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Soil Biodegradation of a Blend of Cassava Starch and 
Polylactic Acid

Biodegradación en suelo de una mezcla de almidón de yuca y ácido 
poliláctico

Margarita R. Salazar-Sánchez 1, Laura I. Delgado-Calvache2, Juan C. Casas-Zapata 3, 
Héctor S. Villada-Castillo 4, and José F. Solanilla-Duque 5

ABSTRACT 
This study evaluated bio-based blended films produced from polylactic acid (PLA) and thermoplastic starch (TPS) under soil conditions 
for four weeks (W). The degradation of the film was evaluated in addition to thermal, structural, and morphological changes on the 
surface of the material. There were evident structural changes; the TPS present in the film degraded from weeks 0 to 4, exhibiting 
a loss of mass between 350 and 365 °C in the TGA test. This behavior was attributed to the condensation of hydroxyl groups of 
the cassava starch as well as to a loss of mass corresponding to the degradation of PLA between 340 and 350 °C. The addition of 
TPS in the PLA-containing matrix resulted in a decrease in the Tg of the PLA/TPS blends. The increase in crystallinity improved the 
water vapor permeability in the structure. Consequently, the incorporation of starch in these blends not only reduces the cost of the 
material, but it also contributes to its rapid biodegradation (68%). These results contribute and offer new alternatives to accelerate 
the biodegradation process of biomaterials.
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RESUMEN
Este estudio evaluó películas de mezcla de base biológica producidas a partir de ácido poliláctico (PLA) y almidón termoplástico (TPS) 
bajo condiciones en suelo durante cuatro semanas (W). Se evaluó la degradación de la película, además de los cambios térmicos, 
estructurales y morfológicos de la superficie del material. Hubo cambios estructurales evidentes; el TPS presente en la película se 
degradó desde la semana 0 hasta la 4, mostrando una pérdida de masa entre 350 a 365 °C en la prueba de TGA. Este comportamiento 
se atribuyó a la condensación de grupos hidroxilos del almidón de yuca y a una pérdida de la masa correspondiente a la degradación 
del PLA entre 340 a 350 °C. La adición de TPS en la matriz que contiene PLA dio lugar a una disminución en la Tg de las mezclas de 
PLA/TPS. El incremento de la cristalinidad mejoró la permeabilidad al vapor de agua en la estructura. Por lo tanto, la incorporación de 
almidón en estas mezclas no solo reduce el coste del material, sino que también contribuye a su rápida biodegradación (68 %). Estos 
resultados contribuyen y ofrecen nuevas alternativas para acelerar el proceso de biodegradación de los biomateriales.
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Introduction

Polymers derived from plant feedstocks are increasingly 
replacing plastic materials, reducing their environmental 
impact (S. Lambert and Wagner, 2017; T. Lambert and Perga, 
2019; Mierzwa-Hersztek et al., 2019). Polymers of industrial 
interest include cellulose, starch, alginic acids, natural 
polypeptides such as gelatins, and bacterial polyesters 
(Heidemann et al., 2019). The biodegradation of contaminated 
plastics under composting conditions has been reported as 
an effective method to reduce plastic contamination (Bher 
et al., 2019). However, biodegradable polymers offer the 
possibility of reducing the environmental impact of chemical 
waste from landfills, which is due to their degradation speed 
under composting conditions at the site of final disposal 
(Castro-Aguirre et al., 2018). However, some biodegradable 
polymers such as polylactic acid (PLA) do not biodegrade 
as quickly as other organic waste during composting (Lv, 
Zhang, et al., 2017), since their degradation depends on 
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the action of microorganisms (Pattanasuttichonlakul et al., 
2018) and hydrolysis reactions that can break lactic acid 
chain monomers into smaller molecules such as lactide. 
Consequently, the low degradability of PLA has affected 
its general acceptance in industrial composting. Blends of 
PLA with other biomolecules such as corn starch have been 
widely documented (Shogren et al., 2003), and blends of 
4032D PLA with cassava starch (TPS) have been reported in 
recent years for packaging and food service applications. In 
these compounds, due to the effect of biodegradation, each 
of the components is converted into biomass, which returns 
to the environment in the form of carbon dioxide (CO2), 
methane (CH4), and water. During this process, the polymer 
or blend undergoes structural changes implying the loss of 
mechanical properties due to disintegration, fragmentation, 
and mineralization (Salazar-Sánchez et al., 2020). The 
objective of this work was to study the biodegradation of a 
blend of cassava starch and PLA under natural environmental 
conditions. 

Materials and methods

Sample preparation
The plastic film was produced in the rheology laboratory 
of Universidad del Cauca. The film is a polymer obtained 
from renewable sources such as cassava starch (Manihot 
esculenta Crantz) and PLA. Three films were used: a film of 
thermoplastic starch from Cassava (TPS), a film of polylactic 
acid (PLA Ingeo 4032D, Mn = 88 500 g.mol-1, Mw/Mn = 
1,8), and one film product of a blend of the two compounds 
with a ratio of 72:28 (TPS-PLA) following the procedure 
described by Salazar-Sánchez et al. (2019).

Fourier transform spectrophotometry (ATR-FTIR) 
analysis
The tests were conducted in accordance with ASTM E1252-
98 (ASTM International, 2013) via Fourier transform infrared 
spectroscopy (FT-IR) (IRAffinity-1S, Shimadzu, Inc., Shelton 
CT, Japan). A horizontal attenuated total reflectance (ATR) 
sampling accessory (ATR-8200HA) equipped with a ZnSe 
cell was employed for the measurement (Salazar-Sánchez 
et al., 2019).

Thermal properties
A thermogravimetric analysis (TGA) and a differential sweep 
analysis (DSC) were performed using a TGA (TGA 2050TA 
Instruments, USA) and a DSC (Q20 TA Instruments, New 
Castle, USA), respectively, according to ASTM E1131-20 and 
ASTM D3418-15 (ASTM International, 2015, 2020; Daza et 
al., 2018; Carmona et al., 2015; Frone et al., 2013). 

Isotherm analysis
The sorption isotherms were determined at 10, 25, and 35 
°C using a vapor sorption analyzer (Aqua Lab VSA, USA) with 

an aw range of 0,5-0,95. The equilibrium moisture content 
on a dry basis was plotted against the aw in order to obtain 
the equilibrium moisture curves (Dutcher et al., 2011). The 
performance of the models (Table 1) was evaluated via 
the adjusted coefficient of determination ( ) and mean 
square error (MSE). The models were selected on the basis 
of a high  and a low MSE (Andrade et al., 2011; Arslan-
Tontul, 2020; Homez et al., 2018; Iglesias and Chirife, 1995; 
Torres et al., 2012). 

Biodegradation analysis
The biodegradability test was conducted in triplicate 
according to ASTM D5988 (ASTM International, 2018). 
A mixture of coffee soils and compost (derived from 
agricultural residues) was used as inoculum at a ratio of 
25:1, and 4% sand was added as a structuring material to 
improve aeration. A physicochemical analysis of the soil 
was performed (organic carbon, water retention capacity, 
cation exchange capacity, capillary electrophoresis, pulse 
differential polarography, and carbon/nitrogen ratio) using 
the Colombian Technical Standard SSLMM-42-2-92 and the 
3111B standard method (APHA, 1999) to determine metals 
and minerals. Microbiological properties were determined 
by counting the colony-forming units (CFC/g) of mesophylls, 
thermophiles, mold, yeast, Nematodes and/or Protozoa, 
Enterobacteria, and Salmonella (supplementary material).

Table 1. Water activity equation models

 
Source: Authors

The moisture content was adjusted to approximately 63%. 
The test material was the mixture described above (TPS/
PLA), and, as a reference microcrystalline, cellulose was 
used for thin-layer chromatography (Merck KgaA, Germany), 
as well as 4032D PLA (Ingeo). The cellulose and PLA were 
conditioned according to ISO 10210 (ISO, 2012), and the 
crushed fraction with a particle diameter between 250 and 
125 µm was chosen. Each reactor was loaded with 200 g of 
inoculum and 0,74245 ± 0,0009 g of TPS/PLA, 0,6467 ± 
0,0016 g cellulose, and 1,0028 ± 0,0005 g PLA –all samples 
on a wet basis. The carbon mineralization in the mixtures 
was quantified using a respirometry assembly in a closed 
chamber, where Ba(OH)2*8H2O 0,025 N (Merck KgaA, 
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Germany) was used as CO2 adsorbent, and HCL 0,05 N as 
titrator (Merck, Germany). The titration was performed at the 
endpoint of a 5 ml sample of adsorbent, aided by a TITRINO 
PLUS (Metrohm) automatic titrator. For the statistical 
evaluation of the results obtained from the biodegradation 
process of the samples studied for 4 weeks (W), a univariate 
analysis of variance was performed (ANOVA and Tukey tests 
with a 95% reliability and minimum significant difference) 
and the SMD (standardized mean difference) was estimated. 
The differences were considered to be significant when 
p<0,05.

Scanning electron microscopy (SEM) analysis
The samples were characterized via scanning electron 
microscopy (SEM) using a QUANTA 200F (FEI, The 
Netherlands). Each SEM sample was coated with Gold-
Palladium (0,8 nm thick coating) in an EmiTech K575X Peltier 
Cooled (QuorumTech, United Kingdom). The samples were 
observed and analyzed at an accelerating voltage of 10,0 kV 
at different magnifications (from 50X to 2000X).

Results and discussions

ATR-FTIR analysis
The FTIR spectra were analyzed in the range of 400-4 000 
cm-1 and are shown in Figure 1. Bands between 900 and 1 
010 cm-1 indicate C-O-C bonds (Liu et al., 2011; Salazar-
Sánchez et al., 2019). The characteristic peaks at 2 918 and 
2 848 cm-1 correspond to CH3, and those between 1 747 
and 1 180 cm-1 are characteristic of 4032D PLA with C=O 
and C-O carbonyl group stretching, respectively (Riba et al., 
2020). The peaks at 730 cm-1 are associated with the bending 
of the C=C group of the PLA’s main chain. Flexure of the 
carbonyl group CH3 was observed in the 1 458 and 1358 
cm-1 peaks, and there was also a CH3 shift in the 1 072 cm-1 
peak. Stretching of the -C-COO (1 276 cm-1) and C-O-C (872 
cm-1) groups was observed in the PLA spectrum. Similarly, 
vibrations corresponding to the stretching of the hydroxyl 
(O-H) group between the 3 400-2 400 cm-1 bands were seen.

 

 
Figure 1. Fourier transform infrared (ATR-FTIR) spectra of the films 
Source: Authors

Additionally, the spectra of TPS were compared because, 
when it blends with PLA, the mechanical, thermal, and other 
properties related to these mixtures (PLA/TPS) are modified. 
Therefore, the peaks to be analyzed were established 
between 750 and 1 250 cm-1 in order to understand 
the behavior of the TPS structure regarding its amylose/
amylopectin composition before blending, as it is important 
to understand the crystalline and amorphous behavior of 
these molecules in the mixture. The stretching attributed to 
bands 1 040 cm-1 (C-O), 1 024 cm-1 (C-C), and 680 cm-1 
(C-O-C) indicates a sensitivity to crystalline change. In 
other words, decreasing the crystallinity increases the 1 
024 cm-1 band, whereas the intensity of the peak at 1 040 
cm-1 increases with crystallinity, considering the crystalline 
structures of starch in this area (Cao et al., 2020). The 
intensity ratio between these two bands (1 046/1 024 cm-1) 
is 1,72, thus indicating an increase in crystallinity in starch, 
which has a high degree of organization and is composed 
mainly of amylopectin (Özeren et al., 2020; Mierzwa-
Hersztek et al., 2019; Homez et al., 2018; Nevoralová et al., 
2019). The PLA/TPS film spectra show a stretch in the OH 
group in the region from 3 260 to 3 350 cm-1. Likewise, the 
characteristic -CH peak of starch shows stretching in the 2 
914 cm-1 band. The 1 024 cm-1 peak exhibited a shrinkage 
that could be due to starch retrogradation. When exposing 
the film to the biodegradation process, structural changes 
were evidenced; the TPS present in the film degraded from 
W0 to W4. These changes could be observed in the spectra 
and are attributed to changes in the crystallinity of starch, 
which is reflected by the glycosidic bonds of the TPS Neat 
and could be due to the fact that starch degradation occurs 
first in the amorphous region (amylose) as well as in the 
PLA, where the hydrogen bonds are very weak and more 
accessible to microorganisms, which degrades substantially 
faster compared to the crystalline part (Sedničková et al., 
2018). The bands located at 1 040 cm-1 indicate a C-O 
functional group. The band located at 1 024 cm-1 indicates 
the amorphous region of starch given the presence of the 
C-C group. Similar observations were reported by Palai et 
al. (2019) and Wang et al. (2020), as well as at 680 cm-1 
with vibrations for the C-O-C group (Gopi et al., 2019). The 
decrease in peak intensity at 1 178 cm-1 for PLA/TPS may be 
due to the weak chemical interaction between PLA and TPS 
(Muller et al., 2017).

Thermal properties
A loss of mass could be observed which reflected the 
condensation of hydroxyl groups (300-400 °C) (Figures 
2a and b). The magnitude and location of this mass loss 
changed according to the degradation time (W0 to W4). 
In W1 and W2, the film showed a significant mass loss in 
the temperature range of 350-365 °C, which indicates the 
condensation of the hydroxyl groups of cassava starch. In 
W3 and W4, there was a mass loss in the range of 340-350 
°C, which corresponds to the degradation of the PLA present 
in the blend. Similar results were reported by Nasseri et 
al. (2020) for mixtures of acetylated rice starch and PLA. 
The degradation temperatures decreased due to the 
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consumption of the starch content by the microorganisms 
(de Oliveira, Barbosa, et al., 2019; de Oliveira, de Oliveira 
Mota et al., 2019; Gralde, et al., 2019).

Table 2. Thermal data for PLA in their corresponding blends: samples (S), 
week (W), glass transition temperature (Tg), heat capacity (Cp), crystallization 
temperature (Tc), enthalpy of crystallization (ΔHc) melting temperature I (Tm), 
enthalpy of fusion (∆Hm), and crystallinity indices (Xc)

Source: Authors

The DSC curves show the glass transition (Tg), crystallization 
(Tc), and melting I (Tm) temperatures (Figure 3). The Tg is 
around 60 °C in the analyzed samples. It increases in W3 
and W4 and has a lower value in W1 and W2, which could 
be due to the difference in the nature of the incidence of 
starch. The addition of TPS within the PLA matrix resulted 
in a decrease in the Tg of the PLA/TPS blends. A decrease 
in Tg increased the starch concentration (Li et al., 2020). 
This decrease in the Tg of the films can be attributed to 
the plastification of starch with glycerol, given the mobility 
of the chains caused by the migration of glycerol in the 
dispersed phase of TPS (Özeren et al., 2020). This effect 
is also attributed to the nucleation of the dispersed phase 
of TPS (Cai et al., 2014). The Tc of the samples (Table 2) 
shows a temperature decrease from 135 to 100 °C in W1, 
which was reflected on the weeks of biodegradation. This 
temperature, in comparison with that of PLA, is correlated 
with the TGA and FTIR results, where structural changes in 
the film were observed during the biodegradation process. A 
single endothermic peak for melting at 170 °C was observed 
in all weeks. Additionally, all PLA/TPS blends showed an 
increase in the intensity of the endothermal peak attributed 
to the laminar arrangement and polymorphism of the PLA’s 
crystalline structure (Anakabe et al., 2017).

The diffusion coefficient of water in an amorphous or semi-
crystalline polymer is related to the molecular dynamics 
of its amorphous regions (Shogren et al., 2003). If the 
temperature of an amorphous system (polymer-water) is 
above the glass transition temperature, the movement will 
be rapid, the free volume will increase, and the water vapor 
permeability will be high. Moisture penetration through the 
film may be due to cavities within the film that produce 
increased water vapor permeability, which has been linked 
to the two-phase morphology of PLA/TPS blends.

The isotherms show the behavior of the type I or S sigmoid 
form, which is indicative of physical adsorption in the 

multilayers of the material (Valsaraj, 2009). Table 3 shows 
the fit of the BET, GAB, Oswin, and Hasley models evaluated 
at different temperatures; it is evident that the model that 
best fits the data (MSE < 0,01) is BET, with Radj2 of 0,96804 
at 10 °C, 0,95219 at 25 °C, and 0,97449 at 35 °C. From 
the prediction of the BET and GAB models, the amount of 
water that is strongly absorbed in the active sites of the film 
can be highlighted and is considered as the value at which 
the TPS/PLA mixture is most stable during storage (Chen 
et al., 2008; F. Wang et al., 2020). The addition of PLA in 
the blend provides a water vapor barrier, and TPS provides 
favorable water adsorption properties for the biodegradation 

S Tg
(°C)

Cp
J/g·°C

Tc
(°C)

ΔHc
(J/g)

Tm
(°C)

ΔHm
(J/g)

Xc
(%)

W0 52,54 0,37 110,35 19,04 167,38 33,70 34,05
W1 56,75 0,38 109,35 18,82 167,64 31,28 33,97
W2 57,82 0,39 108,68 18,18 166,88 33,03 32,62
W3 61,18 0,39 117,93 20,83 169,65 24,81 25,84
W4 61,89 0,38 119,97 24,46 170,70 28,30 22,61
PLA 
W4 64,06 0,53 137,00 24,41 170,69 27,79 21,49

PLA 57,27 0,48 149,82 1,45 161,33 52,98 55,17
TPS 50,05 0,34 - - 147 26,03 -

Figure 2. TGA (a) and DTG (b) curves for the biodegradation process of the TPS/
PLA film
Source: Authors

Figure 3. DSC curves for the biodegradation process of the TPS/PLA film
Source: Authors
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process. This is because starch is hydrophilic, unlike PLA, 
which tends to be completely hydrophobic (Sedničková et al., 
2018). Therefore, it is possible that, in the film (TPS/PLA), the 
PLA prevents the starch from swelling, limiting the movement 
of the molecules and thus providing a part of the resistance 
to water permeability (Gürler et al., 2020). The variation in 
the water adsorption of TPS/PLA blends can be attributed to 
the behavior caused by the transition from the less ordered 
structure of starch to a higher-order structure that contains 
less water molecules (Lendvai et al., 2019). Consequently, 
the 3 300 cm-1 band is attributed to the stretching of the 
free inter- and intramolecular hydroxyl (-OH) groups of 
the starch chains, while the TPS exhibits a decrease in its 
intensity due to the interaction that occurs between starch 
and plasticizer by thermoplasticization (Altayan et al., 
2017), which is due, in turn, to a greater interaction of the 
plasticizer with the polymeric chains of starch (Zdanowicz 
et al., 2019). On the other hand, in the region between 1 
200 and 900 cm-1, a band at 1 016 cm-1 attributed to the C-O 
stretching of the C-O-C group of the starch anhydroglucose 
ring is observed (Esmaeili et al., 2017) which is a function 
of the PLA concentration. The 995 cm-1 band, sensitive to 
water, is related to the intramolecular hydrogen bonding of 
the hydroxyl at C6, which can significantly decrease with 
increasing PLA.

Table 3. Water activity (aw) models evaluated at different temperatures for a TPS/
PLA blend

 
 
 

 
Source: Authors

This behavior has been reported by other authors working 
with hydrophilic polymers that have been plasticized with 
polyols, and it is associated with the increase in the amount 
of hydroxyl groups in the plasticizer. This increase causes 
an increase in the hygroscopicity of the material, reflected 
on the increase in the solubility coefficient of the samples 
with higher plasticizer concentration. Other authors have 
reported that a lower water vapor permeability is related 
to a lower value of the diffusion coefficient. They have also 
reported that the solubility coefficients of TPS/PLA blends 
are lower than those of TPS. This behavior is associated with 
a lower amount of hydroxyl groups in the blend that are 
available for interaction as the PLA concentration increases, 
which is in turn associated with the fact that each D-glucose 
repeat unit contains three of these groups, whereas PLA has 
two in each polymeric chain (Müller et al., 2012; Abdillahi 
et al., 2013). It is important to highlight, as mentioned by 
other authors (Hu and Vuillaume, 2020), that the increase 
in crystallinity increases the water vapor permeability in the 
film structure formed by PLA/TPS. This statement is validated 
by the data shown in the FTIR, DSC, and SEM analyses. 
Therefore, the incorporation of starch in these blends not 
only lowers the cost of the material but also contributes to 
its rapid biodegradation.

Biodegradation analysis
The results observed can be attributed to the dynamics 
of material degradation (Figure 4). Cellulose obtained a 
biodegradation percentage of 84%, the samples of the TPS/
PLA blend 68%, and PLA 32% in 35 days. These results 
show that the test performed under the ASTM D5988 
standard (ASTM International, 2018) is valid because there 
is a >20% difference between the control sample and the 
evaluated blend.

Figure 4. Biodegradability of the TPS/PLA film
Source: Authors
 
The reason for this is that biodegradation generally 
proceeds faster in the amorphous part of the polymer when 
compared to the crystalline ones, and the degradation rate 

T (°C) Model Variable Value Standard 
Error MSE

10

BET
0,66208

0,04957 0,96804 0,00386
0,11963

GAB
0,93128

0,06675 0,94206 0,01269-0,08992
-0,64516

Hasley
0,11001

0,04530 0,97331 0,00269
0,81681

Oswin
0,09264

0,04827 0,96970 0,00347
1,10053

20

BET
0,660826

0,05011 0,95219 0,00571
0,133906

GAB
1,03962

0,06258 0,92542 0,014163,75515
0,05023

Hasley
0,119695

0,04987 0,95264 0,00571
0,863831

Oswin
0,111984

0,05018 0,95204 0,00585
1,059789

35

BET
0,03633

0,04168 0,97449 0,00082
1,056755

GAB
0,92990

0,04432 0.97115 0,020793,62135
0,07296

Hasley
0,132909

0,04178 0,97436 0,00335
0,906466

Oswin
0,143029

0,07425 0,91904 0,00264
0,995217



IngenIería e InvestIgacIón vol. 42 no. 3, December - 20226 of 9

Soil Biodegradation of a Blend of CaSSava StarCh and PolylaCtiC aCid

Conclusions

The addition of PLA and TPS is synergistic and significantly 
contributes to preservation and biodegradation 
processes by means of increasing or decreasing the 
crystallinity due to the number of amorphous phases 
present in the polymer. The biodegradability of the 
blends was confirmed by weight loss measurements 
with exposure time in the soil process. TPS accelerates 
the biodegradability of the blends in this medium due 
to its accessibility to microorganisms, its hydrophilic 
properties, and its amylose composition, which can 
be degraded more rapidly. The materials obtained 
from mixtures of TPS and PLA provide an additional 
advantage derived from the use of renewable sources 
for their manufacturing, as they provide the mixture 
with hydrophilic and biodegradable properties. This is 
an advantage over conventional plastics that must be 
exploited in order to obtain resistant materials which can 
be used in a similar way to conventional polymers.
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