
Ingeniería y Ciencia
ISSN:1794-9165 | ISSN-e: 2256-4314
ing. cienc., vol. 11, no. 22, pp. 95–119, julio-diciembre. 2015.
http://www.eafit.edu.co/ingciencia
This article is licensed under a Creative Commons Attribution 4.0 by

Towards Procedural Map and Character
Generation for the MOBA Game Genre

Alejandro Cannizzo1 and Esmitt Ramírez2

Received: 15-12-2014 | Accepted: 13-03-2015 | Online: 31-07-2015

MSC:68U05 | PACS:89.20.Ff

doi:10.17230/ingciencia.11.22.5

Abstract
In this paper, we present an approach to create assets using procedural
algorithms in maps generation and dynamic adaptation of characters for a
MOBA video game, preserving the balancing feature to players. Maps are
created based on offering equal chances of winning or losing for both teams.
Also, a character adaptation system is developed which allows changing
the attributes of players in real-time according to their behaviour, always
maintaining the game balanced. Our tests show the effectiveness of the
proposed algorithms to establish the adequate values in a MOBA video
game.
Key words: procedural content generation; multiplayer on-line battle
aren; video game; balanced game

1 Universidad Central de Venezuela, Caracas, Venezuela, alejandro.cannizzo@gmail.com.
2 Universidad Central de Venezuela, Caracas, Venezuela, esmitt.ramirez@ciens.ucv.ve.

Universidad EAFIT 95|

http://www.eafit.edu.co/ingciencia/
mailto:alejandro.cannizzo@gmail.com
mailto:esmitt.ramirez@ciens.ucv.ve

Towards Procedural Map and Character Generation for the MOBA Genre Game

Generación procedimental de mapas y personajes
para un juego del género MOBA

Resumen
En este artículo, presentamos un enfoque empleando algoritmos procedu-
rales en la creación de mapas y adaptación dinámica de personajes en un
videojuego MOBA, preservando el aspecto de balance para los jugadores.
Los mapas son creados para ofrecer igual oportunidad de ganar o perder
para los equipos. También, se desarrolló un sistema de adaptación de per-
sonajes que permite cambiar en tiempo real los atributos de los jugadores
de acuerdo a su comportamiento, siempre manteniendo el balance. Nues-
tras pruebas demuestran la eficacia de los algoritmos para establecer los
valores adecuados en un videojuego MOBA.

Palabras clave: generación procedimental de contenido; batalla en arena
multijugador en línea; videojuego; juego equilibrado

1 Introduction

Nowadays, a computer game demands several materials to compose com-
plex and large scene, carrying high costs in their content development.
The Digital Content Generation (DCG) - subset of the Procedural Content
Generation (PCG) algorithms - is a keystone in modern video games which
is formed by a set of algorithms to produce levels, maps, assets, characters,
weapons, and others, offering a reduction on game production costs. The
main goal of DCG is to create novel game elements, off-line or on real-time.

Since early days of video game development, developers had issues re-
garding the memory taken up by the game levels they created. Generally,
this introduces a limitation to the size of the virtual worlds created. In or-
der to be able to create bigger worlds, the developers focused on reducing
the size of data employed for virtual world creation. Thus, DCG algorithms
were created to be used as a tool to reduce the storage space taken up by
the levels created on video games.

The DCG is used by developers to solve a big problem in the deve-
lopment cycle of video games: time. Developers use these algorithms to
reduce the amount of time taken to create a game or certain features of it.
Particularly, there is a video game genre called Real-Time Strategy (RTS)
where participants have to control secure areas of a map and eliminate their

|96 Ingeniería y Ciencia

Alejandro Cannizzo and Esmitt Ramírez

opponents assets (e.g towers, buildings, shelters, and so on). In this genre,
the Multiplayer on-line Battle Arena (MOBA) is a sub-genre which allows
the presence of two teams to battle against each other. Generally, maps
are static and the content available to players is constantly growing to scale
the game. When these games are created, game designers have to spend
increasingly amounts of time due to design issues caused by the newly
added content. Also, terrain of game levels in MOBA are based on height
maps, which are conveniently designed to apply procedural algorithms.

A distinguished area in MOBA is concerned with characters, where
they are designed to evolve in time during the game (i.e. on their power
or abilities). In order to reduce the time required and to make fast MOBA
prototypes, we present an approach to the study and implementation of a
DCG algorithm in a MOBA video game. Mainly, we focus on the generation
of terrain maps and the evolution of player’s abilities in the game using
genetic algorithms.

This paper is structured as follows: Section 2 presents a brief intro-
duction in dynamic content generation as a video game design solution,
including a few previous works in that area. Following that, in section 3,
we explain details of our proposal to use the DCG algorithms in MOBA
video games. Section 4 shows the experiments and results achieved using
our approach. Finally, conclusions and future works are presented in sec-
tion 5.

2 Dynamic content generation

The procedural generation is the process to generate content algorithmi-
cally rather than manual. This research area is not new in Computer
Science, where several works were developed. Procedural generation origi-
nated in 1975 when Benoit Mandelbrot [1] defined the fractal object which
describes such repeating or self-similar mathematical pattern. This idea
is used in several application such as creation of textures [2], cities [3],
forests based on L-Systems [4], terrains [5], video games [6], and other a-
reas. Commonly, in video games this process is called Dynamic Content
Generation.

The powerful of procedural generation allows to integrate several re-

ing.cienc., vol. 11, no. 22, pp. 95–119, julio-diciembre. 2015. 97|

Towards Procedural Map and Character Generation for the MOBA Genre Game

search field to solve problems. For instance, in 2013, Genevaux et al. [7]
define a novel way of generating terrain based on hydrology. Their algo-
rithm takes as initial input the contour of the terrain and some rivers given
by the user. Then, the algorithm will take the input information and start
generating a complete drainage river network, resulting in a complete for-
mation of rivers that go from springs to outlets, with the expected height
variation. After the rivers are created they start working on the remaining
terrain using different building blocks to and modifying the terrain accor-
dingly to the rivers so that the overall result of the map is topologically
correct.

Specifically in the video game development area, Dynamic Content Ge-
neration was used to create larger levels with lesser amounts of data to a-
ddress issues regarding the memory storage at that time. After the memory
storage concerns dissipated, the DCG started to be used to generate other
kinds of content to increase the effective range of content that was show to
the player, removing much of the monotony produced by repetitive content.
These algorithms are not restricted to be used during run-time and that
they can generate content to be embedded inside a game once it is finished.
As an example, a forest may be created procedurally to be later inserted
into the game as a static asset that will remain the same throughout the
game.

It is possible to classify DCGs according to the moment of the genera-
tion of the data (on-line vs off-line), or the prioritization of their depen-
dences in the game (necessary vs optional), or based on the base values to
start the generation of dynamic data (simple seed vs parameter vector), or
by level of randomness (deterministic vs no-deterministic), or by measur-
ing the evolution of generations (one-time construction vs constant-time
construction), etc. The important fact is that these techniques were used
as tools by developers to shorten the development time of the project and
to increase the amount of content presented to the player. A remarkable e-
xample of this was presented in 2011 by Browne [8] developing a tool which
involves the deep integration of procedural content generation into game
mechanics and aesthetics to many genres, including PCG-based games.

There are several research works in procedural game content to gene-
rate coherent visual aspects on a game. In the literature there are several
examples in adaptive or personalized procedural content according to a

|98 Ingeniería y Ciencia

Alejandro Cannizzo and Esmitt Ramírez

game genre [9],[10]. For instance, distinguished examples such as the opti-
mization of tracks in car racing games [11], weapons generation for space
shooter games [12], rulesets for board and predator-prey games [13, 14],
automatic levels based on playing style for platform games [15],[16], mu-
sic generation according to the genre or mood of games [17], and others.
Similarly, it is possible to generate dynamic content based on a set of ins-
tructions using some language such as ASP (Answer Set Programming)
for PCG on spaces [18]. Particularly, level generation has been applied
since the rise of previously popular games such as Rogue R©1, Diablo R©2 and
Spelunky R©3 to current games such as Minecraft R©. Figure 1 shows a part
of Spelunky R© where rooms and obstacles were generated procedurally, as
well as a screenshot of Minecraft R©.

(a) (b)

Figure 1: An example of the procedural generation, in (a) Spelunky R©, and (b)
Minecraft R©4.

2.1 Dynamic Content Generation on MOBA

As mentioned before, MOBA Multiplayer on-line Battle Arena is a sub-
genre of RTS in which two teams exists, each with the objective of destro-
ying the main structure (e.g. tower, castle, fort) of the opponent. Typically,

1
http://science-fiction.fch.ir/rogue/doc/Rogue_1984-The_DOS_Game-The_History-The_Science.html

2
http://blizzard.com

3
http://spelunkyworld.com/

4
https://minecraft.net/

ing.cienc., vol. 11, no. 22, pp. 95–119, julio-diciembre. 2015. 99|

Towards Procedural Map and Character Generation for the MOBA Genre Game

a character belonging to a team has various abilities and advantages that
improve over the course of the game (increasing the global performance of
its team).

There are a number of MOBA video games that created game worlds
procedurally, mostly in the form of some kind of level generator [19]. The
generation of maps or virtual spaces (levels) can be carried out in four
different ways [20]: designer-created spaces (mostly static), random genera-
tion, player-created and procedurally-generated game spaces. Any of these
approaches can be generated by implicit or explicit description depending
of the game context. In this paper, we focus on mixing the core plateaus
of played-created and procedurally-generated approaches.

A more in-depth study on procedural content generation techniques in
games, including MOBA, can be found in [6]. In this work, PCG games are
classified following a six-layered taxonomy: bits, space, systems, scenarios,
design and derived. Additionally, the authors show a majority of methods
employed in procedural generation for commercial and prototype games.

In order to be able to include DCG in a MOBA map, it is necessary
to outline what content will be changed in order to define the bounds of
algorithms. There are many variables involved, which range in complexity
from the simplest to the most convoluted. Players interact with many
different systems that work together to deliver the expected experience of
a MOBA game. Next, we present some relevant aspect to be considered
for application in our algorithm.

3 Our methodology

In this section we explain in detail our approach to the map generation and
CAS system.

3.1 The problem

MOBA games tend to use a predefined map or level in which players play
each match. This map is carefully designed to provide interesting situations
to players as they play, and give them tools to make strategic decisions

|100 Ingeniería y Ciencia

Alejandro Cannizzo and Esmitt Ramírez

to win the game. Because of its careful design, these maps cannot be
changed without analysing the consequences of these changes and as a
result developers tend to not change the features of the map.

The proposal of procedurally generating a map so that it is different
each time a new game starts is inherently a complex design issue that can
only be addressed by the careful implementation of an algorithm capable
of taking into account the strategic context of each feature of the map.

Focus on Character Adaptation Systems (CAS), MOBA games have an
inherent problem directly related to the amount of content they provide to
their players in the form of new playable characters. These characters are
made to be unique and provide new and interesting ways of playing the
game, but as the pool of characters rises, the developers incur in frequent
balancing problems. These balancing problems mean that, for instance, a
new character overshadows an existing one, making it less desirable to be
played and forcing the developers to rethink the already existing character
in a way that will make it more appealing for players to play with them.
This problem is directly proportional to the amount of characters the game
has, and there is no real solution to it.

3.2 Solution

Since there are so many different systems that could be created procedu-
rally, we arbitrarily chose two that tamper with the very design of the
game. The first one would be the map, where the players play the actual
game, and the second one would be the characters that players use through
a match.

3.3 Map generation

For map generation, we based our work using the maps provided in the
DotA 2 R©5, because maps are perfectly aligned with any standard MOBA
game. Also, these maps offer all the mechanisms required to be used in
order to achieve a well-balanced map that lets both teams of players stand

5http://dota2.com/

ing.cienc., vol. 11, no. 22, pp. 95–119, julio-diciembre. 2015. 101|

Towards Procedural Map and Character Generation for the MOBA Genre Game

equally with respect to their chances of winning. Then, we created an
algorithm which delivers a very similar experience to playing maps in DotA.
Then, characters (players) are present, as well as some dynamic characters
called creatures, equally distributed to each team.

Before the explanation, it is imperative to know how the original map is
composed in order to alter different features without damaging its original
purpose. This aspect is extremely important when dealing with this kind
of game where players compete and must have equal chances of winning a
match.

The map will be broken into the five different features that compose it:
the River, Bases, Lanes, Jungles and the Design of the map. The following
explains in detail each of them.

The river: The most outstanding element of the map is the river that
traverses it, effectively dividing the map in two halves as shown in the
Figure 2a. Each half of the map is considered to be one zone of each team.
The strategic value of the river is huge because it is the quickest route
to traverse the map. Also, as players transit this river frequently, it is a
common place for skirmishes between enemy players.

(a) (b) (c)

Figure 2: Map composition: (a) a river, (b) two bases connected with lanes and,
(c) a jungle inside it.

Bases: Players start each match on their corresponding Base. This is the
safest place a player can have throughout the match, and it is where players
frequently go back to heal and obtain new items that will strengthen their

|102 Ingeniería y Ciencia

Alejandro Cannizzo and Esmitt Ramírez

character’s abilities. The 2 bases in the map are placed as far as possible
from each other (opposite extremes), since the ultimate objective of the
game is to invade the enemy base, and destroy their main building.

Lanes: The map offers 3 lanes that form roads between each base (see
Figure 2b). These lanes are guarded by special buildings that will attack
enemy players, called Turrets. These Turrets must be destroyed in order
to advance through the lane and eventually gain access to the enemy base.
Players will spend the first minutes of the game trying to push forward their
lanes in order to destroy enemy Turrets. However, creatures that belong to
each team are constantly moving through the lanes with the objective of
reaching the enemy base while attacking anything in between. Lanes play
a major role in strengthening abilities of characters and this is why players
spend most of their time in or near a lane.

Jungles: Jungles are placed between each lane and river, forming a total
of four across the map, as Figure 2c shows. Each pair of jungles is on one
side of the river. Jungles offer quick ways to travel between lanes and from
a lane to the river in the form of intricate roads (i.e. ways for enemy players
to invade the other zone). These are important for the overall pacing of the
game since they allow players to move through the map without stepping
on any lane, making it easier for players to move without being seen. They
have a very high strategic value for players to coordinate attacks or even
retreat. There are also special zones inside Jungles denominated Camps (in
Figure 2c, the dots inside jungles), where neutral creatures (meaning they
do not belong to any team) appear after certain periods of time. These
creatures can be defeated by players in order to help their characters get
stronger.

Design: In Lanes, outer Turrets (the turrets that are outside a base) have
enough spacing between each other so that players can go through the Lane
without being in range of any Turret. This is meant to offer a chance for a
team to coordinate an attack on an unsuspecting player that is travelling
through a lane. The River offers the fastest way to travel from lane to lane
across the map, and because of this, players usually look for opportunities
to catch enemy players that are moving through the river alone and attack

ing.cienc., vol. 11, no. 22, pp. 95–119, julio-diciembre. 2015. 103|

Towards Procedural Map and Character Generation for the MOBA Genre Game

them.
The overall design of the map causes players that are in need of de-

fending to have an advantage over their enemies, while players that are
attacking are often in dangerous zones where they are the most vulnerable
to attacks. Figure 3 shows inside the map, the danger zone coloured in red
for the left team. This makes the game a high-risk high-reward situation,
where players are forced to put themselves in danger in order to advance
through a lane and eventually destroy the main building of enemy team.

Figure 3: The red zone represents the danger zone for the left team in the map
during an attack to the right team.

3.3.1 Algorithm Having analysed the map of DotA it was now possible
to create an algorithm that was able to generate content following the
previously defined guidelines. However, in order to have a proper point of
comparison to how viable the generated map is, we need to define what a
viable map looks like. In this case, the DotA map was used as the reference
map, since it is already proven to be a viable map because it has undergone
several design iterations.

Since we used DotA maps to determine the metrics, our algorithm is
focused into the creation of a map, and it would only make sense to use
this map as the perfect case scenario to compare all the generated maps.
The closer a generated map is to the original one, the more viable it is to
be used in a match.

The first step is to create the River in the empty map. Thus, the algo-

|104 Ingeniería y Ciencia

Alejandro Cannizzo and Esmitt Ramírez

rithm uses a set of perturbed points along the diagonal of the map. Next,
points are interconnected using a quadratic Bézier curve to create a set of
points which represents the River. After its creation, the Bases would be
placed in the corners of the opposite diagonal of the map. These Bases start
off with a middle point which defines where the main building will appear,
and then they are surrounded by walls in a randomly generated radius
around the middle point. Note that the radius generated for both bases
must be equal or very similar in order to avoid having a team with a much
bigger Base than the other, which can prove advantageous/disadvantageous
to the team.

After that, the Lanes must be created to interconnect the Bases. Three
points are chosen along the river, one near the top-left corner of the map,
one around the center of it, and the other near the lower-right corner of the
map. These are then connected with the respective entrances of each base,
forming roads that traverse the whole map. Figure 4a shows the result
of applying our algorithm until now drawn over a background reference
image.

(a)
(b)

Figure 4: Previous results of the algorithm during its construction where (a)
points are placed to interconnect lanes, and (b) roads were generated using the
Breadth-First Search algorithm.

The last step consists of creating the Jungles. These are particularly
more complex to create than the previous elements because of the amount
of variables involved. A jungle must guarantee that a player can enter it

ing.cienc., vol. 11, no. 22, pp. 95–119, julio-diciembre. 2015. 105|

Towards Procedural Map and Character Generation for the MOBA Genre Game

at least from 3 different places. Since the Jungles are placed between the
river and 2 lanes, it is necessary to ensure that these places can be accessed
from at least one entrance of the Jungle. Usually, the entrance to a Jungle
from within a Lane lies between Turrets and more precisely, allows players
to enter the Lane from the Jungle without being targeted by an enemy
Turret.

Since the River is the fastest way to travel across the map, it is manda-
tory that no only lanes are accessible through it, but also the Jungles.
Because of this, there must be an entrance to each Jungle that is directly
connected to the River. To increase the dynamism of the generation of
roads in Jungles, a ridged multifractal algorithm [2] was used to generate
them. The viability of a Jungle would be evaluated by the distance needed
to traverse any of its roads from each Lane to the River, and between
Lanes. To evaluate this, a BFS (Breadth-First Search) algorithm was used
to measure the distance of the available roads in the Jungle. Figure 4b
shows that the BFS was executed 3 times (following the white arrows). In
the figure, roads are developed to find a path (yellow color) from different
point (initial points of white arrows).

After completing the creation of Jungles, the camps are added randomly
wherever there is enough space, resulting in an unpredictable amount of
camps in each map side. Because of this unpredictability, the sum of the
camps on each side of the map is compared, and then the camp-wise via-
bility of the whole Jungle setup is defined by how big is the difference in
the amount of camps on each side of the map. The smaller the difference,
the more viable the Jungle setup becomes.

To this point, a map is completely created, and the viability of all its
parts has already been calculated. To measure the map as a whole, we
need to take these viability points on each element of the map, and put
them together to get a single value that will determine how viable is the
map itself. In order to do that, a Multi-Objective Evolutionary Algorithm
(MOEA) [21] is performed, because we need to perform a comparison of
not only how viable one map is, but how viable is it compared to the other
maps generated with it.

In the MOEA, two fitness functions were created to evaluate a map:
one evaluates the length of each path in the Jungle and then averages it;

|106 Ingeniería y Ciencia

Alejandro Cannizzo and Esmitt Ramírez

the other uses the number of camps on each jungle to ensure that a team
would not have an advantage in this number on each side of the map. After
the new map is created completely, we move to the system for character
adaptation.

3.4 Character adaptation system (CAS)

This system is based on the idea of how to change in real-time the character
attributes of players and how this can be used to preserve the original design
of a MOBA game.

3.4.1 MOBA character design The characters in MOBA games are
based in the Role-Playing Game (RPG) model [22]. This model defines a
character through a set of values that determine its strengths and weak-
nesses. They have a Level value that works as a direct metaphor to how the
learning process works, a character is able to earn experience points through
different tasks. Then, reaching a certain value of these points their cha-
racter is promoted to a higher Level, effectively making it stronger, which
translates to a more experienced individual.

There are also a set of attributes that usually define aspects such as:
amount of Hit Points (damage a character can receive before dying), re-
silience to damage, magical damage, and others. These attributes define
how well a character performs in certain situations. In addition to level
and attributes, characters are broken up into different classes, which define
what set of skills this character will be able to have. These skills are abili-
ties that a character can make use of to aid them in combat and perform
different special actions.

In a MOBA game, each playable character follows the RPG character
model. Usually the types of characters can be broken down into three di-
fferent roles: Tank (able to sustain high amounts of damage and usually
focused on protecting their team-mates), Damage (focused on dealing high
amounts of damage to the enemy), and Support (flexible characters that
focus on special abilities and behaviours that help their team). Each cha-
racter is designed to bring something unique to the game. Besides the roll
they can fulfil, they are made to be fun to play in a unique way that is not

ing.cienc., vol. 11, no. 22, pp. 95–119, julio-diciembre. 2015. 107|

Towards Procedural Map and Character Generation for the MOBA Genre Game

like any other character in the game, just so that the game itself has more
variety for players to choose what they want to play. Because of this, each
design of character is carefully thought to reinforce their gameplay style.

As mentioned before, there is a problem related to the amount of
playable character a MOBA game provides, and it is that the addition
of a new character forces the developers to revisit older characters in order
to make them more appealing for the players. As an attempt to solve this
problem, or at least lessen it, the proposed Character Adaptation System
will change the way characters are constructed in the game.

Normally, characters are created with a unique set of skills that define
their gameplay style, in this case for the CAS, when beginning the game,
all characters are equal. Players then have to decide which skills will com-
pose their character. This changes the way new content is added to the
game. Instead of adding new characters, developers need to add new skills
that players can choose from the skills pool at the beginning of the game.
This will make the developers focus their design efforts on skills instead of
complete characters, which consists of a more complex set of variable to
deal with in matters of design.

The CAS is expected to not solve the balancing problem, but to at
least shorten the re-balancing cycle developers are forced to go through
each time new content is added.

3.4.2 Changing the RPG paradigm In a normal RPG game, charac-
ters strength comes from the values of its attributes, which increase each
time the character gains a level. This process is entirely discrete, where
the player is not able to experience any increase in their strength until
the needed amount of experience points has been gained and the character
gains a level.

In our approach, the procedural modification of a character starts by
moving the discrete nature of this leveling-up system towards a continuous
behaviour. This is done to continuously reward the player for their efforts
and to give an organic feel to the overall gameplay of the game. This
system would be in charge of understanding how the player wants to play
their character, and modifying continuously its attributes to correspond to
its play style.

|108 Ingeniería y Ciencia

Alejandro Cannizzo and Esmitt Ramírez

3.4.3 Implementation All characters in a MOBA game start a match
with two common actions they can perform: walking and basic attack.
Walking lets the character move where the player wants to go, as expected.
Basic attack can happen whenever a player chooses to attack an enemy
without using any of their skills.

An attack inputs to the Character Adaptation System (CAS) whether
the attack successfully damaged an enemy, and how frequently is the cha-
racter using it. By doing this, the CAS algorithm can start interpreting
what is the goal of the player and increases its attributes accordingly to
encourage its play style. If the player is trying to use the attack as fre-
quently as possible, the CAS may reward him with increased attack speed,
reducing the time to wait before performing the next attack.

The CAS is a system that focuses entirely on gathering real-time in-
formation from a player’s behaviour and actions, transforming them into
attributes increased for their character. This feedback loop is presented in
Figure 5, which keeps a character constantly changing towards what the
player intends to play.

Figure 5: Scheme of the feedback loop to transform behaviours in attributes.

The attributes usually bring to a character benefits such as increased
amount of hit-points, which represents how much damage can the character
sustain before being defeated. Then, the goal is to increase the values that
directly increase the effectiveness of the character by letting it sustain more
damage and/or use more abilities.

ing.cienc., vol. 11, no. 22, pp. 95–119, julio-diciembre. 2015. 109|

Towards Procedural Map and Character Generation for the MOBA Genre Game

The increase that an attribute will receive depends entirely on each skill
involved. This is due to the fact that each skill has different scenarios for
what effective usage means. For instance, effective usage for a fireball might
be hitting the intended target, which would award a bonus of X points to
the Intelligence attribute, but if it doesn’t hit the intended target, then the
Intelligence bonus would be X/3.

To further improve the benefits of the CAS feedback loop, abilities have
a scaling factor that depends on certain attribute. For instance, an ability
that lets the character throw a magic fireball (i.e. a power) to the enemy,
delivering a certain damage to the target within a certain radius around the
impact point, can have its behaviour modified by the intelligence attribute
of the character. As shown in Figure 6, the higher the intelligence of the
character, the higher the damage and radius of explosion of the fireball.

Figure 6: Example of the behaviour using a fireball power in time which shows
the increase of attack’s range.

Thus, any skill can be implemented to depend on certain attributes
of a character. Therefore, it could be better or worse in certain scenarios
depending on the focus of the player. The algorithm used by the CAS is
composed by a set of systems, where each system is in itself, a skill that a
character can use. These systems start working as soon as the player enters
in game.

During a combat in the game, a player will input different actions for
the character to perform in order to achieve their goal. This is calculated
as a sum of all bonuses per attribute. In this way, each attribute will be
increased to sum up all bonuses associated to this attribute. The final
result is the final value of an attribute, to all attributes. Also, this value

|110 Ingeniería y Ciencia

Alejandro Cannizzo and Esmitt Ramírez

represents the new value after the combat phase ends and will increase
immediately the abilities of the character and its effectiveness in combat.

At the beginning of a game using CAS, each character starts the game
with identical attributes. Players have to choose which set of skills they
want their character to have, and throughout the game they will develop
these abilities to adapt to their game-style to ultimately help them in
achieving victory against the opposing team.

During a match, players will try to use strategies to attack their enemies
in order to have an advantage. In this way, it is possible to deduce that the
match is auto-balanced since players constantly react and counter-attack
their enemies actions. This auto-balance addresses a concurrent problem in
MOBA games where characters are often changed and calibrated because
they are too powerful or weak.

4 Results and discussion

The Map Generation System and the Character Adaptation System were
implemented together in a prototype of a MOBA game made specifically
for this project. In this prototype, up to 4 players could join a game and
play together on-line, which is the method used to perform some of the
tests described next.

4.1 Testing the map generation

The algorithm used to generate the map was executed 20 times, and each of
these results was compared in order to determine the average viability of the
generated maps. Figure 7 shows the visual result of the maps constructed.

The obtained results reflect the variable nature of the genetic algorithm
used to generate each map. Because of the inherent behaviour of this kind
of algorithms, it is not possible to determine if the result will be viable
prior to executing the algorithm. Therefore, in cases where the generated
map was not a viable map, it was nevertheless chosen to be used in the
game.

ing.cienc., vol. 11, no. 22, pp. 95–119, julio-diciembre. 2015. 111|

Towards Procedural Map and Character Generation for the MOBA Genre Game

Figure 7: An example of 20 maps generated using our algorithm. Purple regions
indicate the bases, beige region the lines, brown areas the jungle’s path. Also,
green color represents the forbidden area to walk, red color is "excess" camps on
that side, yellow indicates the camps, and purple ones road problems between line
and river.

In samples 2, 7, 8, 9, 11, 12, 17 and 20 of Figure 7, there are irregula-
rities that could hinder the gameplay in certain zones of the map because
some of the jungles were not formed properly. As for samples 3, 10 and
16 the amount of camps and badly formed jungle roads account for a dis-
rupted gameplay that is sure to provide a major advantage to one of the
teams. This experiment was repeated 5 times in order to obtain an average,
obtaining similar results.

It is important to note that the viability of a map lies on its similarity
to the original DotA 2 map, which was taken as the best case scenario. The
ideal tests would be letting a group of players play each map for a certain
time and determine from the outcome of each game what maps turned out
to be more viable, but these tests were far beyond the scope of the project

|112 Ingeniería y Ciencia

Alejandro Cannizzo and Esmitt Ramírez

since the testing environment consisted of a prototype MOBA that was not
suited for long periods of testing. Therefore, geographical metrics had to
be used to determine the viability of the generated maps.

4.2 Testing the CAS

To determine if the basic expected behaviour of the CAS was working, a test
was performed where a group of 4 players played a match of the prototype
game on-line. The time window for this test was nearly 10 minutes, and
the values analysed were related to a single player throughout the entire
match.

Information such as time spent in the different movement states of a
character, such as: Idle, Moving, Dead, In-Combat and In-Combat-with-
other-players; was gathered to determine in which the player spent the time
(see Figure 8). In this case, the time in combat was nearly as much as the
time spent, and it is important to also take into account that because of
the map size, players are bound to spend long periods of time traversing it
without encountering enemies.

Figure 8: Graph of the accumulated time of a player during an average match.

Also, each time an action not related to movement was performed it
was counted to determine the relation between the usages of a character
skills and the improvements provided by the CAS, resulting in the curve

ing.cienc., vol. 11, no. 22, pp. 95–119, julio-diciembre. 2015. 113|

Towards Procedural Map and Character Generation for the MOBA Genre Game

shown in Figure 9 that there was a little amount of attributes gains over
the testing period. This curve reflects all the periods of time a player got
in and out of combat, during this time the amount of skills used is not
important as it will all account for only one attribute bonus gain that will
sum up all the results of the battle.

Figure 9: Relation between skills and their usage during an average match.

Figure 10: An example of the increasing of attribute values according its usage.

Lastly, information on the specific attribute gains was gathered to de-
termine that each of the corresponding attributes of a character that was
related to the skills provided, was increased accordingly to their usages.
This was to be expected since this is part of the CAS cycle to enhance

|114 Ingeniería y Ciencia

Alejandro Cannizzo and Esmitt Ramírez

an ability by making use of it, and increasing accordingly the attribute it
depends on, as shown in Figure 10. This feature reinforces the problem of
this system which consists of implementing skills that have a very complex
underlying design to provide the variety and flexibility the system was con-
ceived to have. If all the skills implemented with this system only work
based on a single attribute, the CAS would not be able to provide effec-
tively a player with tools to develop their character to play any way they
want.

Note that for this particular project it is not possible to confirm that
the CAS indeed solves the balancing issue, since this problem only appears
when the game is played by an already established community of players.
Since this was a prototype, we can only base the results on the theory
behind the system created to address the balancing issue. Although the
results cannot support this, theoretically, the CAS does not actually solve
the balancing issue mentioned, but instead moves its focal point to the
addition of new abilities to the game, instead of new characters, turning
the original balancing problem into a different one.

The new question that arises from this is: How much could the CAS
actually alleviate the balancing problem of a MOBA game if it changes
the set of contents it is related to?. If applying re-balancing to an existing
character is indeed harder than doing this re-balancing to a single skill, then
the CAS would be an alternative to diminishing the balancing problem of
MOBA games.

The overall results show that both the map generator and the CAS
worked as expected. With regards to how attributes of character are mo-
dified throughout the game to match the gameplay style of a player. Ho-
wever, the objective of the CAS was to provide a more flexible structure to
add content to the game and possibly avoid having to rebalance existing
content, which besides dynamic attributes also includes letting the player
construct their character with a set of skills that they can pick from a skills
pool defined by the developers. Whether the CAS solves or lessens the
balancing problems can’t be answered from the data gathered in the small
environment the tests were performed. To be able to confirm practically
how the CAS affects the balancing issues, it would have to be implemented
in a commercial MOBA game with an already defined community of pla-
yers.

ing.cienc., vol. 11, no. 22, pp. 95–119, julio-diciembre. 2015. 115|

Towards Procedural Map and Character Generation for the MOBA Genre Game

5 Conclusions

In order to bring variability to the content provided by developers in a
MOBA game, the two systems mentioned previously were implemented to
be able to generate a map from scratch in which players could play the
game. Also, to be able to adapt in real time the attributes of the character
played by a player to correspond its strengths with the play-style of the
player. These systems still have a long way to go in matters of optimization
and design, but they prove that it is indeed possible to introduce DCG to
an inherently static game such as a MOBA and still preserve its core design
and gameplay.

Future improvements for the map generation system could include fea-
tures such as a variable number of lanes, including the possibility of pro-
ducing a map that has no lanes at all and that, besides the bases, it would
consist entirely of jungles. Moreover, optimizations could be implemented
in order to be able to perform more iterations of the MOEA algorithm to
have better chances of generating a viable map.

Also, the character adaptation system presents a design challenge in
itself. It was created in order to eliminate the constant rebalancing deve-
lopers have to constantly do when introducing new content to the game,
but this problem is not entirely eliminated by this systems but instead
it is forwarded exclusively towards the pool of skills players have access
to. Besides the problem related to balancing the skills, the level indica-
tor is eliminated due to the pseudo-continuous nature of the progress of
a character throughout a game. In order to address this issue, an imple-
mentation consisting of representing each skill a character possesses as a
piece of equipment that stands out easily. This piece would represent a
specific skill this character has and also, its visual features would indicate
how strong this skill is for this specific character. The reason behind this
system lies in the fact that by eliminating the character level, the explicit
strength indicator is lost and therefore there must be another way to let a
player know instantly how strong an enemy is.

|116 Ingeniería y Ciencia

Alejandro Cannizzo and Esmitt Ramírez

Acknowledgements

The authors would like to thank the reviewers for their comments that
help improve the manuscript. Also, authors gratefully acknowledge use of
the services and facilities of the Computer Graphics Center at the Central
University of Venezuela, as part of its research fields.

References

[1] B. Mandelbrot, The Fractal Geometry of Nature, 1st ed. W. H. Freeman
and Company, 1982. [Online]. Available: http://adsabs.harvard.edu/abs/
1983whf..book.....M 97

[2] D. Ebert, F. Musgrave, D. Peachey, K. Perlin, and S. Worley, Texturing and
Modeling: A Procedural Approach, 3rd ed. Morgan Kaufmann, 2002. 97,
106

[3] Y. Parish and P. Müller, “Procedural Modeling of Cities,” in Proceedings
of the 28th Annual Conference on Computer Graphics and Interactive
Techniques, ser. SIGGRAPH ’01. ACM, 2001, pp. 301–308. [Online].
Available: http://dx.doi.org/10.1145/383259.383292 97

[4] J. Kenwood, J. Gain, and P. Marais, “Efficient Procedural Generation of
Forests,” Journal of WSCG, vol. 22, no. 1, pp. 31–38, 2014. [Online].
Available: https://otik.uk.zcu.cz/handle/11025/11896 97

[5] R. Geiss, “Generating Complex Procedural Terrains Using the GPU,” GPU
Gems 3, vol. 1, pp. 7–37, 2007. 97

[6] M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Iosup, “Procedural
Content Generation for Games: A Survey,” ACM Transactions on
Multimedia Computing, Communications, and Applications, vol. 9, no. 1, pp.
1:1—-1:22, 2013. [Online]. Available: http://dx.doi.org/10.1145/2422956.
2422957 97, 100

[7] J.-D. Génevaux, E. Galin, E. Guérin, A. Peytavie, and B. Beneš, “Terrain
Generation Using Procedural Models Based on Hydrology,” ACM Trans.
Graph., vol. 32, no. 4, pp. 143:1—-143:13, 2013. [Online]. Available:
http://dx.doi.org/10.1145/2461912.2461996 98

[8] G. Smith, “Expressive Design Tools: Procedural Content Generation
For Game Designers,” Ph.D. dissertation, University of California, 2012.
[Online]. Available: http://escholarship.org/uc/item/0fn558gq#page-4 98

ing.cienc., vol. 11, no. 22, pp. 95–119, julio-diciembre. 2015. 117|

http://adsabs.harvard.edu/abs/1983whf..book.....M
http://adsabs.harvard.edu/abs/1983whf..book.....M
http://dx.doi.org/10.1145/383259.383292
https://otik.uk.zcu.cz/handle/11025/11896
http://dx.doi.org/10.1145/2422956.2422957
http://dx.doi.org/10.1145/2422956.2422957
http://dx.doi.org/10.1145/2461912.2461996
http://escholarship.org/uc/item/0fn558gq#page-4

Towards Procedural Map and Character Generation for the MOBA Genre Game

[9] C. Fencot, J. Clay, M. Lockyer, and P. Massey, Game Invaders: The Theory
and Understanding of Computer Games, 1st ed. Wiley-IEEE Computer
Society, 2012. 99

[10] W. Muehl and J. Novak, Game Development Essentials: Game Simulation
Development, 1st ed. Cengage Learning, 2007. 99

[11] J. Togelius, R. De Nardi, and S. M. Lucas, “Towards automatic
personalised content creation for racing games,” in IEEE Symposium
on Computational Intelligence and Games, 2007, pp. 252–259. [Online].
Available: http://dx.doi.org/10.1109/CIG.2007.368106 99

[12] E. Hasting, R. Guha, and K. Stanley, “Automatic Content Generation in the
Galactic Arms Race Video Game,” IEEE Transactions on Computational
Intelligence and AI Games, vol. 1, no. 4, pp. 245–263, 2009. [Online].
Available: http://dx.doi.org/10.1109/TCIAIG.2009.2038365 99

[13] C. Browne, “Automatic Generation and Evaluation of Recombination
Games,” Ph.D., Queensland University of Technology, 2008. [Online].
Available: http://eprints.qut.edu.au/17025/ 99

[14] J. Togelius and J. Schmidhuber, “An Experiment in Automatic Game
Design,” in Proceedings of the IEEE Symposium on Computational
Inteligence and Games, 2008, pp. 111 – 118. [Online]. Available:
http://dx.doi.org/10.1109/CIG.2008.5035629 99

[15] N. Shaker, G. Yannakakis, and J. Togelius, “Towards Automatic Personalized
Content Generation for Platform Games,” in Proceedings of the Sixth AAAI
Conference on Artificial Intelligence and Interactive Digital Entertainment,
2010, pp. 63–68. [Online]. Available: http://www.aaai.org/ocs/index.php/
AIIDE/AIIDE10/paper/viewFile/2135/2546 99

[16] K. Compton and M. Mateas, “Procedural level design for platform games,”
in Proceedings of the 2nd Artificial Intelligence and Interactive Digital
Entertainment Conference (AIIDE), 2006, pp. 109–111. [Online]. Available:
http://aaaipress.org/Papers/AIIDE/2006/AIIDE06-022.pdf 99

[17] A. Baskar, G. Bradway, J. Kennington, A. Hathaway, and N. Cumming,
“Dynamic Music Generation,” in Proceedings of the Conference on Machine
Learning, 2013. 99

[18] A. Smith and M. Mateas, “Answer Set Programming for Procedural
Content Generation: A Design Space Approach,” IEEE Transactions on
Computational Intelligence and AI Games, vol. 3, no. 3, pp. 187–200, 2011.
[Online]. Available: http://dx.doi.org/10.1109/TCIAIG.2011.2158545 99

|118 Ingeniería y Ciencia

http://dx.doi.org/10.1109/CIG.2007.368106
http://dx.doi.org/10.1109/TCIAIG.2009.2038365
http://eprints.qut.edu.au/17025/
http://dx.doi.org/10.1109/CIG.2008.5035629
http://www.aaai.org/ocs/index.php/AIIDE/AIIDE10/ paper/viewFile/2135/2546
http://www.aaai.org/ocs/index.php/AIIDE/AIIDE10/ paper/viewFile/2135/2546
http://aaaipress.org/Papers/AIIDE/2006/AIIDE06-022.pdf
http://dx.doi.org/10.1109/TCIAIG.2011.2158545

Alejandro Cannizzo and Esmitt Ramírez

[19] M. Jennings-Teats, G. Smith, and N. Wardrip-Fruin, “Polymorph:
Dynamic Difficulty Adjustment Through Level Generation,” in Proceedings
of the 2010 Workshop on Procedural Content Generation in Games,
ser. PCGames ’10. ACM, 2010, pp. 11:1—-11:4. [Online]. Available:
http://doi.acm.org/10.1145/1814256.1814267 100

[20] M. Nitsche, C. Ashmore, W. Hankinson, R. Fitzpatrick, J. Kelly, and K. Mar-
genau, “Designing Procedural Game Spaces: A Case Study,” in Proceedings
of the FuturePlay, 2006. 100

[21] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. Nagaratnam, and Q. Zhang,
“Multiobjective evolutionary algorithms: A survey of the state of the art,”
Swarm and Evolutionary Computation, vol. 1, no. 1, pp. 32–49, 2011.
[Online]. Available: http://dx.doi.org/10.1016/j.swevo.2011.03.001 106

[22] A. Tychsen, “Role Playing Games: Comparative Analysis Across Two Media
Platforms,” in Proceedings of the 3rd Australasian Conference on Interactive
Entertainment. Murdoch University, 2006, pp. 75–82. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1231906 107

ing.cienc., vol. 11, no. 22, pp. 95–119, julio-diciembre. 2015. 119|

http://doi.acm.org/10.1145/1814256.1814267
http://dx.doi.org/10.1016/j.swevo.2011.03.001
http://dl.acm.org/citation.cfm?id=1231906

	Introduction
	Dynamic content generation
	Dynamic Content Generation on MOBA

	Our methodology
	The problem
	Solution
	Map generation
	Algorithm

	Character adaptation system (CAS)
	MOBA character design
	Changing the RPG paradigm
	Implementation

	Results and discussion
	Testing the map generation
	Testing the CAS

	Conclusions

