
Ingeniería y Ciencia
ISSN:1794-9165 | ISSN-e: 2256-4314
ing. cienc., vol. 14, no. 27, pp. 75–99, enero-junio. 2018.
http://www.eafit.edu.co/ingciencia
This article is licensed a Creative Commons Attribution 4.0 by

Leave-one-out Evaluation of the Nearest
Feature Line and the Rectified Nearest
Feature Line Segment Classifiers Using

Multi-core Architectures
Ana-Lorena Uribe-Hurtado1, Eduardo-José Villegas-Jaramillo2 and Mauricio Orozco-Alzate3

Received: 03-10-2017 | Accepted: 10-04-2018 | Online: 15-06-2018

MSC: 68U01, 11C20, 65Y05 | PACS: 89.20.Ff, 89.70.Hj, 02.70.-c

doi:10.17230/ingciencia.14.27.4

Abstract
In this paper we present the parallelization of the leave-one-out test: a
reproducible test that is, in general, computationally expensive. Paral-
lelization was implemented on multi-core multi-threaded architectures, us-
ing the Flynn Single Instruction Multiple Data taxonomy. This technique
was used for the preprocessing and processing stages of two classification
algorithms that are oriented to enrich the representation in small sample
cases: the nearest feature line (NFL) algorithm and the rectified nearest
feature line segment (RNFLS) algorithm. Results show an acceleration
of up to 18.17 times with the smallest dataset and 29.91 times with the
largest one, using the most costly algorithm (RNFLS) whose complexity
is O(n4). The paper also shows the pseudo-codes of the serial and parallel

1 Universidad Nacional de Colombia, Sede Manizales, alhurtadou@unal.edu.co, https://
orcid.org/0000-0002-1424-2372, Manizales, Colombia.
2 Universidad Nacional de Colombia, Sede Manizales, ejvillegasj@unal.edu.co, https://
orcid.org/0000-0002-7563-2913, Manizales, Colombia.
3 Universidad Nacional de Colombia, Sede Manizales, morozcoa@unal.edu.co, https://
orcid.org/0000-0002-5937-6382, Manizales, Colombia.

Universidad EAFIT 75|

http://www.eafit.edu.co/ingciencia/
mailto:alhurtadou@unal.edu.co
https://orcid.org/0000-0002-1424-2372
https://orcid.org/0000-0002-1424-2372
mailto:ejvillegasj@unal.edu.co
https://orcid.org/0000-0002-7563-2913
https://orcid.org/0000-0002-7563-2913
mailto:morozcoa@unal.edu.co
https://orcid.org/0000-0002-5937-6382
https://orcid.org/0000-0002-5937-6382

LOO Evaluation of the NFL and the RNFLS Classifiers Using Multi-core Architectures

algorithms using, in the latter case, a notation that describes the way the
parallelization was carried out as a function of the threads.

Keywords: Multi-core computing; classification algorithms; leave-one-out
test.

Evaluación leave-one-out de los clasificadores de la
línea de características más cercana y del segmento
de línea rectificado más cercano usando
arquitecturas multi-núcleo

Resumen
Presentamos en este artículo la paralelización de la prueba leave-one-out,
la cual es una prueba repetible pero que, en general, resulta costosa compu-
tacionalmente. La paralelización se implementó sobre arquitecturas multi-
núcleo con múltiples hilos, usando la taxonomía Flynn Single Instruction
Multiple Data. Esta técnica se empleó para las etapas de preproceso y pro-
ceso de dos algoritmos de clasificación que están orientados a enriquecer
la representación en casos de muestra pequeña: el algoritmo de la línea
de características más cercana (NFL) y el algoritmo del segmento de línea
rectificado más cercano (RNFLS). Los resultados obtenidos muestran una
aceleración de hasta 18.17 veces con el conjunto de datos mas pequeño
y de 29.91 veces con el conjunto de datos más grande, empleando el al-
goritmo más costoso —RNFLS— cuya complejidad es O(n4). El artículo
muestra también los pseudocódigos de los algoritmos seriales y paralelos
empleando, en este último caso, una notación que describe la manera como
se realizó la paralelización en función de los hilos.

Palabras clave: Computación con múltiples núcleos; algoritmos de
clasificación; prueba leave-one-out.

1 Introduction

Classification algorithms can be roughly categorized into dissimilarity-based
classifiers, probabilistic classifiers and geometric classifiers [1]. The first
ones assign an unlabeled object —represented as a feature vector x— to
the class of the most similar examples within a set of either labeled feature
vectors (also known as training objects) or within models previously built
from them; the second ones estimate class-conditional probability densities
by using the training objects and, afterwards, assign class labels to the un-
labeled ones according to the maximum posterior probabilities; the third

|76 Ingeniería y Ciencia

Ana-Lorena Uribe-Hurtado, Eduardo-José Villegas-Jaramillo, Mauricio Orozco-Alzate

category of classifiers directly construct boundaries between class regions
in the feature space by optimizing criteria such as classification error and
maximum margin of separation between classes. The Nearest Neighbor (1-
NN) rule is the paradigmatic example of the dissimilarity-based classifiers;
it is very natural, intuitive for non-experts [2] and exhibits a competitive
classification performance provided that a large enough training set is avai-
lable. Several variants have been proposed to improve 1-NN, among them
the so-called Nearest Feature Line (NFL) classifier [3] that enlarges the
representational power of a training set of limited cardinality by building a
linear model (a feature line) between each pair of training feature vectors
of the same class.

Even though NFL effectively counteracts the weakness of 1-NN under
representational limitations, it is much more costly than 1-NN and also in-
troduces two drawbacks: interpolation and extrapolation inaccuracies (see
Section 2.1.1) that are reflected into high classification errors in problems
having particular data distributions and dimensionalities. Both drawbacks
of NFL were diagnosed in [4], whose authors also proposed the so-called
Rectified Nearest Feature Line Segment (RNFLS) classifier as a solution to
the inaccuracies of NFL via two processes called segmentation and rectifi-
cation of the feature lines. Unfortunately, such an improvement of NFL is
paid with a significantly increased computational cost for RNFLS, turning
its application too time demanding. In spite that most of the computa-
tions in RNFLS are associated to the rectification process —which is only
performed during the training stage and, therefore, off-line—, current appli-
cation scenarios often imply the classification of evolving streaming data [5]
that, after detecting changes in their distributions, demand an automatic
retraining of the classifiers in order to quickly adapt them to new data
behaviors.

An additional and often ignored motivation for speeding up classifica-
tion algorithms is enabling the practitioner to perform fast simulations, in
such a way that varying parameters and exploring different configurations
over several runs of the classifier become feasible in reasonable amounts
of time. Such simulations typically require the repeated estimation of the
classification performance. Among the classical performance estimation
methods [6], the so-called leave-one-out method is very often preferred be-
cause it does not imply random splits of the data into training set and

ing.cienc., vol. 14, no. 27, pp. 75–99, enero-junio. 2018. 77|

LOO Evaluation of the NFL and the RNFLS Classifiers Using Multi-core Architectures

test set and, therefore, reported performances can be exactly confirmed by
other researches; in addition, leave-one-out is approximately unbiased for
the true classification performance [7, p. 590]. However, these desirable
properties are obtained at the expense of a significant computational effort
since the classifier must be trained as many times as the number of objects
in the data set.

In recent years, the above-mentioned computational challenges have
motivated an increasing interest in developing efficient implementations for
classification algorithms, particularly those that are aimed to exploit tech-
nologies currently available in personal modern computers such as multi-
core processors (multi-core CPU) and general-purpose graphics processing
units (GP-GPU). Parallel implementations on the first ones are of special
interest because, nowadays, they are omnipresent in domestic machines.
Even though the second ones have become very popular, they are still not
considered part of the default specifications for commercial computer ma-
chines. A throughout study on GPU-based parallel versions of several ma-
chine learning algorithms is carried out in [8], including implementations for
well-known classifiers such as neural networks and support vector machines.
In contrast, classifier implementations for multi-core CPU are scattered in
the literature; for example the following, just to cite recent ones per each
classifier category: A dissimilarity-based classifier – parallel implementa-
tion of the k nearest neighbor rule [9] tested on machines having from 2
up to 60 processing cores; A probabilistic classifier – the implementation in
[10] of the naïve Bayes classifier, whose authors evaluated their algorithm
on the publicly available KDD CUP 99 dataset; A geometric classifier –
the so-called scaling version developed in [11] for support vector machines,
that was exhaustively studied for several threads/cores ratios. Nonetheless,
to the best of our knowledge, neither NFL nor RNFLS have been studied
for parallel implementations except for our own preliminary attempts: [12].
Therefore, in this paper, we propose parallel CPU-based versions for the
leave-one-out test of both NFL and RNFLS by accordingly reformulating
their tests in terms of a number of available computing cores and giving a
thorough experimental evaluation of the proposed parallel evaluations.

The remaining part of this paper is organized as follows. The serial
algorithms of NFL and RNFLS are presented in Sec 2.1. The proposed
parallel implementations of the leave-one-out test for NFL and RNFLS are

|78 Ingeniería y Ciencia

Ana-Lorena Uribe-Hurtado, Eduardo-José Villegas-Jaramillo, Mauricio Orozco-Alzate

explained in Sec. 2.2. In Sec. 3, we present experimental results of the
execution of the multi-core versions on several benchmarking data sets and
compare them to the execution of their serial counterparts. Finally, our
concluding remarks are given in Sec. 4.

2 Methods

2.1 Serial Algorithms

Let T = {(t1, θ1), . . . , (tN , θN)} be the training set, with training feature
vectors ti ∈ RK and class labels θi ∈ {ω1, . . . , ωC}. Since feature values
may have different dynamic ranges, it is customary to normalize each ti
by the mean feature vector (µT) and the vector of standard deviations per
feature (σT), as follows:

xi = (ti − µT)� σT , 1 ≤ i ≤ N,

where � denotes the Hadamard (entrywise) division; notice that, in case
that any entry of σT is 0, it must be replaced by 1 in order to avoid a
division by zero. The normalized training set is thereby X = {(x1, θ1), . . . ,
(xN , θN)}. Similarly, given a test feature vector t ∈ RK , its normalized
version x is obtained by

x = (t− µT)� σT

1-NN classifies x according to the class label of its nearest neighbor in
X . In more formal terms, the class label θ̂ that 1-NN estimates for x is
given by

θ̂ = θj , j = argmin
1≤i≤N

d(x,xi).

A detailed pseudocode for 1-NN classification is shown in Algorithm 1.

2.1.1 Nearest feature line classifier (NFL) One of the disadvantages
of 1-NN, pointed in [13], is that 1-NN losses accuracy when |T | is small.
In order to enrich the representational power of T , Li and Lu [3] proposed
NFL that builds a set —denoted hereafter by L— of feature lines, each one

ing.cienc., vol. 14, no. 27, pp. 75–99, enero-junio. 2018. 79|

LOO Evaluation of the NFL and the RNFLS Classifiers Using Multi-core Architectures

Algorithm 1 Nearest neighbor classifier (1-NN)
Require: t: test feature vector; T : training set
1: // Normalization phase:
2: X = ∅
3: for each ti ∈ T do
4: xi = (ti − µT)� σT
5: X = X ∪ {(xi, θi)} . Normalized training set
6: end for
7: x = (t− µT)� σT . Normalized test feature vector
8: // Test phase:
9: D = ∅
10: for each xi ∈ X do
11: di = ||x− xi|| . Euclidean distances to...
12: D = D ∪ {di}training feature vectors
13: end for
14: j = argmini di ∀di ∈ D . Index of the smallest distance
15: θ̂ = θj
16: return θ̂
Ensure: θ̂: estimated class label for t

connecting a pair of training feature vectors that belong to the same class.
Since a line is geometrically specified by the pair of points it connects, each
labeled line Li can be represented as the triplet (xj ,xk, ρi), where ρi is the
class label of the feature line. Clearly, ρi is equal to both θj and θk since
feature lines are restricted to connect class-mates.

NFL classifies x according to the class label of its nearest feature line
in L; that is,

θ̂ = ρm, m = argmin
1≤i≤NL

d(x, Li),

where NL is the number of feature lines. A detailed pseudocode for
NFL classification is shown in Algorithm 2.

|80 Ingeniería y Ciencia

Ana-Lorena Uribe-Hurtado, Eduardo-José Villegas-Jaramillo, Mauricio Orozco-Alzate

Algorithm 2 Nearest feature line classifier (NFL)
Require: t: test feature vector; T : training set
1: // Normalization phase:
2: X = ∅
3: for each ti ∈ T do
4: xi = (ti − µT)� σT
5: X = X ∪ {(xi, θi)} . Normalized training set
6: end for
7: x = (t− µT)� σT . Normalized test feature vector
8: // Test phase:
9: L = ∅ . Optional to store triplets that define feature lines

10: D = ∅

Algorithm 2 Nearest feature line classifier (NFL). Cont. . .

11: for j = 1 to |X |-1 do
12: for k = j + 1 to |X | do
13: if θj == θk then
14: ρi = θj
15: L = L ∪ {(xj ,xk, ρi)} . Optional to store triplets
16: τ = (x− xj) · (xk − xj)/(||(xk − xj)||)2

17: p = xj + τ(xk − xj)
18: di = ||x− p|| . Distances to...
19: D = D ∪ {di}feature lines
20: end if
21: end for
22: end for
23: m = argmini di ∀di ∈ D . Index of the smallest distance
24: θ̂ = ρm
25: return θ̂
Ensure: θ̂: estimated class label for t

ing.cienc., vol. 14, no. 27, pp. 75–99, enero-junio. 2018. 81|

LOO Evaluation of the NFL and the RNFLS Classifiers Using Multi-core Architectures

2.1.2 Rectified nearest feature line segment (RNFLS) classifier
NFL suffers from two drawbacks: interpolation and extrapolation inaccu-
racies. Du and Chen [4] diagnosed both problems and proposed a modified
version of the classifier, called rectified nearest feature line segment (RN-
FLS), that includes two additional processes to overcome the inaccuracies:
segmentation and rectification. The first one consists in computing the dis-
tance from x to the feature line exactly as done in the NFL algorithm only
if the orthogonal projection of x onto the feature line lies on the interpo-
lating part of the line; otherwise, the distance is replaced by the distance
from x to either xj or xk according to the side of the extrapolating parts
of the line where the orthogonal projection of x would appears.

The second process —rectification— consists in checking whether the
feature lines violates the territory of other classes or not; in case of violation,
that line is excluded from L and, thereby, it is not taken into account
to compute the distances. A feature line violates the territory of other
classes if there exists at least one training object for which the radius of
its territory is less than its distance to the feature line. For each training
object, the radius of its territory is defined as the distance to the closest
training object belonging to a different class. A detailed pseudocode for
RNFLS classification is shown in Algorithm 3.

|82 Ingeniería y Ciencia

Ana-Lorena Uribe-Hurtado, Eduardo-José Villegas-Jaramillo, Mauricio Orozco-Alzate

Algorithm 3 Rectified nearest feature line segment classifier
Require: t: test feature vector; T : training set
1: // Normalization phase:
2: X = ∅
3: for each ti ∈ T do
4: xi = (ti − µT)� σT
5: X = X ∪ {(xi, θi)} . Normalized training set
6: end for
7: x = (t− µT)� σT . Normalized test feature vector
8: // Radii of the territories:
9: R = ∅

10: for each xi ∈ X do
11: r = Inf
12: for all xj ∈ X do
13: if θi 6= θj then
14: d = ||xi − xj ||
15: if d < r then
16: r = d
17: end if
18: end if
19: end for
20: R∪ {r}
21: end for
22: // Test phase:
23: L = ∅ . Optional to store triplets that define feature lines
24: D = ∅
25: for j = 1 to |X |-1 do
26: for k = j to |X | do
27: if θj == θk then
28: ρi = θj
29: // Verification of invasion to class territories
30: check = True

ing.cienc., vol. 14, no. 27, pp. 75–99, enero-junio. 2018. 83|

LOO Evaluation of the NFL and the RNFLS Classifiers Using Multi-core Architectures

Algorithm 3 Rectified nearest feature line segment classifier, Cont. . .
31: for j = m to |X | do . Check lines
32: if θm 6= ρi then
33: τ = (x− xj) · (xk − xj)/(||(xk − xj)||)2

34: if τ < 0 then
35: p = xj
36: else if τ > 0 then
37: p = xk
38: else
39: p = xj + τ(xk − xj)
40: end if
41: d2line = ||xm − p||
42: end if
43: if d2line < rm then
44: check = False
45: end if
46: end for
47: if check = True then
48: L = L ∪ {(xj ,xk, ρi)} . Optional to store triplets
49: τ = (x− xj) · (xk − xj)/(||(xk − xj)||)2

50: if τ < 0 then
51: p = xj
52: else if τ > 0 then
53: p = xk
54: else
55: p = xj + τ(xk − xj)
56: end if
57: di = ||x− p|| . Distances to...
58: D = D ∪ {di}feature lines
59: end if
60: end if
61: end for
62: end for
63: m = argmini di ∀di ∈ D . Index of the smallest distance
64: θ̂ = ρm
65: return θ̂
Ensure: θ̂: estimated class label for t

|84 Ingeniería y Ciencia

Ana-Lorena Uribe-Hurtado, Eduardo-José Villegas-Jaramillo, Mauricio Orozco-Alzate

Notice that, in Algorithm 3, the second inner loop starts with k = j
instead of k = j + 1 as in Algorithm 2. This difference is because RNFLS
is defined to also include degenerated feature lines; that is, those lines
connecting points with themselves.

2.2 Proposed parallel algorithms

The parallel programs for the leave-one-out evaluation were implemented
in two phases: Preprocessing (P) and Classification (C). Figure 1 shows the
preprocessing and classification steps, the sequence of functions, their asso-
ciated complexity and which ones are running in parallel or in sequential
mode. Each step is described in Sections 2.2.1 and 2.2.2.

P. Read data set

P. Create training set and vector test function

P. Mean function

P. Standard deviation function

P. Normalization function

P. Radii function

C. RNFLS function

Accuracy Function

End

Sequential O(n)

Sequential O(n)

SIMD parallel O(n)

SIMD parallel O(n)

SIMD parallel O(n)

SIMD parallel O(n2)

SIMD parallel O(n3)

Sequential O(n)

Figure 1: Block diagram of RNFLS algorithm. Mean, Standard Deviation and
Radii functions are written in parallel using Single Instruction Multiple Data
(SIMD), in front of each one their complexities are shown.

The first step is loading the data set, then a storage structure (shown

ing.cienc., vol. 14, no. 27, pp. 75–99, enero-junio. 2018. 85|

LOO Evaluation of the NFL and the RNFLS Classifiers Using Multi-core Architectures

in Figure 2) is created by the Create training set and vector test function,
this structure contains: (i) the training set T (i) and the test vector t(i)

where 0 < i < N and N stands for the number of partitions; (ii) the mean
feature vector µT = 0; (iii) the standard deviations vector per feature
σT = 0 for both NFL and RNFLS are initialized in zero and also the
algorithm calculates the radii vector R(i) = 0 initialized in zero too, only
for the RNFLS algorithm. After that, the mean parallel and the standard
deviation functions are calculated for each T (i) (see Figure 2). These two
vectors are used in order to normalize each T (i) and each t(i), resulting
X (i) and x(i), see Figure 3. So, each thread executes the NFL and RNFLS
algorithms over each position of the structure in an independent way as
shown in Figure 2. The size of the structure depends on the number of
rows containing the initial data file.

t1

T= Data Set

t(1)

tN

.

.

.

T
(1)

T
TT

(1)
T
(2) T

(N)

t(2) t(N)

T
(2)

T
(2)

T
(N)

T
(N)

.......

t2

tN

t3

t4
.

.

.

T
(1)

t1

tN-1

t2

t3
.

.

.

t1

tN

t3

t4
.

.

.

ti
d
=

1

. . .

ti
d
=

K

ti
d
=

1

. . .

ti
d
=

K

ti
d
=

1

. . .

ti
d
=

K

ti
d
=

1

. . .

ti
d
=

K
-1

ti
d
=

1

. . .

ti
d
=

K
-1

ti
d
=

1

. . .

ti
d
=

K
-1

ti
d
=

1

. . .

ti
d
=

K
-1

ti
d
=

1

. . .

ti
d
=

K
-1

ti
d
=

1

. . .

ti
d
=

K
-1

. . .

. . .

Figure 2: Leave-one-out parallel representation for RNFLS, mean µ and stan-
dard deviation σ parallel representation.

2.2.1 Preprocessing phase In this phase, we use the SIMD Flynn ta-
xonomy to implement parallel functions for computation of standard devia-
tion, mean, radii, training matrix and test vector normalization (see Figu-
re 1). This section describes the algorithms involved in the preprocessing
phase.

|86 Ingeniería y Ciencia

Ana-Lorena Uribe-Hurtado, Eduardo-José Villegas-Jaramillo, Mauricio Orozco-Alzate

x(N)x(2)x(1)

x(N)1

x(N)N-1

x(N)2

x(N)3
.

.

.

. . .

X(N)

x(2)1

x(2)N

x(2)3

.

.

.

x(1)2

x(1)N

x(1)3

.

.

.

1 K-1

tid=1 tid=2 tid=N

K 1 K-1K 1 K-1K

R(1)

1 N-12

R(2)

1 N-12

R(N)

1 N-12

X(2)X(1)

. . .

. . .

Figure 3: Structure after normalization for threads executions.

• Mean parallel function (Algorithm 4) To parallelize the average
of each training set X (i), as many threads are created as columns
in the training set, each thread is identified with its tid where 0 ≤
tid < K−1 (K is the number of columns), so tid is used as a column
index for the training set T (i)(j, tid). Each thread stores the results
of the executions of the mean function in a temporal vector called
µT (i) , where each vector position is calculated for a thread through
their respective tid, leaving the result of executing the mean function
in the same tid vector position, each thread obtains the average of
each T (i)(j, tid) column, in a independent way, see Figure 2. The
mean parallel function is shown in Equation (1). The mean function
complexity for each thread is O(n).

µT (i) =
N−1∑
j=0

T (i)(j, tid) i = {0, . . . , N} (1)

ing.cienc., vol. 14, no. 27, pp. 75–99, enero-junio. 2018. 87|

LOO Evaluation of the NFL and the RNFLS Classifiers Using Multi-core Architectures

Algorithm 4 Mean parallel function

Require: T (i) i = {0, . . . , N}: training set
1:
2: function meanParallel(tid)
3: µT (i) = 0 .
4: for each j ∈ {0, . . . , N − 1} do
5: µT (i)(tid) = µT (i)(tid) + T (i)(j, tid) . ⇒ 0 ≤ tid < K − 1 and
tid is a thread identifier

6: end for
7: µT (i)(tid)/N − 1
8: end function

• Standard deviation parallel function (Algorithm 5) The para-
llelization of the standard deviation σT is similar to the media par-
allel function method, as many threads are created as columns in
the training set, each thread is identified with its own tid where
0 ≤ tid < K − 1, the tid is used as index for the T (i) training set
columns, each thread stores the standard deviation function results
in a temporal vector called σT (i) , each position of σT (i) is accessed by
a thread through their respective tid, leaving the standard deviation
function results in the same tid vector position, each thread executes
the standard deviation for each T (i)(j, tid) columns in an indepen-
dent way (see Figure 2). This function has the same complexity that
Algorithm 4. The standard deviation parallel function is shown in
Equation (2).

σT (i) =

√√√√√√
N−1∑
j=0

[T (i)(j, tid)− µT (i)(tid)]2

N − 1
i = {0, . . . , N} (2)

• Training matrix and test vector normalization parallel func-
tion (Algorithm 6) Similarly, we apply σT (i) and µT (i) to its corre-
sponding T (i) in order to normalize the training set and obtain X (i)

as a result (see Figure 3). The process is represented in Equation

|88 Ingeniería y Ciencia

Ana-Lorena Uribe-Hurtado, Eduardo-José Villegas-Jaramillo, Mauricio Orozco-Alzate

Algorithm 5 Standard deviation parallel function

Require: T (i): training set; µT (i) : media vector i = {0, . . . , N}

2: function stdParallel(tid)
σT (i) = 0

4: for each j ∈ {0, . . . , N − 1} do
σT (i)(tid) = σT (i)(tid) + [T (i)(j, tid)− µT (i)(tid)]2

6: . ⇒ 0 <= tid < K − 1 and tid is a thread identifier
end for

8: σT (i)(tid) =

√
σT (i) (tid)

N−1
end function

(3). It is important to note that we use the same structure T (i) in
the program to store the normalized results. Each thread obtains the
value of µT (i)(tid) and σT (i)(tid) in order to normalize each column
element in T (i)(j, tid).

X (i)(j, tid) = (T (i)(j, tid)− µT (i)(tid))� σT (i)(tid) (3)

Algorithm 6 Parallel normalization of training matrix and test vector

Require: T (i): training set, t(i): test vector µT (i) : media vector, σT (i) :
standard deviation vector

function parallelNormalization(tid)
3: for each j ∈ {0, . . . , N − 1} do

X (i)(j, tid) = (T (i)(j, tid)− µT (i)(tid))� σT (i)(tid)
. 0 ≤ tid < K and tid is a thread identifier

6: end for
x(i)(tid) = (t(i)(tid)− µT (i)(tid))� σT (i) . test vector

normalization
end function

• Radii parallel function (Algorithm 7) The radii function computes
the territories of the each object in the data set. This function creates

ing.cienc., vol. 14, no. 27, pp. 75–99, enero-junio. 2018. 89|

LOO Evaluation of the NFL and the RNFLS Classifiers Using Multi-core Architectures

the radii vector for each X (i) implementing the segmentation into
blocks of the “Radii of the territories” part in the RNFLS algorithm
described in Algorithm 3. The parallel process redistributes on the
cores of the machine the structure created in Figure 2; each core
calculates the complete radii function code. Algorithm 7 shows how
the structure distribution is performed.

Algorithm 7 Radii Parallel Function

Require: X (i): training set normalized
function RadiiTrainingVectors(tid)
R(i) = ∅

3: for each x(tid)
(i) ∈ X (tid) do

r = Inf
for each x(tid)

(j) ∈ X (tid) do
6: if θ(tid)

(i) 6= θ
(tid)
(j) then

d = ||x(tid)
(i) − x

(tid)
(j) ||

if d < r then
9: r = d

end if
end if

12: end for
R(tid) ∪ r

end for
15: end function

2.2.2 Classification phase The classification phase implements the NFL
and the RNFLS algorithms, redistributing in each case the function over
the machine cores and processing data that are on the positions of the struc-
ture according to the identifier of each thread. Algorithm 9 shows how the
function is loaded using initial and final range partitions, according to the
number of cores. For example, if the machine has 48 cores, each time the
machine sends 48 processes to process the data in the structure shown in
Figure 3. Each thread calls Algorithm 8, which verifies the invasion to class
territories and calculates the best distance to each test vector x(tid) with
respect to X (tid) and leaves the result in a vector Θtid of estimated labels in

|90 Ingeniería y Ciencia

Ana-Lorena Uribe-Hurtado, Eduardo-José Villegas-Jaramillo, Mauricio Orozco-Alzate

the corresponding tid position, making in parallel each leave-one-out test.

Algorithm 8 Rectified nearest feature line parallel function
Require: X (i): training set standardized, x(i): test vector standardized

function RectifiedNearestFeatureLineParallel(tid)
// Test phase:
L(tid) = ∅ . Optional to store triplets that define feature lines
D(tid) = ∅
for j = 1 to |X (tid)|-1 do

for k = j to |X (tid)| do
if θj == θk then

8: ρi = θj
// Verification of invasion to class territories
check = True
for m = 1 to |X (tid)| do . Check lines

if θm 6= ρi then
τ = (x(tid) − x(tid)

j) · (x(tid)
k − x(tid)

j)/(||(x(tid)
k − x(tid)

j)||)2
if τ < 0 then
p = x

(tid)
j

16: else if τ > 0 then
p = x

(tid)
k

else
p = x

(tid)
j + τ(x

(tid)
k − x(tid)

j)
end if
d2line = ||x(tid)

m − p||
end if
if d2line < r

(tid)
m then

24: check = False
end if

end for
if check = True then
L(tid) = L(tid) ∪ {(x(tid)

j ,x
(tid)
k , ρi)}

τ = (x(tid) − x(tid)
j) · (x(tid)

k − x(tid)
j)/(||(x(tid)

k − x(tid)
j)||)2

if τ < 0 then
p = x

(tid)
j

32: else if τ > 0 then
p = x

(tid)
k

else
p = x

(tid)
j + τ(x

(tid)
k − x(tid)

j)
end if

ing.cienc., vol. 14, no. 27, pp. 75–99, enero-junio. 2018. 91|

LOO Evaluation of the NFL and the RNFLS Classifiers Using Multi-core Architectures

Algorithm 8 Rectified nearest feature line parallel function, Cont. . .
d
(tid)
i = ||x(tid) − p|| . Distances to...
D(tid) = D(tid) ∪ {di}(tid)feature lines

end if
40: end if

end for
end for
m = argmini d

(tid)
i ∀d(tid)i ∈ D(tid) . Index of the smallest distance

θ̂ = ρm

Θtid = θ̂ . Θ: Vector of estimated labels
end function

Algorithm 9 Rectified nearest feature line parallel threads Invocation
Require: cores: number of cores

procedure RNFL(cores) . number of machine’s cores
labelsestimated = ∅
partition = numfil/cores;
for each i ∈ {1, . . . , partition} do

beginP = i ∗ cores;
if rest == 0&&i == partition then

break;
else if i == partition then

9: finalP = NumFil;
else

finalP = beginP + cores;
end if
let tid ∈ beginP < tid < finalP
pthread_t threads[cores]; . define threads array
for each tid do

pthread_create(&threads[tid], NULL,RectifiedNearestFeatureLineParallel,
. . Run NFL in a i− th core

(void ∗)tid);
18: end for

end for
end procedure

3 Results and discussion

The experiments were run on a Dell server with two (2) Intel(R) Xeon(R)
CPU E7−4860 v2 @ 2.60GHz, each one with 12 real cores (24 cores in total
and 48 Hyper−Threading), operative system GNU/Linux, Scientific Linux
3.10 for x86_64, using postfix threads, C library and Hyper−Threading

|92 Ingeniería y Ciencia

Ana-Lorena Uribe-Hurtado, Eduardo-José Villegas-Jaramillo, Mauricio Orozco-Alzate

(HT). The following data sets, taken from the UCI Machine Learning
Repository (https://archive.ics.uci.edu/ml/datasets.html), were em-
ployed for the experiments: Iris, Wine, Glass, Ionosphere, Bupa, WDBC
and Pima.

Algorithms 2 and 3 were run 20 times each one. Results shown in Table
1 are the mean of the executions for the sequential and the most parallelized
versions; that is, using one core and 48 cores, respectively. These results
illustrate how efficient an algorithm turns out if it can be adapted to a
multi-core architecture.

Figure 4 shows that an acceptable performance of the algorithm is
reached at around 24 cores, presenting a similar behavior when we increase
the number of cores to 24, . . . , 48. Such a behavior is due to the Amdahl’s
law limitation and other aspects such as low-level kernel primitives, shared
memory and how the machine scheduler attends the threads1.

Figure 4 (left) shows the elapsed times achieved for the smaller data
set called, iris with 150 samples and 4 attributes and Figure 4 shows the
elapsed times achieved for the largest (right) data set called WDBC with
569 samples and 30 attributes running the leave-one-out test with the NFL
algorithm. For sequential versions of iris, the time was 0.148 sec and the
parallel time with 48 cores was the best time 0.038 sec, with an speed up
of 3.79 times best than the sequential version. For the sequential version
of WDBC the time was 46.35 sec and the parallel time with 48 cores was
the best time (4.23 sec), with an speed up of 10.96 times better than the
sequential version. A similar behavior happens with the RNFLS version,
see Table 1.

Table 1: Sequential and parallel Elapsed time (in seconds) of the small and
bigger data.

Dataset Sequential Time 48 cores Time Speedup
Iris 7.92 0.44 18.17

WDBC 8843.55 316.85 29.91

In each run, we were careful in throwing one thread per core without
surpassing the total Hyper-Threading that the machine can support in

1https : //www.ibm.com/developerworks/library/l − htl/index.html

ing.cienc., vol. 14, no. 27, pp. 75–99, enero-junio. 2018. 93|

https://archive.ics.uci.edu/ml/datasets.html

LOO Evaluation of the NFL and the RNFLS Classifiers Using Multi-core Architectures

0 10 20 30 40 50
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.15 sec

0.04 sec

Core number

E
la

ps
ed

 T
im

e

NFL Iris − 1..48 cores, 20 Executions

Iris

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

46.35 sec

4.23 sec

Core number

E
la

ps
ed

 T
im

e

NFL WDBC − 1..48 cores, 20 Executions

WDBC

Figure 4: Elapsed time for the smallest data set (on the left) and the largest
data set running Leave-one-out with NFL.

order to avoid overload and context change of the threads by the scheduler,
in this architecture we can use 2 threads by core. When the number of
threads exceeds 24 cores, the behavior of the speed-up changes, presenting
ups and downs around 24 cores; see Figure 5. We note that the efficiency
is achieve when each algorithm uses only the real base core equivalents
(BCE) [14]. In spite of that, when we use the total capacity of multi-
threads, the parallel algorithms (NFL and (RNFLS), achieve efficiency but
not as significant as with the BCE.

Figure 6 and Figure 7 show the elapsed time and speed up achieved
with the leave-one-out test using the NFL and RNFLS algorithms. The
speed up was calculated with an approximation of the Amdahl’s formula
Sup = Ets/Etp [15], where Ets is the elapsed time of the sequential version
and Etp is the elapsed time of the parallel version using from 2 to 48 cores.
Table 2 shows results for all the data sets used in these tests.

|94 Ingeniería y Ciencia

Ana-Lorena Uribe-Hurtado, Eduardo-José Villegas-Jaramillo, Mauricio Orozco-Alzate

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

7.92 sec

0.44 sec

Core number

E
la

ps
ed

 T
im

e

RNFLS Iris − 1..48 cores, 20 Executions

Iris

0 10 20 30 40 50
0

1000

2000

3000

4000

5000

6000

7000

8000

9000
8843.55 sec

316.85 sec

Core number
E

la
ps

ed
 T

im
e

RNFLS WDBC − 1..48 cores, 20 Executions

WDBC

Figure 5: Elapsed time for the smallest data set (on the left) and the largest
data set running Leave-one-out with RNFLS.

0 10 20 30 40 50
10

−2

10
−1

10
0

10
1

10
2

Core number

E
la

ps
ed

 T
im

e

Elapsed Time NFL

0 10 20 30 40 50
0

2

4

6

8

10

12

14

16

18

20
Speed Up (Ss/Sp) NFL

Core number

S
pe

ed
 U

p

irisSP
wineSP
glass
ionosphere
bupa
wdbc
pima

Figure 6: Average speed up for all data sets running the leave-one-out test with
the NFL algorithm.

ing.cienc., vol. 14, no. 27, pp. 75–99, enero-junio. 2018. 95|

LOO Evaluation of the NFL and the RNFLS Classifiers Using Multi-core Architectures

10
0

10
1

10
2

10
0

10
1

10
2

p number

sp

Speed UP ExSecuentialtime/ExParalelTimePerProc

irisSP
wineSP
glass
ionosphere
bupa
wdbc
pima

Figure 7: Average speed up for all data sets running the leave-one-out test with
the RNFLS algorithm.

Table 2: Elapsed times in seconds (parallel vs. sequential), for the leave-one-out
evaluation of NFL and RNFLS using ANSI C. Data sets (DS): (1)Iris, (2)Wine,
(3)Glass, (4)Ionosphere, (5)Bupa, (6)WDBC, (7)Pima

NFL RNFLS
DS Attr. Inst. Accu Hits Seq. 48Cores Accu Hits Seq. 48Cores
1 150 4 0.893 134 0.148 0.039 0.966 145 7.915 0.435
2 178 4 0.960 171 0.771 0.349 0.972 173 35.155 1.829
3 214 4 0.687 147 0.685 0.225 0.729 156 30.128 1.698
4 351 34 0.852 299 14.697 2.023 0.928 326 1318.653 49.928
5 345 4 0.614 212 2.724 0.304 0.660 228 163.474 7.334
6 569 30 0.954 543 46.345 4.229 0.966 550 8843.550 316.847
7 768 8 0.665 511 37.180 2.185 0.700 538 6836.055 250.063

4 Conclusions

The leave-one-out test was parallelized and tested with the NFL and RN-
FLS algorithms, observing that the best acceleration is achieved under the
actual machine base architecture (24 cores) and that multi-threaded acti-
vations, although they improve performance, do not achieve accelerations
that exceed those achieved when using the base cores of the machine; the
latter demonstrates that the acceleration of the algorithms is controlled by
the limit imposed by the Amdahl’s law. The tests of the algorithms were
repeated 20 times for each dataset in order to demonstrate the stability of

|96 Ingeniería y Ciencia

Ana-Lorena Uribe-Hurtado, Eduardo-José Villegas-Jaramillo, Mauricio Orozco-Alzate

the implementation, obtaining results with low standard deviations with
respect to the mean. By using more threads than real machine cores, the
clock speed of the cores decreases, this is a typical behavior of the Xeon
processors to keep the heat levels generated by the processors stable when
they are working at 100% of their capacity, which also affects the accelera-
tion of the algorithms. It is important to note that the parallel functions
for average, standard deviation and normalization do not behave efficiently
for small datasets. The results showed that, using algorithms based on
multi-thread multi-core architectures, an improvement of the leave-one-out
test can be achieved with the RNFLS algorithm of 29.91 times compared
against the sequential algorithm.

Acknowledgements

The authors acknowledge support from Universidad Nacional de Colombia
- Sede Manizales, within “Convocatoria interna de investigación la Facultad
de Administración 2015, para la formulación y ejecución de proyectos de
consolidación y/o fortalecimiento de los grupos de investigación. Modali-
dad 1 - Formulación y ejecución de proyectos de consolidación”, under the
project “Consolidación de las líneas de investigación del Grupo de Inves-
tigación en Ambientes Inteligentes Adaptativos GAIA” (HERMES code:
32059).

References

[1] A. K. Jain, R. P. W. Duin, and J. Mao, “Statistical Pattern
Recognition: A Review,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 22, no. 1, pp. 4–37, 2000. [Online]. Available:
https://doi.org/10.1109/34.824819 76

[2] R. P. W. Duin, M. Bicego, M. Orozco-Alzate, S.-W. Kim, and
M. Loog, “Metric Learning in Dissimilarity Space for Improved Nearest
Neighbor Performance,” in Structural, Syntactic and Statistical Pattern
Recognition: Proceedings of the Joint IAPR International Workshop,
S+SSPR 2014, ser. Lecture Notes in Computer Science, P. Fränti,
G. Brown, M. Loog, F. Escolano, and M. Pelillo, Eds., vol. 8621,
IAPR. Berlin Heidelberg: Springer, 2014, pp. 183–192. [Online]. Available:
https://doi.org/10.1007/978-3-662-44415-3{_}19 77

ing.cienc., vol. 14, no. 27, pp. 75–99, enero-junio. 2018. 97|

https://doi.org/10.1109/34.824819
https://doi.org/10.1007/978-3-662-44415-3{_}19

LOO Evaluation of the NFL and the RNFLS Classifiers Using Multi-core Architectures

[3] S. Z. Li and J. Lu, “Face Recognition Using the Nearest Feature Line
Method,” IEEE Transactions on Neural Networks, vol. 10, no. 2, pp. 439–443,
1999. 77, 79

[4] H. Du and Y. Q. Chen, “Rectified nearest feature line segment for pattern
classification,” Pattern Recognition, vol. 40, no. 5, pp. 1486–1497, 2007.
[Online]. Available: https://doi.org/10.1016/j.patcog.2006.10.021 77, 82

[5] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A Sur-
vey on Concept Drift Adaptation,” ACM Computing Surveys, vol. 46, no. 4,
pp. 44:1—-44:37, mar 2014. 77

[6] M. Bramer, Principles of Data Mining, 2nd ed., ser. Undergraduate Topics
in Computer Science. London, UK: Springer, 2013. 77

[7] B. Clarke, E. Fokoué, and H. H. Zhang, Principles and Theory for Data
Mining and Machine Learning, ser. Springer Series in Statistics. New York,
NY: Springer New York, 2009. 78

[8] N. Lopes and B. Ribeiro, Machine Learning for Adaptive Many-Core Ma-
chines - A Practical Approach, ser. Studies in Big Data. Cham, Switzerland:
Springer International Publishing, 2015, vol. 7. 78

[9] A. Ahmadzadeh, R. Mirzaei, H. Madani, M. Shobeiri, M. Sadeghi, M. Gavahi,
K. Jafari, M. M. Aznaveh, and S. Gorgin, “Cost-efficient implementation
of k-NN algorithm on multi-core processors,” in Twelfth ACM/IEEE Inter-
national Conference on Formal Methods and Models for Codesign, MEM-
OCODE 2014, oct 2014, pp. 205–208. 78

[10] V. D. Katkar and S. V. Kulkarni, “A novel parallel implementation
of Naive Bayesian classifier for Big Data,” in International Conference
on Green Computing, Communication and Conservation of Energy,
ICGCE 2013. IEEE, 2013, pp. 847–852. [Online]. Available: https:
//doi.org/10.1109/ICGCE.2013.6823552 78

[11] Y. You, H. Fu, S. L. Song, A. Randles, D. Kerbyson, A. Marquez,
G. Yang, and A. Hoisie, “Scaling Support Vector Machines on modern HPC
platforms,” Journal of Parallel and Distributed Computing, vol. 76, pp.
16–31, 2015. [Online]. Available: https://doi.org/10.1016/j.jpdc.2014.09.005
78

[12] A.-L. Uribe-Hurtado and M. Orozco-Alzate, “Acceleration of Dissimilarity-
Based Classification Algorithms Using Multi-core Computation,” in Trends
in Cyber-Physical Multi-Agent Systems. The PAAMS Collection - 15th In-
ternational Conference, PAAMS 2017, ser. Advances in Intelligent Systems
and Computing, A. T. Campbell, F. de la Prieta, Z. Vale, L. Antunes, M. N.

|98 Ingeniería y Ciencia

https://doi.org/10.1016/j.patcog.2006.10.021
https://doi.org/10.1109/ICGCE.2013.6823552
https://doi.org/10.1109/ICGCE.2013.6823552
https://doi.org/10.1016/j.jpdc.2014.09.005

Ana-Lorena Uribe-Hurtado, Eduardo-José Villegas-Jaramillo, Mauricio Orozco-Alzate

Moreno, V. Julian, T. Pinto, and A. J. R. Neves, Eds., vol. 619, IEEE Systems
Man and Cybernetics Society Spain Section Chapter. Cham, Switzerland:
Springer, jun 2017, pp. 231–233. 78

[13] E. Pekalska and R. P. W. Duin, “Dissimilarity representations allow for
building good classifiers,” Pattern Recognition Letters, vol. 23, no. 8, pp.
943–956, 2002. [Online]. Available: https://doi.org/10.1016/S0167-8655(02)
00024-7 79

[14] H. Che and M. Nguyen, “Amdahl’s law for multithreaded multicore
processors,” Journal of Parallel and Distributed Computing, vol. 74, no. 10,
pp. 3056–3069, 2014. [Online]. Available: https://doi.org/10.1016/j.jpdc.
2014.06.012 94

[15] J. Nutaro and B. Zeigler, “How to apply Amdahl’s law to multithreaded
multicore processors,” Journal of Parallel and Distributed Computing, vol.
107, no. Supplement C, pp. 1–2, 2017. 94

ing.cienc., vol. 14, no. 27, pp. 75–99, enero-junio. 2018. 99|

https://doi.org/10.1016/S0167-8655(02)00024-7
https://doi.org/10.1016/S0167-8655(02)00024-7
https://doi.org/10.1016/j.jpdc.2014.06.012
https://doi.org/10.1016/j.jpdc.2014.06.012

	Introduction
	Methods
	Serial Algorithms
	Nearest feature line classifier (NFL)
	Rectified nearest feature line segment (RNFLS) classifier

	Proposed parallel algorithms
	Preprocessing phase
	Classification phase

	Results and discussion
	Conclusions

