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Near-Infrared Spectroscopy: Assessment of Soil Organic 
Carbon Stock in a Colombian Oxisol

Espectroscopia de infrarrojo cercano: evaluación del almacenamiento de 
carbono orgánico del suelo en un oxisol colombiano

Felipe Fernández-Martínez 1, Jesús Hernán Camacho-Tamayo 2, and Yolanda Rubiano-Sanabria 3

ABSTRACT
Soil organic carbon (SOC) is a property known for its influence on the physical, chemical, and biological characteristics of soils, 
which are essential when assessing their quality. SOC stock (SOCS) monitoring is a key task in climate change mitigation studies. 
However, the resources necessary to obtain the information required by these studies tend to be high. The objective of this study 
was to develop a model for estimating the SOCS of a Colombian oxisol using near-infrared (NIR) diffuse reflectance spectroscopy. 
In a sampling scheme of 70 points distributed over 248 ha, 313 soil samples were collected in five defined depth intervals of 10 cm 
each, from 0 to 50 cm. SOC was determined through an elemental analyzer, and bulk density (BD) by means of sampling cylinders. 
A NIRFlex spectrometer was used to acquire spectral signatures in the NIR range from the processed soil samples, and, together 
with the data measured in the laboratory, a statistical analysis was performed using partial least squares regression (PLSR) in order 
to calibrate the spectral models. Based on the residual prediction deviation (RPD), the root mean square error (RMSE), and the 
coefficient of determination (R2) of the validation groups, a highly representative model was achieved for the estimation of SOCS 
(R2 = 0,93; RMSE = 2,12 tC ha-1; RPD = 3,69), which was also corroborated with geostatistical interpolation surfaces and depth 
splines. This research showed NIR diffuse reflectance spectroscopy to be a viable technique for SOCS estimation in the study area.
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RESUMEN
El carbono orgánico del suelo (COS) es una propiedad conocida por su influencia en las propiedades físicas, químicas y biológicas 
de los suelos, que son fundamentales para evaluar su calidad. El monitoreo del stock de COS (SCOS) es una labor clave en los 
estudios de mitigación del cambio climático. Sin embargo, los recursos necesarios para obtener la información requerida en estos 
estudios suelen ser elevados. El objetivo de este estudio fue desarrollar un modelo para estimar el SCOS de un oxisol colombiano 
utilizando espectroscopía de reflectancia difusa de infrarrojo cercano (NIR). En un esquema de muestreo de 70 puntos distribuidos 
en 248 ha, se recolectaron 313 muestras de suelo en cinco intervalos de profundidad definidos de 10 cm cada uno, de 0 a 50 cm. 
El COS se determinó mediante un analizador elemental, y la densidad aparente (DA) mediante cilindros de muestreo. Se utilizó un 
espectrómetro NIRFlex para adquirir firmas espectrales en el rango NIR de las muestras de suelo procesadas, y, junto con datos 
medidos en laboratorio, se realizó un análisis estadístico usando regresión de mínimos cuadrados parciales (RMCP) para calibrar los 
modelos espectrales. Con base en la desviación de predicción residual (DRP), raíz del error cuadrático medio (RECM) y el coeficiente 
de determinación (R2) de los grupos de validación, se logró un modelo de alta representatividad para la estimación de SCOS (R2 = 
0,93; RECM = 2,12 tC ha-1; DRP = 3,69), lo cual también se corroboró con superficies de interpolación geoestadística y splines de 
profundidad. Esta investigación mostró que la espectroscopia de reflectancia difusa NIR es una técnica viable para la estimación de 
SOCS en el área de estudio.
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Introduction

In recent decades, scientists around the world have been 
increasingly interested in studying soil organic carbon (SOC) 
and its relationship with climate change. A potential impact 
of global warming is the accelerated decomposition of SOC 
and an increase in the carbon released into the atmosphere 
(Jia et al., 2017). Rising levels of CO2 concentration 
in the atmosphere have led a considerable part of the 
scientific community to contemplate SOC sequestration 
as an alternative to mitigate climate change, which can be 
achieved through various management practices based 
on increasing the SOC stock (SOCS) (Huang et al., 2019). 
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Through photosynthesis, plants are able to capture carbon 
from the atmosphere and integrate it into their own structure 
(biomass), as well as into the soil through their radicular 
systems. This phenomenon can also be called carbon 
sequestration (Stockmann et al., 2013) and has a special 
focus on agricultural land due to the fact that around 37% of 
the planet’s surface is destined for agricultural use (Sommer 
and Bossio, 2014).

In order to monitor the SOCS, it is necessary to acquire 
information on the soil bulk density (BD) and the SOC and 
subsequently analyze the changes in these variables over 
different periods of time according to the established needs. 
However, the resources needed to conduct these kinds 
of studies are expensive and time-consuming because of 
the standard laboratory analyses and procedures involved 
(Camacho-Tamayo et al., 2014; Liu et al., 2019). Soils are 
also characterized by being a heterogeneous material in 
both spatial and temporal scales, often causing SOCS 
studies to require a high sampling density (Cambou et al., 
2016). Therefore, it is necessary to explore SOCS analysis 
techniques that represent a reduction in the resources 
required.

Chemometric approaches constitute a potential tool 
to evaluate soil attributes rapidly and accurately in the 
laboratory (Ben Dor et al., 2015; Davari et al., 2021). Diffuse 
reflectance spectroscopy is a technique developed to 
accelerate data acquisition regarding materials’ properties. 
Soil spectroscopy is based on the idea that the characteristics 
of the radiation reflected by a material when exposed to an 
electromagnetic spectrum depend on the composition of the 
material itself. This means that studying soil reflectance can 
provide information about the properties and condition of 
the soil under study (Davari et al., 2021; Viscarra Rossel and 
Webster, 2012). The features of the reflected spectra of a 
soil sample in the NIR spectrum have allowed for optimal 
results in terms of predicting soil properties, especially when 
dealing with SOC assessments (Liu et al., 2019; Nawar and 
Mouazen, 2019; Nocita et al., 2014). 

It is important to mention that the acquisition of spectral 
signatures can be carried out in situ or using laboratory 
equipment. This can affect the information obtained from 
the reflectance spectra, causing variations in the model 
performance with regard to the estimated properties 
(Ahmadi et al., 2021; Ben Dor et al., 2015). When spectral 
signatures are taken in situ, factors such as the contact probe 
device of the equipment and its operator, the moisture of 
the soil sample, and environmental conditions can alter the 
spectral reflectance of the samples in comparison with those 
acquired in the laboratory. The latter would then be assumed 
to have been acquired under controlled environmental 
conditions, as well as after being dried and sieved for the 
sake of homogeneity. 

The objective of this research was to evaluate the potential 
of NIR spectroscopy in order to estimate the SOCS of oxisols 
in the study area. Several models were developed by varying 

the number of samples used for calibration, followed by 
the evaluation of the spatial variability of the measured and 
estimated data by means of depth splines and geostatistical 
interpolated surfaces.

Materials and methods

Study area and field sampling
This study was carried out at the Carimagua Experimental 
Station of Agrosavia, located in the municipality of Puerto 
Gaitán (Meta, Colombia), with geographic coordinates 4° 
34’ 48” N, 71° 21’ 00” W, an average altitude of 175 masl, 
an average annual temperature of 28 °C, an average rainfall 
of 2 240 mm, and a warm-humid climate. The relief of the 
study area is flat to slightly undulating, with slopes ranging 
between 0 and 7%. Soils are mostly oxisols whose dominant 
taxonomic component is typic hapludox. These soils have 
a low pH (<5), are well drained, and are covered with 
native savanna. Their predominant use is extensive livestock 
farming.

The study area has an extension of 248 ha, where a directed 
sampling scheme was established. Sampling took place in 
2018 and consisted of 70 points spaced perpendicularly by 
200 m, from which soil samples were extracted in depth 
intervals of 0-10, 10-20, 20-30, 30-40, and 40-50 cm, for a 
total of five samples per trunk (Figure 1). The total number 
of samples collected was 313, out of which 70 corresponded 
to the first and second depths, 68 to the third, 59 to the 
fourth, and 46 to the last. The difference in samples collected 
per depth is attributed to the presence of the water table in 
the study area. Each of the 313 soil samples consisted of a 
disturbed sample and an undisturbed cylinder sample.

Laboratory analysis
The disturbed samples were dried at 35 °C and then sifted 
through a 2 mm mesh. Total soil carbon was determined 
using an elemental analyzer (TruSpec CN Carbon Nitrogen 
Determinator, LECO Corp., St. Joseph, MI, USA). Since the 
soil samples did not show the presence of carbonates in the 
hydrochloric acid test, the total carbon was considered to be 
the SOC. The undisturbed soil sample cylinders were oven-
dried at 105 °C for 48 h, and then the BD was calculated by 
dividing the mass of the soil by the volume of the cylinder. 
The SOCS was determined according to Equation (1): 

[ ] ( )* * 1 *0,01t gCSCOS DT dm SOC Pd
ha kg

   = −     

where DT stands for the depth and thickness of the soil 
layer, and Pd stands for the stoniness factor. In this case, 
Pd was assumed to be 0 because no significant stoniness 
was evidenced in the sampling process. Spectral signatures 
were recorded using a NIRFlex N-500 spectrometer (BÜCHI 
Labortechnik AG), which recorded measurements in 

(1)
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reflectance units in the NIR range, from 1 000 nm to 2 500 
nm, averaging 32 scans for each wavelength. The spectral 
signatures were taken from the dried and sieved soil samples.

Spectral modeling
To perform spectral modeling, it was first necessary to 
define the calibration and validation groups of the spectral 
models. The Kennard-Stone algorithm (Kennard and Stone, 
1969) made it possible to establish uniformly distributed 
groups according to the variance of the spectral signatures. 
The calibration groups for BD and SOC were defined with 
70% of the total signatures, while the validation group was 
assigned the remaining 30%. For SCOS spectral modeling, 
calibration groups consisting of 10, 20, 30, 60, 90, 120, 
150, 180, 210, 240, and 270 samples were built with the 
Kennard-Stone algorithm. A subsequent validation of each 
group was carried out with the samples that did not take part 
in the calibration model.

In the model calibrations, spectral data were submitted 
to a series of pretreatments to normalize the responses 
and smooth out any possible noise that could be present 
in the signatures. The pretreatments considered were the 
transformation of raw spectra to absorbance, the Savitsky-
Golay derivate, and standard normal variation. Once the 
combinations of pretreatments were applied, the model was 
built by means of PLSR, which is a commonly used technique 
when dealing with high-dimensional data (such as the 
wavelengths of the NIR spectral range) with highly collinear 
predictor variables. This technique summarizes the data into 

a few orthogonal factors, which are linear combinations of 
the predictor variables, so that the covariance of both the 
predictor and dependent variables is maximized. These 
orthogonal factors are then employed to develop a linear 
model to estimate the soil’s attribute of interest (Katuwal et 
al., 2020).

The criteria to establish the performance of each model were 
set by the values obtained for the coefficient of determination 
(R2), root mean square error (RMSE), and residual prediction 
deviation (RPD), the latter being the ratio of the standard 
deviation of the laboratory-measured data to the validation 
RMSE. The lower the RMSE and the higher the R2, the better 
the estimations reached. According to Viscarra Rossel et 
al. (2006), the RPD can rate a model as unrepresentative 
if it reaches a value lower than 1,4; as regular with values 
between 1,4 and 1,8; as well-performing with 1,8-2,0; as 
a very good model with 2,0-2,5; and as an excellent model 
with a RPD value greater than 2,5. The construction and 
evaluation of spectral models was carried out with the R 
software (R Core Team) and the libraries prospectr (Stevens 
and Ramírez-Lopez, 2020) and pls (Liland et al., 2021). 

Spatial variation analysis
The vertical behavior of the estimated and measured data 
was verified by means of depth splines. Splines are a set 
of quadratic functions joined by nodes (depths measured) 
that represent a smoothed curve (Ponce-Hernandez et 
al., 1986). Regarding the horizontal plane, by means of 
geostatistical interpolation surfaces, the likeness of the 

Figure 1. Location of the study area detailing the number of samples obtained for each trunk
Source: Authors
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measured and estimated SOCS was observed. To this effect, 
experimental semivariograms were built and then adjusted 
to fit the theoretical models. These models have three 
common parameters: the nugget effect (C0), the sill (C0 + 
C1), and the range. The adjustment of the theoretical model 
was based on the lowest value of the sum of the squared 
residuals, the highest values of R2 of the fitted model, and 
the cross-validation coefficient (CVC). Afterwards, spatial 
interpolation was carried out by ordinary kriging, which is 
regarded as an optimal estimation method that provides 
unbiased predictions while minimizing the variance (Oliver 
and Webster, 2015). In addition, the degree of spatial 
dependence (DSP) was assessed, which is the relationship 
between the nugget effect and the sill of the semivariograms 
(C1 * (C0 + C1)-1). According to Cambardella et al. (1994), 
the DSP is classified as weak if it is lower than 25%, as 
moderate if it is between 25 and 75%, and as strong above 
75%. Geostatistical processing was performed with the GS+ 
software v.9 (Gamma Design Software, LLC, Plainwell, MI, 
USA), in combination with ArcGIS v.10.8 (ESRI), while depth 
splines were built with R (R Core Team) and the ithir library 
(Malone, 2016). 

Results and discussion

Exploratory analysis and spectral signatures
For the statistical analysis of each variable, an exploratory data 
study was initially carried out with R, calculating measures 
of location (mean, median, minimum, and maximum), 
variability (coefficient of variation, CV), and central tendency 
(skewness and kurtosis). Values close to zero for skewness 
and kurtosis indicated that the precept of normality was 
met. The descriptive statistics for the behavior of BD and 
SOC across the studied profile are shown in Table 1. It was 
evidenced that, across the soil profile, the behaviors of SOC 
and BD are inversely proportional. The BD reached a mean 

value of 1,33 g cm-3 at the first depth, which kept increasing 
until 1,49 g cm-3 for the last interval. For the SOC, the 
average content in the range of 0-10 cm was 2,61%, which 
kept decreasing until reaching a value of 0,95% at 40-50 cm. 
The higher values of SOC at lower depths can be attributed 
to the presence of vegetation and the natural contribution of 
surface residues. A similar behavior of these two properties 
was also reported by other investigations in the oxisols of 
the Eastern Plains in Colombia (Camacho-Tamayo et al., 
2014; Ramirez-Lopez et al., 2008)

The average spectral signature for all soil samples grouped 
by soil depth is shown in Figure 2. The behavior shown by 
the spectral signatures at each sampling depth can also be 
qualitatively related to some of the soil properties. In the 
NIR, at wavelength ranges of 1 000-1 350 nm and 1 400-2 
200 nm, spectral responses tend to be smoother and have a 
lower magnitude of reflectance in soils with a higher content 
of organic material (Poppiel et al., 2018). This is because 
organic matter affects the albedo of soils, which makes 
them reflect less light at higher levels of organic content 
(organic carbon) (Camacho-Tamayo et al., 2014). The 
spectral signatures obtained in this study showed a spectral 
reflectance according to these characteristics, as higher SOC 
contents were observed at lower sampling depths, which 
is consistent with the lower magnitudes of reflectance at a 
greater proximity to the soil surface.

BD and SOC modeling performance

The performance of the most accurate spectral models for 
BD and SOC is shown in Table 2. These were calibrated 
with 70% of the total signatures and validated with the 
remaining 30%. The BD spectral model turned out to be 
unrepresentative, reaching a RPD of 1,35 with an R2 equal to 
0,41 during its validation. On the other hand, SOC showed 
excellent performance, reaching RPD and R2 values of 5,63 
and 0,97, respectively.

Property Depth [cm] Mean Median Max, Min, SD CV [%] Skewness Kurtosis

BD
[g cm-3]

0-10 1,33 1,33 1,58 1,14 0,10 7,78 0,18 -0,38

10-20 1,41 1,42 1,55 1,28 0,06 4,43 -0,01 -0,62

20-30 1,41 1,41 1,58 1,25 0,09 6,14 -0,06 -0,74

30-40 1,43 1,46 1,63 1,24 0,10 7,07 -0,11 -0,89

40-50 1,49 1,50 1,73 1,29 0,10 6,70 -0,09 -0,28

SOC
[%]

0-10 2,61 2,63 3,24 1,98 0,26 10,08 -0,01 -0,12

10-20 1,75 1,72 2,16 1,33 0,18 10,51 0,07 -0,51

20-30 1,39 1,37 1,75 1,08 0,16 11,33 0,38 -0,42

30-40 1,12 1,08 1,50 0,85 0,17 14,78 0,57 -0,59

40-50 0,95 0,98 1,31 0,58 0,16 16,50 -0,06 -0,30

Table 1. Descriptive statistics for BD and SOC per depth with measured data

Source: Authors

SD: standard deviation; CV: coefficient of variation; Max: maximum; Min: minimum
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The level of performance obtained for the SOC estimations 
has also been reported in other works, corroborating the 
potential use of NIR spectroscopy for the prediction of 
this property (Jia et al., 2017; Nawar and Mouazen, 2019; 
Nocita et al., 2014). An example of this can be found in the 
large-scale study conducted by Liu et al. (2019), in which a 
model composed of 11 213 soil samples with a mean SOC 
content of 1,84% and magnitudes ranging from 0,02% to 
9,96% achieved a validation R2 equal to 0,96 and a RMSE 
of 0,29%.

SOCS spectral estimation
The result of the product between BD [kg dm-3] and SOC [gC 
kg-1] is the volumetric SCOS [gC dm-3] (SCOSv), which was 
the value estimated from spectral models. The performance 
of the models calibrated via the established groups ranging 
from 10 to 300 samples is shown in Table 3. It was 
evidenced that, by increasing the number of samples used 
to calibrate the models, the RMSE decreased while the RPD 
and R2 increased. This bears out the fact that more robust 
estimation models can be achieved with more samples. 
The stabilization of these parameters occurs at around 90 
samples for the calibration model, so this number was 
chosen as optimal for SCOS spectral modeling. However, 
it is worth highlighting that each of the models defined in 
Table 3 showed RPD and R2 values greater than 2,0 and 0,80 
in the validation parameters.

According to the RPD, the model made with the calibration 
group of 90 soil samples gave excellent estimates for SCOSv, 
with a RMSE of 2,12 gC dm-3 and a R2 of 0,93 (Figure 3). The 

Table 2. Calibration and validation results for the BD and SOC 
spectral models

Source: Authors

The underperformance obtained for the spectral model of BD 
has also been reported in other studies (Katuwal et al., 2020; 
Moreira et al., 2009). Particularly, the work by Moreira et al. 
(2009) consisted of 1 184 samples with BD values in the range 
of 0,45-1,95 g cm-3. They managed to validate models with R2 
between 0,10 and 0,34 by applying different pretreatments 
to the spectral signatures. Meanwhile, Katuwal et al. (2020) 
achieved slightly higher performances, with R2 between 0,10 
and 0,52 while working with a BD range of 1,02-2,01 g cm-

3. BD is a soil property whose estimation through spectral 
signatures depends on the correlations that it may have with 
other attributes with recognized associations in the spectral 
range (Askari et al., 2015; Viscarra Rossel and Webster, 
2012). For example, Al-Asadi and Mouazen (2014) coupled 
auxiliary variables such as water content, texture fractions, 
and organic matter with spectral models of BD in order to 
improve estimations, going from R2 values between 0,23 and 
0,69 to a 0,70-0,81 range. 

Figure 2. Spectral signatures averaged for each sampling depth
Source: Authors

Property Model R
2

RMSE RPD Range

BD 
[g cm-3]

Calibration 0,45 0,08 1,36 1,14 - 
1,73

Validation 0,41 0,08 1,35 1,15 - 
1,63

SOC [%]
Calibration 0,97 0,11 5,46 0,58 - 

3,24

Validation 0,97 0,11 5,63 0,75 - 
3,24
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calibration range for this model was 8,39-45,55 gC dm-3, 
while the range was 9,81-41,61 gC dm-3 for the validation 
group. The behavior of the measured and estimated SCOS 
in the soil profile is shown in Table 4. No large differences 
between the measured and estimated SOCS were evidenced. 
The datasets showed similar magnitudes regarding the 
mean and median, as well as for skewness, kurtosis, and 
the CV, which was in fact lower at each one of the sampling 
ranges (estimated vs. measured SOCS). The average content 
regarding the SOCS measured in the whole depth range of 
0-50 cm was 109,28 tC ha-1. This value was 110,56 tC ha-1 
for the estimated data.

Table 3. Results for the calibration and validation of SOCSv 
spectral modeling

 
Source: Authors

Figure 3. Spectrally estimated vs. measured values of SOCSv 
Source: Authors

A study carried out by Cambou et al. (2016) reported 
acceptable models regarding the estimation of SCOS 
from spectral signatures acquired in the field for a haplic 
luvisol, reaching R2 and RPD values of 0,70 and 1,80, 
respectively, for SCOSv values ranging between 7,90 
and 27,70 gC dm-3. Part of the flaws in the estimation 
model of said research were attributed to the fact that the 
spectral signatures were collected by manually extracted 
auger soil cores that altered the natural structure of the 
samples. This, in addition to the fact that conventional 
laboratory analyses for BD and SOC were not performed 
on the soil samples from which the spectral signatures 
were collected (Cambou et al., 2016). On the other 
hand, Allory et al. (2019) compared the performance 
of models calibrated for urban soils using spectral 
signatures acquired in the field and in the laboratory. 
With a SCOSv range of 0,30-54,60 gC dm-3, a validation 
model was obtained with a RPD equal to 2,20 and an R2 
of 0,78 for spectral signatures acquired in situ, while, for 
the laboratory-acquired spectra, the model parameters 
reported were 3,1 for the RPD and 0,89 for the R2. The 
performance improvement of the latter was attributed to 
the more stable measurement conditions in the laboratory, 
in comparison with those in the field.

For tropical volcanic soils that included andosols, cambisols, 
and ferralsols, Allo et al. (2020) calibrated models with 
spectral signatures obtained in the field and in the 
laboratory, obtaining better results in the validation of the 
model elaborated from signatures taken in situ (R2 = 0,91 
and RPD = 3,29) when compared to the validation of the 
laboratory spectral model (R2 = 0,86 and RPD = 2,63). Allo 
et al. (2020) used a mechanical column auger to collect 
spectra in the field, allowing them to collect 30 signatures 
uniformly every 10 cm of the sampled soil column to 
establish an average signature for a single sample, achieving 
a closer representation of natural conditions. Doing this 
could have considerably improved the predictive ability of 
the model with spectra taken in situ vs. those acquired in 
the laboratory. 

Given that the magnitudes of SOC and SCOS tend to 
increase at depths closer to the surface and decrease at 
lower depths in the soil profile (FAO, 2019; Stockmann et 
al., 2013), the Intergovernmental Panel on Climate Change 
recommends monitoring these organic C concentrations 
at least in the depth range of 0-30 cm (IPCC, 2019). 
This recommendation is also motivated by the fact that 
the first 30 cm from the soil surface usually experience 
substantial changes in SOC due to management practices. 
Hence, the detection of variations in SOC reserves at 
this depth range could be noticed in shorter periods of 
time, depending on the activities carried out on them 
(Huang et al., 2019). In this regard, the oxisols of the 
Eastern Plains in the study area show a cumulative mean 
value of 78,85 tC ha-1 in the first 30 cm of soil depth, 
which, for estimated spectral data, equals 79,86 tC ha-1 
and corresponds to approximately 72% of the total SOCS 
present in the profile considered. 

Number 
of  

samples

Calibration Validation

R
2 RMSE 

[gC dm-3] RPD R
2 RMSE 

[gC dm-3] RPD

10 0,98 1,04 2,87 0,82 3,35 2,34
20 0,92 2,36 1,97 0,84 3,13 2,50
30 0,88 2,74 2,11 0,86 2,95 2,66
60 0,93 2,14 2,95 0,92 2,19 3,58
90 0,93 2,16 3,01 0,93 2,12 3,69
120 0,93 2,17 3,08 0,92 2,15 3,64
150 0,92 2,16 2,97 0,93 2,13 3,68
180 0,93 2,15 3,20 0,93 2,07 3,78
210 0,93 2,09 3,34 0,93 2,04 3,84
240 0,93 2,08 3,42 0,93 2,08 3,77
270 0,93 2,09 3,44 0,93 2,08 3,77
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SOCS spatial variation
The vertical variation of the soil properties is shown in 
Figure 4. The splines allowed to estimate the value of soil 
attributes within each measured depth. Furthermore, the 
addition of boxplots to these diagrams aided in examining 
the similarity between measured and estimated data. At 
first glance, it can be noted that the resulting splines for 
BD have clear differences, which are attributed to the low 
representativeness of the spectral model. The interquartile 
range, as well as the whiskers of the boxplots, showed a 
considerable reduction for the estimated data in comparison 
with the measured values. The unrepresentativeness 
obtained in the spectral modeling for BD can be associated 
with the alteration of the structure of the soil samples prior 
to the signature acquisitions, as the soil samples were dried 
and sieved.

Furthermore, the splines confirmed the excellent 
performance of spectral models for SOC and SOCSv. Even 
though a reduction can be perceived in the interquartile 
ranges of the boxplots of the estimated data when 
compared to those of the measured data, in general, the 
ranges of the whiskers of the estimated and measured 
data are similar. However, it can be pointed out that 
the loss of performance of the SCOS spectral model in 
comparison with the SOC one is due to the incorporation 
of the BD in the estimated variables, since this property 
could not be estimated directly with the same degree of 
representativeness.

The results of the geostatistical analysis for the measured 
and estimated SOCS are shown in Figure 5 and Table 
5. The semivariograms were adjusted to spherical 

and exponential models, which were the same for the 
measured and estimated data at every depth range except 
for 10-20 cm. Moreover, for each of the semivariograms in 
the five sampling depths, the nugget and sill values were 
lower for the spectral vs. the measured data. Therefore, it 
can be stated that the variance is lower in the estimated 
data. Lower nugget and sill values for the spectral data 
have also been reported by other authors (Araújo et al., 
2015; Bonett et al., 2016; Camacho-Tamayo et al., 2017; 
Wetterlind et al., 2008). Among the sampling depths, 
the greatest variability of the SOCS was evidenced in the 
semivariograms at the closest range to the soil surface, 
which is consistent with the natural addition processes 
taking place in the study area. 

The use of spectrally estimated data in the construction 
of semivariograms did not modify the spatial variation 
tendency of the SOCS, as was verified in the obtained 
models and the interpolation surfaces illustrated in Figure 
5. DSD shows moderate spatial dependence for each of the 
sampling depths, which is also consistent for the spectral 
and measured data. In addition, most R2 and CVC values 
were above 0,70.

The geostatistical interpolation surfaces obtained from 
estimated and measured data showed a high degree of 
correspondence at each sampling depth. This is a positive 
indicator for approaching SOCS monitoring through spectral 
models, given that, once a sufficiently robust model is 
reached with adequate performance regarding the needs, 
the volume of information obtained could increase without 
the need to spend resources on conventional laboratory 
analyses, which is convenient for addressing soil studies in 
the context of climate change.

SCOS 
[tC ha-1]

Depth 
[cm] Mean Median Max, Min, SD CV [%] Skewness Kurtosis

Measured

0-10 34,64 34,57 45,55 25,44 3,69 10,64 0,18 0,82

10-20 24,74 25,01 29,85 19,18 2,43 9,83 -0,05 -0,56

20-30 19,47 19,55 25,81 14,68 2,35 12,05 0,34 -0,07

30-40 16,11 15,91 21,69 12,05 2,67 16,55 0,42 -0,79

40-50 14,32 14,64 20,41 8,39 2,43 16,99 -0,10 0,35

Estimated

0-10 34,38 34,31 42,90 27,64 3,08 8,95 0,16 0,12

10-20 25,32 25,58 29,11 21,56 1,91 7,55 -0,17 -0,85

20-30 20,16 20,21 25,44 15,76 1,95 9,65 0,22 0,38

30-40 16,21 15,69 20,89 12,41 2,05 12,65 0,59 -0,38

40-50 14,49 14,44 18,34 10,84 1,75 12,07 0,28 -0,04

Table 4. Results for the calibration and validation of SOCSv spectral modeling

Source: Authors

SD: standard deviation; CV: coefficient of variation; Max: maximum; Min: minimum
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Figure 4. Depth splines for standard laboratory-measured (a, c, e) and spectral estimated data (b, d, f)
Source: Authors
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Figure 5. Interpolation surfaces of SOCS from measured (a, c, e, g, i) and estimated (b, d, f, h, j) data
Source: Authors
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Conclusions

NIR spectroscopy allowed estimating, with a high degree of 
representativeness, the SOCS of oxisol in the study area. The 
results suggest that laboratory analyses for SOCS could be 
largely substituted or complemented by an approach involving 
spectral techniques in the NIR region. This work also showed 
that data derived from NIR models could be integrated into 
geostatistical evaluations for Colombian oxisols.
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