach: the lack of monitoring 
data. For example, in cities such as Bogotá and Medellín, 
more than 90% of the structural and operational sewer 
assets are unknown (Hernández et al., 2020). This lack limits 
the development of predictive models and assessments of 
the effects of changes in maintenance policies (Rodríguez et 
al., 2012). Despite the diversity of support models for the 
proactive maintenance of sewer systems worldwide (Sægrov 
and Schilling, 2002; Mashford et al., 2010), the majority 
assume complete and timely information and, therefore, 
have only limited applicability in Colombia, given the scarcity 
and low coverage of sewer inspections, as well as the 

unsecured quality of any inspections performed (Rodríguez 
et al., 2012). Thanks to the great advantages of predicting 
through SVMs reported by the literature and the need to 
know the structural condition of the whole sewer network, 
this paper proposes a methodology based on Support Vector 
Machines to predict the structural condition of uninspected 
sewer assets. The methodology aims to provide support 
tools to the stakeholders’ decision-making in order to plan 
rehabilitation and investment strategies. This contributes to 
developing more rational plans to invest in and rehabilitate 
the sewer network, leaving reactive maintenance aside and 
seeking to achieve sewer asset management (proactive 
maintenance). 

Materials and methods 

In 2001, a Colombian standard (EAAB, 2001) was developed 
to evaluate already inspected sewer networks via CCTV for 
the city of Bogotá. This standard assesses structural and 
operational conditions based on the failure types, as well 
as their severity, that are found during the inspections, thus 
assigning a defined score. According to the assessment 
of structural conditions, all failure scores are added 
and categorized into a grade for every single pipe. This 
categorization could be used for decision-making related to 
rehabilitation and preventive actions (Table 1).

Table 1. Structural states based on structural score NS 058 and 
description

Source: Adapted from EAAB (2001)

The CCTV data are related to inspections carried out between 
2007 and 2011 by Bogota’s water and sewerage systems 
company, (Empresa de Acueducto y Alcantarillado de 
Bogotá, EAB) (Figure 1). This database contains the following 
information on the pipe: physical characteristics, location, 
score (assessment), and structural condition (grade). In 
total, 3563 inspections of waste and storm water pipes (local 
and main network) were included in the database.

According to data from the database and the literature 
(Davis et al., 2001; Kleidorfer et al., 2013), the following 
variables may be related to the structural condition of pipes: 
(i) slope, (ii) diameter, (iii) material type, (iv) age, (v) ground 
level at the beginning of the pipe, (vi) ground level at the 
end of the pipe, (vii) depth at the beginning of the pipe, (viii) 
depth at the end of the pipe, (ix) surface type at ground level, 

Score Condition Description

<<10 1 Without structural failures

10-39 2 Failures of low importance

40-79 3 Failures that can generate structural and 
hydraulic problems

80-164 4 Failures of high importance; preventive and/
or corrective steps required

165+ 5 Collapsed or nearly collapsed pipes; 
emergency decisions required
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(x) sewerage, and (xi) geographical coordinates (longitude, 
latitude).  An exploratory statistical analysis of the inspected 
pipe data was performed to determine the relationship 
between these variables and the structural condition variable 
(Kruskal-Wallis test). The variables chosen were categorized 
to perform statistical tests (e.g., the Wilcoxon test), which 
require categorical variables. Thus, each variable was 
categorized according to the 33 and 67 percentiles. 

Figure 1. Map of sewer pipes in Bogotá D.C.
Source: Authors

The data did not have a normal distribution or variance 
homogeneity according to the Shapiro-Wilk and Bartlett 
tests, respectively. Therefore, the Kruskal-Wallis test was 
performed. Kruskal-Wallis is a nonparametric alternative 
to ANOVA and was used to determine which variables 
significantly influence the structural score of the pipes. 
According to this test, the variables with significant 
influence (p-value<0,05) on structural score variability were 
age, material, slope, diameter, surface type, depth 2, pipe 
type, longitude, latitude, ground level 1, and ground level 2. 
With these results, the Wilcoxon test was applied for each 
chosen variable in order to determine significance difference 
(p-value<0,05) between variable factors and structural 
score (Table 2): (i) slope, with significantly lower scores 
for low slopes (<0,4113); (ii) diameter, with significantly 
higher scores for pipes with small diameters (< 0,2m) and 
significantly lower for pipes with large diameter (> 2,4m); 
(iii) ground  level 1 and 2, with significantly higher scores for 

category “2_medium” ground levels (between 2555-2606 m 
above sea level); (iv) depth 2, with significantly lower scores 
for shallow pipes (<1,13 m); (v) age, with significantly higher 
scores for category “2_medium” (between 30 and 50 years) 
and significantly lower for category “3_new” (<30 years); 
(vi) longitude, with significantly higher scores for the city’s 
west side (74,06-74,02°); (vii) latitude, with significantly 
higher scores for the city center (4,62-4,696°); (viii) surface 
type, with significantly higher scores for pipes under asphalt 
pavement; (ix) sewerage, with significantly higher scores 
for higher local wastewater pipes; and (x) material, with 
significantly higher scores for vitrified clay.

Table 2. Variable relationships that show significance differences 
(p-value < 0,05) in the Wilcoxon test.

Source: Authors

These results confirm the findings of other studies that 
estimated variables directly influencing the structural state of 
pipes. For example, vitrified clay pipes with small diameters 
had greater structural scores, which is consistent with findings 
reported in Niño et al. (2012). Similarly, slope and ground level 
were the variables most closely associated with the structural 
state of pipes (López-Kleine et al., 2016). Nevertheless, certain 
tendencies were identified: the cause-effect rules given by the 
multivariate and nonlinear nature of structural scores cannot be 
formulated. Thus, tools that account for these characteristics 
must be utilized, such as SVMs.

SVMs are based on a supervised statistical learning method 
within the kernel family. This family consists of a class of 
algorithms for pattern analysis that finds and analyzes 
general types of relations (e.g., clusters, ranges, principal 
component correlations, and classifications) in databases 
(Shawe-Taylor and Cristianini, 2004). With the application of 
kernel functions, SVMs increase the data dimensionality to 
find a hyperplane that could separate them correctly (Jahed 
et al., 2020; Hernández et al., 2021). SVMs are used to 
solve nonlinear classification problems by means of pattern 
recognition and function estimation. The principal problem 
addressed using SVMs is the fit of a function describing 
a relation between an object X and response Y. Initially, 

Structural Scores Variable

Low 

Low slopes (slope <0.4113)

Long pipes (> 2.4 m)

Shallow pipes (depths < 1.13 m)

High

Small pipes (diameter < 0.2 m)

Intermediate ground levels (2555 – 2606 msl)

Medium ages (30 years – 50 years)

City´s west side (longitude: 74,06°-74.02°)

City center (latitude: 4.62° - 4.696°)

Pipes under asphalt pave (Surface type)

Local wastewater pipes (Sewerage)

Vitrified clay pipes (Material)
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SVMs are used for two-category classifications, where 
Y is the categorical vector (or binary variable), by using S 
(the dataset). If the objects are within the P dimension, the 
relationship is described by Equation (1):

( ) ty f x w x b= = +

The hyperplane equation is defined by Equation (2):

1tb w x+ =

where  is the bias,  a weight vector, and  the support 
vectors. The distance between  and the hyperparameter is 
defined by Equation (3), and the hyperparameter margin is 
defined by Equation (4):

1tb w x
β β

+
=

2M
β

=

The minimization function that maximizes the 
hyperparameter margin is defined by Equation (5):

( ) ( )2

,

1min 1
2

t
i iw b

iL depending of y w x bβ β= + ≥ ∀

where  is each category, and Lagrange multipliers are used 
to find the values  and  (Duda et al., 2012; Huang et al., 
2018).

SVMs allow for classifications and regressions with 
parametric and nonparametric data (López-Kleine and 
Torres, 2014). The kernlab library (Karatzoglou et al., 
2004) was used with R (R Core team, 2019) to build the 
SVM models. This library has a function that optimizes the 
hyperparameters of the kernel functions automatically, and 
the soft margin parameter C is taken as the value default (1). 

After statistically analyzing the database, an SVM was 
used to classify pipes based on variables identified by the 
Kruskal-Wallis method. Independent variables (slope, 
age, etc.) of the SVM model must be numerical, and the 
dependent variable must be categorical (structural state). 
Still, given that some independent variables are categorical 
(material and road type), it is necessary to develop analysis 
alternatives that can be included in the model. These 
alternatives are the combination of the categorical variables 
for all variables, so that the database can be divided, that is, 
two categorical variables (material and road type). In turn, 
these are constituted by two factors for each one (concrete 
and vitrified clay pipes for the material; concrete and asphalt 

pavement for surface type). By using pairwise combination 
of material and surface type, four possible alternatives were 
created: (i) vitrified clay pipes under concrete pavement; (ii) 
vitrified clay pipes under asphalt pavement; (iii) concrete 
pipes under concrete pavement; and (iv) concrete pipes 
under asphalt pavement. Doing so guaranteed that there 
were independent numerical variables and a categorical 
dependent variable for each alternative.

Furthermore, various structural grades were grouped into 
categories in line with the research done by López-Kleine 
et al. (2016). For example, one way of grouping structural 
grades into two categories would be: Category 1 with grades 
1, 2, and 3 representing piped with acceptable structural 
conditions; and Category 2 with grades 4 and 5, meaning 
pipes with critical structural conditions. These categories 
correspond to the dependent variable vector for calibrating 
SVM models.  

Once the previously described four alternatives were 
defined, each database was randomly divided into data for 
calibrating each SVM model (2/3 of total data) and data for 
validation (1/3 of total data). With calibration data for each 
alternative, SVM classification algorithms were employed 
with kernel functions whose application is associated with 
database characteristics. For this study, the characteristics 
found were as follows: insufficient a priori information for 
the data (Gaussian and Laplace kernel functions), binary 
categorization of input data (Vanilla linear function), and a 
classification that approximates neural networks taken from 
Mashford et al., (2010). 

To arrive at the best classification model for each alternative, 
two approaches were used: (i) leave-one-out cross validation 
technique (Greisser, 1993) and (ii) Cohen’s kappa coefficient 
(Carletta, 1996). The first approach was used to train the 
model with the calibration data, and the second one was 
used to evaluate the performance of the trained model with 
the validation data. 

With the purpose of evaluating the performance of 
the prediction, comparing the estimated and observed 
categories, the authors suggest to classify the correct and 
wrong predictions by colors, as well as the Prediction Error 
Importance (Table 3).  The latter (PEI) gives information 
about the severity of a wrong estimation compared to the 
observed information. According to Table 2, the percentages 
that are in ‘GREEN’ and Null-PEI are the percentage of pipes 
that were estimated correctly. The percentages in ‘YELLOW’ 
and Low-PEI show the percentage of pipes where the model 
underestimated the structural condition (it means that 
the model estimated the condition of the pipe in worse 
structural conditions than they really were). The percentages 
in ‘ORANGE’ and Medium-PEI represent the percentage 
of pipes where the model overestimated the structural 
condition, it means that the model estimated the condition 
of the pipe in better conditions than what they actually were. 
Finally, the percentage in ‘RED’ and High-PEI represents 
those pipes whose estimation was highly overestimated; 

(1)

(2)

(3)

(4)

(5)
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it means that the model estimated those pipes to be in 
excellent conditions while they were actually collapsed. 
Table 3 illustrates the possible error importance and the 
corresponding table of colors if the analysis is divided into 
three categories (e.g., if C1 corresponds to good structural 
conditions, C2 to regular structural conditions, and C3 to 
poor structural conditions).

Table 3. Description of the Prediction Error Importance levels and their 
corresponding color.

 
Source: Authors

In light of the possible or inevitable financial limitations 
faced by the company in charge of sewer management, a 
minimum number or percentage of pipes classified by the 
tool was established in order to determine which of those 
were in critical structural conditions and required inspection 
or action. To this effect, a methodology was proposed to 
determine the percentage of pipes randomly selected over 
the total of those classified in a particular category by the 
tool to ensure that the expected percentage of proper 
classifications had a relatively acceptable uncertainty (e.g., 
less than 15%). The methodology consists of randomly 
selecting a certain percentage of pipes (between 1 and 100%) 
from those that received a given classification (e.g., good 
conditions or critical conditions) to apply the proposed tool 
and calculate the percentage of successful classifications 
using the inspection database. This process is repeated a 
given number of times for the same percentage of pipes, 
and the percentage of successful classifications is calculated 
each time. It is expected, then, that the dispersion of results 
obtained (percentage of successful classifications) is high 
for initial percentages, and that it gradually diminishes as 
more pipes are selected to finally achieve a null dispersion 
for 100%.

Results and discussion

Table 4 shows the functions selected for each analysis 
alternative according to Cohen’s kappa coefficient, which 
was obtained using leave-one-out cross-validation (CV). 
This Table also includes category division for alternatives 
with the highest predictability (higher Cohen’s kappa 
coefficient obtained for the proposed CV). As the Table 
demonstrates, there are two or three categories for which 

predictability increases were observed, thus implying that 
the results are useful for classifying sections in three ways: 
(i) “excellent conditions” and “not excellent conditions” 
(C1 and C2, respectively, in alternatives 1 and 2, Table 4); 
(ii) “critical condition” and “not critical condition” (C2 and 
C1, respectively, in alternatives 4 and 5); and (iii) “excellent 
condition”, “critical condition” and “nor excellent nor critical 
condition” (C1, C3, and C2, respectively, in alternative 3, 
Table 4). Furthermore, the Kernel functions that offer the 
best results in terms of predicting the classification of the 
categories of the pipe’s structural states were RBF, Laplace, 
and Vanilla, which implies that the three functions rely on 
binary classification regardless of whether the function in 
the characteristic space is linear (Vanilla) or nonlinear (RBF 
and Laplace).

Table 4. Selected SVM models for each alternative

Source: Authors

According to the confusion matrices (calibration and 
validation data) of the four analysis alternatives, it was found 
that: 

i.	 For the first two analysis alternatives (Concrete-Asphalt 
pavement and Concrete pavement), the calibration 
data’s confusion matrices had similar prediction 
results (classifying more than 81% of pipes correctly in 
category C1 and more than 79% in category C2), while 
the validation data’s confusion matrices differ (60 and 
68% of pipes were properly classified in C1 and C2, 
respectively, for the first analysis alternative; and 38 
and 80% were properly classified in C1 and C2 for the 
second analysis alternative). However, the results from 
the calibration and validation data for the first analysis 
alternative (Concrete-Asphalt Pavement) are consistent.

ii.	 For the third analysis alternative (Vitrified clay pipes-
Asphalt pavement), according to the calibration data 
from the confusion matrix, the model correctly classified 
between 58 and 65% of the three categories; whereas, in 
the validation data, the best classified category was C3 
(50% match), followed by C2 (18%) and C1 (0%). This 
means that the model overestimated pipes in category 
C3 (classifying all pipes in excellent condition when, in 
reality, they were in critical structural conditions), and 

Estimated 
Category

Observed 
Category Color Prediction Error 

Importance (PEI) 

C1 C3 RED High
C1 C2

ORANGE MediumC2 C3
C3 C1
C3 C2

YELLOW Low
C2 C1

Pipes with the same 
estimated and observed 

category 
GREEN Null

Alternatives Categories Function K– cv

1.Concrete – Asphalt 
Pavement

C1: Grade 1                  
RBF 0,305

C2: Grades 2, 3, 4 and 5

2. Concrete – 
Concrete Pavement 

C1: Grade 1                  
Laplace 0,415

C2: Grades 2, 3, 4 and 5

3. Vitrified Clay Pipes 
– Asphalt Pavement 

C1: Grade 1                  
RBF 0,071C2: Grades 2, 3 and 4        

C3: Grade 5

4. Vitrified Clay Pipes 
– Concrete Pavement 

C1: Grades 1, 2, 3 and 4                  
C2: Grade 5 Vanilla 0,213
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condition of the pipes (yellow or orange). Few pipes saw 
their structural state overestimated (red). In short, the 
proposed methodology proves to be conservative (more 
underestimation than overestimation), which is a plus from 
a safety perspective when it comes to deciding which pipes 
require priority management action. Table 4 summarizes the 
results presented in Figure 5.

 

Figure 3. Category classification maps for inspected sewer pipes in 
Bogotá for vitrified clay-asphalt pavement. Left: classification map of 
observed condition. Right: classification map of results when using the 
proposed methodology.
Source: Authors

Figure 4. Category classification maps for inspected sewer pipes in 
Bogotá for vitrified clay-concrete pavement. Left: classification map of 
observed condition. Right: classification map of results when using the 
proposed methodology. 
Source: Authors

In Figure 5, the prediction error importance is seen to be 
generally null or low (green and yellow pipes). In other 
words, for the majority of pipes, the categories obtained 
using the proposed methodology matched the categories 
observed (green), or the methodology underestimated the 
condition of the pipes (yellow or orange). Few pipes saw 
their structural state overestimated (red). In short, the 

underestimated pipes in category C1 (the pipes were 
worse than they actually were).

iii.	 For the last analysis alternative (Vitrified clay-Concrete 
pavement), the results were similar to those of the first 
analysis alternative (Concrete-Asphalt pavement). The 
model classified approximately 70% of pipes in C1 and 
C2 in calibration and validation results.  

In Figures 2, 3, and 4, maps of the pipes inspected in Bogotá 
are shown. In these Figures, the observed categories are 
compared to those obtained using SVM models. 

 

Figure 2. Category classification maps for inspected sewer pipes in 
Bogotá for alternatives (i) concrete pipes-asphalt pavement and (ii) 
concrete pipes–concrete pavement. Left: classification map of observed 
condition. Right: classification map of results when using the proposed 
methodology. 
Source: Authors

Figure 2 demonstrates that, for these two alternatives, the 
structural condition of several pipes was underestimated 
by the proposed methodology. However, in certain parts 
of Bogotá (namely in the districts of Suba, Usaquén, 
Teusaquillo, Kennedy, Puente Aranda, and Bosa), the 
sewer’s SVM-estimated overall condition matched the 
observed state. Moreover, in general terms, there were 
greater matches for categories classified as C1 by the 
proposed SVM. This finding suggests that the proposed 
methodology has potential applications for sewer system 
management in that it indicates which pipes are in excellent 
structural condition (category C1, corresponding to grade 
1 in the NS-058 standard) because management efforts 
(inspection, rehabilitation, replacement, etc.) can be carried 
out only on pipes that are not classified as C1 by the SVM 
models. A similar behavior was observed for the proposed 
SVM models for vitrified clay pipes (Figures 3 and 4).

In Figure 5, the prediction error importance is seen to be 
generally null or low (green and yellow pipes). In other 
words, for the majority of pipes, the categories obtained 
using the proposed methodology matched the categories 
observed (green), or the methodology underestimated the 
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proposed methodology proves to be conservative (more 
underestimation than overestimation), which is a plus from 
a safety perspective when it comes to deciding which pipes 
require priority management action. Table 4 summarizes the 
results presented in Figure 5.

 
Figure 5. Prediction error importance maps for sewer pipes in Bogotá 
for the four proposed alternatives. Upper left: (i) concrete-asphalt 
pavement. Upper right: (ii) concrete–concrete pavement. Lower left: 
(iii) vitrified clay pipes-asphalt pavement. Lower right: (iv) vitrified clay 
pipes-concrete pavement .
Source: Authors

Table 5. Percentage of pipes per category for prediction error 
importance of each alternative

 

 
Source: Authors
 
Table 5 shows that more than 78% of sewer pipes presented 
a null or low prediction error importance. Low prediction 
importance is considered favorable for decision-making 

related to sewer management, provided that the percentage 
of pipes is not high. Despite the improper classification of 
some pipes, these were classified in the next most critical 
category. This suggests that, if these pipes were reviewed, 
they would likely be in better structural states than expected. 
It should be noted that low importance prediction error 
is possible when the selected model has more than two 
structural categories, as is the case for alternative 3 (vitrified 
clay pipes under asphalt pavement). Nevertheless, broadly 
speaking, satisfactory pipe classification was observed for 
the first three alternatives, with a successful classification 
between 78 and 86%. For the fourth alternative, this figure 
was 69%. Moreover, the percentage of pipes with high 
prediction error importance was less than 4% for all the 
alternatives studied, with the exception of alternative 2 (9%). 

The results presented in Table 5 do not suggest a direct 
relation between proper classification with the proposed 
methodology for each alternative and the corresponding 
Cohen kappa coefficient, which implies that the latter is only 
useful for model selection. 

The previously mentioned results represent the combination 
of results obtained for both calibration and validation 
databases. To distinguish the results obtained for the two 
databases, as well as to judge the predictive capacity of the 
proposed methodology, readers are directed to Figure 6.

Figure 6. Prediction error importance for the calibration (left) and 
validation (right) databases 
Source: Authors
 
Figure 6 evinces consistency among the results obtained 
for both databases (calibration and validation) in terms of 
prediction error importance. As was the case for the results 
shown in Figure 5, the majority of sewer pipes analyzed in 
both databases had null (green) or low prediction importance 
(yellow). Table 6 summarizes this information.

In Table 6, for the calibration data, 72% of pipes were 
properly classified (null prediction error importance-green), 
and 11% of pipes were improperly classified, but with a low 
prediction error importance (yellow). Therefore, it can be 

Alternative
Prediction error 

importance Kappa

Null Low Med High

Alternative 1: Concrete - 
Pavement in Asphalt 78   19 3 0,305

Alternative 2: Concrete - 
Concrete pavement 78   13 9 0,415

Alternative 3: Vitrified clay 
pipes - Asphalt pavement 55 31 14 1 0,071

Alternative 4: Vitrified clay 
pipes - Concrete pavement 69   27 4 0,213
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said that, for the calibration database, the proposed SVM 
classification methodology provided satisfactory results 
for 83% of the pipes. Similarly, for the validation data, 
satisfactory classifications were obtained for 78% of analyzed 
pipes, thus opening the possibility of utilizing the proposed 
SVM classification methodology for sewer management 
decision-making to improve inspection processes, as well as 
maintenance, rehabilitation, and replacement. The validation 
data (78%) represent the proposed tool’s performance 
concerning classifying the structural state of uninspected 
concrete or vitrified clay pipes. 

Table 6. Prediction error importance of the proposed methodology’s 
classification in calibration and validation databases

Source: Authors
 
Although the results obtained are satisfactory for managing 
of Bogotá’s sewer systems, it is essential not to lose sight of 
the limited public resources available for developing these 
activities. Rodríguez et al. (2012) discuss the budget for 
actions related to sewer pipe management, attributing the 
low inspection coverage in Bogotá to a meager budget that 
is too low to inspect all of the city’s sewer pipes. In light of 
these restrictions, it is crucial to determine the percentage 
of the minimum number of pipes that should be selected 
(e.g., those that the proposed methodology classified in a 
critical structural state) to ensure a percentage of proper 
classifications with a satisfactory level of uncertainty (e.g., 
relative uncertainty ≤ 15%). This may serve a host of 
objectives, such as directing CCTV inspections as effectively 
as possible within budget constraints. 

The proposed methodology was applied to a case study to 
select the minimum number or percentage of pipes classified 
via SVMs as being in critical structural states for purposes 
of inspection or action. Ten thousand random selections 
were performed for each percentage (1 to 100%, with 1% 
variations) of the total number of pipes in a critical structural 
state when applying the SVM classification methodology. 
The results of this case study can be found in Figure 7. This 
Figure demonstrates that (i) pipes in critical structural states 
were properly classified roughly 60% of the time by the 
methodology; and (ii) to obtain a relative uncertainty less 
than 15% of proper classifications, at least 10% of total pipes 
classified in this state must be randomly selected. According 
to the above, it is safe to say that decision-making regarding 
pipes that require inspection or action can be performed 
while meeting the budget assigned to these tasks. However, 
it must be clarified that the percentage of pipes selected is 
a decision to be made by stakeholders, and it requires the 
consideration of multiple variables (e.g., financial variables). 
Regardless, the results in Figure 7 offer an accurate depiction 
of the analyzed case study.

 

Figure 7. Relative uncertainty vs. percentage (%) of successful 
classifications and percentage (%) of pipes predicted to be in critical 
conditions
Source: Authors

 
Conclusions

In this article, the structural state of sewer pipes in a specific 
case study (database of pipes inspected via CCTV in Bogotá 
between 2007 and 2011) is shown to be related to physical 
characteristics, location, and pipe age. These findings match 
the results of previous studies on the same database (Niño 
et al., 2012; López-Kleine et al., 2016). 

A methodology for classifying the structural state of 
uninspected sewer pipes using SVMs was developed. The 
proposed methodology employed SVM functions, CV 
techniques, and an evaluation of results with Cohen’s kappa 
coefficient. This coefficient proved to be especially useful 
for objectively selecting the best classification mode, for it 
emphasized model predictability and avoided overtraining. 

When applied to the case study, this methodology correctly 
classified 78% of the inspected pipes (relative to validation 
data). Additionally, the results obtained were satisfactory; 
the methodology identified pipes in critical structural 
states with a low prediction error importance for 69% of 
the pipes studied. This provides an opportunity to develop 
more rational management strategies from a financial 
perspective for companies that provide sewer services and 
facilitate decision-making in system management for pipe 
inspection and action. Furthermore, this methodology 
identified which pipes require inspection or action based on 
the relative uncertainty of the expected percentage of proper 
classifications.

Comparing this methodology’s results to those of López-
Kleine et al. (2016), it can be confirmed that better results 

% Pipes Prediction Importance
Null Low Medium High

Calibration 72 11 14 3

Validation 58 20 20 2
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are achieved when grouping structural states in a few groups 
that discriminate extreme structural states in the pipes.

In this study, other types of materials present in sewer 
networks (such as masonry and PVC) and other types of 
road (green surfaces or non-paved firm surfaces) over the 
sewer network were omitted because pipes with these 
configurations were not found in the inspection database 
provided by EAB.

In conclusion, the authors recommend that future studies 
use complete information on the types of roads over sewer 
pipes that have not been inspected in Bogotá, seeing as the 
methodology proposed in this paper could incorporate this 
information to classify all pipes in the city’s sewer system.
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