A simple proof of Abel’s theorem on the lemniscate

Uma prova simples do teorema de Abel sobre a lemniscata

Demostración simple del teorema de Abel sobre la lemniscata

Leonardo Solanilla1, Óscar Palacio2 y Uriel Hernández3

Recepción: 27-feb-2010/Modificación: 19-oct-2010/Aceptación: 06-dic-2010

Se aceptan comentarios y/o discusiones al artículo

Abstract

Since Abel’s original paper of 1827, his remarkable theorem on the constructibility of the lemniscate splitting has been proven with the aid of Elliptic Functions. Nowadays, Rosen’s proof of 1981 is considered definitive. He also makes use of (modern and more elaborate) Class Field Theory. Here we present a novel, short and simple proof of Abel’s Theorem on the lemniscate and its converse. Our only ingredients are the addition formulas of Gauss lemniscatic functions and some basic facts of Galois Theory.

Key words: Abel’s theorem on the lemniscate, Gauss lemniscatic functions, geometric constructions.

1 Doctor en Matemáticas, leonsolc@ut.edu.co profesor, Universidad del Tolima, Ibagué-Colombia.

2 Profesional en Matemáticas con énfasis en Estadística, tikomania86@hotmail.com estudiante de Especialización en Matemáticas, Universidad del Tolima, Ibagué-Colombia.

3 Profesional en Matemáticas con énfasis en Estadística, uriel501@hotmail.com estudiante de pregrado, Universidad del Tolima, Ibagué-Colombia.
A simple proof of Abel’s theorem on the lemniscate

1 Introduction

In 1801, Gauss [1, section 7] proved his celebrated theorem on the construction of the regular polygons by using the trigonometric or circular functions. He also announced that the theory applies to a wider class of transcendental functions including the lemniscatic arc length. Some years later, Abel [2, pp. 361–362] showed indeed clearly his famous theorem. More recently, Rosen [3, p. 388] has claimed to be the first of having the converse of Abel’s theorem appeared in print. In what follows, we prove comprehensively the theorem and its converse from very elementary facts. Our proof improves substantially the technique employed by Hernández and Palacio [4, chapter 4].

Theorem 1.1. The lemniscate can be divided into \(n \) equal arcs by means of a compass and an unmarked straightedge if and only if \(n = 2^k p_1 p_2 \cdots p_t \), where the \(p_i \)'s are distinct Fermat primes.
In section 2 we define the lemniscate, discuss its arc length and recast the lemniscatic functions to fit the later work. In section 3 we give our proof of the “if” part of theorem 1.1 by examining the Galois group of a suitable extension of $\mathbb{Q}(i)$. Section 4 is devoted to the “only if” part of the theorem. At the end we draw some conclusions regarding the possibility of generalizing the procedure to a whole class of curves comprising the circle and the lemniscate.

2 Gauss lemniscatic functions

Here, the lemniscate is the locus L of points (x, y) in the plane satisfying the equation $(x^2 + y^2)^2 = x^2 - y^2$. In polar coordinates (r, θ), the equation becomes $r^2 = \cos 2\theta$ and its arc length is given by the function

$$\text{arcsl} : [-1, 1] \to \mathbb{R}, \quad r \mapsto \int_0^r \frac{d\rho}{\sqrt{1 - \rho^4}}.$$

The lemniscatic sine $sl(x)$ is the odd function resulting from extending arcsl^{-1} to the real line in such a way it is periodic with period $2\varpi = 4 \int_0^1 \frac{d\rho}{\sqrt{1 - \xi^4}}$. The lemniscatic cosine is $cl(x) = sl\left(\frac{\pi}{2} - x\right)$.

The most important properties of the lemniscatic functions are their addition formulas

$$sl(x \pm y) = \frac{sl(x)cl(y) \pm sl(y)cl(x)}{1 \mp sl(x)sl(y)cl(x)cl(y)}, \quad cl(x \pm y) = \frac{cl(x)cl(y) \mp sl(x)sl(y)}{1 \pm sl(x)sl(y)cl(x)cl(y)}.$$

By induction on $n \in \mathbb{Z}^+$,

<table>
<thead>
<tr>
<th>n odd</th>
<th>n even</th>
</tr>
</thead>
<tbody>
<tr>
<td>$sl(nx) = sl(x)r_1(sl^2(x))$</td>
<td>$sl(nx) = sl(x)cl(x)r_2(sl^2(x))$</td>
</tr>
<tr>
<td>$cl(nx) = cl(x)r_3(sl^2(x))$</td>
<td>$cl(nx) = r_4(sl^2(x))$</td>
</tr>
</tbody>
</table>

where r_1, r_2, r_3, r_4 stand for rational functions in one indeterminate with integer coefficients.

The Pythagorean-like identity

$$sl^2(x) + cl^2(x) + sl^2(x)cl^2(x) = 1$$

can be visualized as the image C of the map $x \mapsto (cl(x), sl(x))$. Figure 1 shows a sketch of this curve. C possesses a canonical group structure isomorphic to
the quotient $\mathbb{R}/\langle 2\varpi \rangle$ of the additive group \mathbb{R} into the subgroup generated by 2ϖ.

Since every point $(\text{sl}(x), \text{cl}(x)) \in C$ determines clearly a $(x, y) \in \mathcal{L}$ and the critical point of the lemniscate introduces no confusion, we may use C to split the lemniscate \mathcal{L}. For a fixed positive integer n, our problem is then equivalent to the constructibility of the division points $\gamma_k = \text{cl}\left(\frac{2\varpi}{n}k\right) + i\text{sl}\left(\frac{2\varpi}{n}k\right) \in C$, $k = 0, 1, \ldots, n-1$. The addition formulas (4) provide $\Gamma_n = \{\gamma_k\}_{k=0}^{n-1}$ with a natural group structure isomorphic to \mathbb{Z}_n. Writing shortly $\text{cl}(x) + i\text{sl}(x) = z(x)$, the elements of Γ_n are just the solutions to the equation $r(z(x)) = z(nx) = 1$.

3 Extending $\mathbb{Q}(i)$

The extension field $L_n = \mathbb{Q}(i)(\Gamma_n)$ is Galois over $\mathbb{Q}(i)$. Certainly, Γ_n is finite and so, L_n is algebraic and finite dimensional. As $\mathbb{Q}(i)$ has characteristic 0, L_n is separable. Also, if σ is a $\mathbb{Q}(i)$-automorphism of \mathbb{C} and $\gamma_k = \alpha_k + i\beta_k \in \Gamma_n$, then $r(\sigma(\alpha_k) + i\sigma(\beta_k)) = \sigma(r(\alpha_k + i\beta_k)) = 1$. Therefore, the equivalence relation

$$\gamma_k \sim \gamma_l \iff \exists \sigma \in \text{Gal}_{\mathbb{Q}(i)}L_n : \sigma(\gamma_k) = \gamma_l$$

partitions Γ_n into classes of elements sharing the same irreducible polynomial over $\mathbb{Q}(i)$. Since L_n is the splitting field of the product of these polynomials, it is normal.
Furthermore, the Galois group $\text{Gal}_{\mathbb{Q}(i)}L_n = G_n$ is isomorphic to a subgroup of the multiplicative group U_n of units of \mathbb{Z}_n. Actually, the action of G_n on Γ_n defined by $\sigma(\gamma_k) = \gamma_{lk}$ is a bijection for each fixed σ, which preserves the group structure on Γ_n. That is, there is a group homomorphism $G_n \rightarrow \text{Aut}(\Gamma_n) \cong \text{Aut}(\mathbb{Z}_n) \cong U_n$. Since L_n is algebraic, this homomorphism is onto.

Now, the order of U_n equals the value of Euler’s φ-function at n. Thus, if $n = 2^k p_1 p_2 \cdots p_t$ with different Fermat primes $p_i, 1 \leq i \leq t$, a simple number-theory calculation shows the order of U_n is a power of two. As a result of Lagrange’s theorem and basic Galois theory, $[L_n : \mathbb{Q}(i)] = 2^t$. Hence, the elements of Γ_n are constructible. A convenient reference for this material is the fifteenth chapter of Hungerford’s book [5]. So, we have proved Abel’s theorem: if n has the given form, then the lemniscate can be split into n equal parts with ruler and compass.

4 Converse

We must elucidate the field structure of L_n. To begin, let us consider the orbits $[k]$ of the action $U_n \times \mathbb{Z}_n \rightarrow \mathbb{Z}_n, (u, k) \mapsto uk$. We claim that $\gamma_k \sim \gamma_l \iff [k] = [l]$. The implication “$\Rightarrow$” has been already proved: if $\gamma_k \sim \gamma_l$, there is a $u \in U_n$ such that $l = uk$, i.e., $[k] = [l]$. The “\Leftarrow” part is more elaborate and relies on a careful scrutiny of the general addition formulas for $\text{sl}(nx), \text{cl}(nx)$. We notice that, when n is odd (respectively, even), the factors $\text{cl}(x), \text{sl}(x)$ yield the solution $\gamma_0 = 1$ (respectively, solutions $\gamma_0 = 1, \gamma_{n/2} = -1$) of equation $r(z(x)) = \text{cl}(nx) + i\text{sl}(nx) = 1 + 0i$. Since the remaining factors depend on $\text{sl}^2(x)$, the elements of Γ_n occur in conjugate pairs within the same equivalence class.

Let us resume the proof where we left off. If $[k] = [l]$, then there is a $u \in U_n$ such that $l = uk$. The case $u = 1$ is evident. If $u = n - 1$, γ_l is the complex conjugate γ_k of γ_k. The remaining case is when $u \in U_n \setminus \{1, n - 1\}$. In this case, the real and imaginary parts of

$$\gamma_l = \gamma_{uk} = \text{cl}\left(u\frac{2\omega}{n}k\right) + i\text{sl}\left(u\frac{2\omega}{n}k\right)$$

are, via the addition formulas, rational expressions of $\text{cl}\left(\frac{2\omega}{n}k\right) = \frac{\gamma_k + \overline{\gamma_k}}{2}$ and $\text{sl}\left(\frac{2\omega}{n}k\right) = \frac{\gamma_k - \overline{\gamma_k}}{2i}$. In this way, given $u \in U_n$, there is a permutation $\gamma_j \mapsto \gamma_{uj}$.
of the equivalence class $[\gamma_k]$ of γ_k. For, γ_{uj} is obtained from $[\gamma_k]$ and $\mathbb{Q}(i)$ by a finite sequence of field operations. In other words, it belongs to the splitting field $\mathbb{Q}(i)([\gamma_k])$ of the irreducible polynomial associated with $[\gamma_k]$. Then, the permutation induces a linear automorphism of $\mathbb{Q}(i)([\gamma_k])$ which leaves each element of $\mathbb{Q}(i)$ unchanged. By performing the process in the other equivalence classes in Γ_n, this automorphism extends in turn to a $\sigma_u \in G_n$. As $\sigma_u(\gamma_k) = \gamma_l$, we get $\gamma_k \sim \gamma_l$.

Consequently, G_n is isomorphic to U_n. Then, $[L_n : \mathbb{Q}(i)] = \varphi(n)$. If the division of the lemniscate into n equal arcs can be constructed, $\varphi(n)$ is a power of two. By elementary arguments in number theory we conclude that $n = 2^k p_1 p_2 \cdots p_t$, where the p_is are distinct Fermat primes. Theorem 1.1 follows.

5 Conclusions

The plainness of the procedure reveals what might be needed for a closed curve to split like the circle or the lemniscate. First, its arc length should be given by an elliptic integral, say $\int dx/\sqrt{p(x)}$ for a certain polynomial p. Second, the locus of the solution to Euler’s problem

$$\frac{dx}{\sqrt{p(x)}} + \frac{dy}{\sqrt{p(y)}} = 0, \; y(x = 0) = 1,$$

should conveniently match the curve. Third, there should be a periodic parametrization $x(t), y(t)$ of the solution locus such that $x(nt), y(nt), n \in \mathbb{Z}^+$, are rational functions of $x(t), y(t)$ with rational coefficients. Fourth, the problem should reduce to the constructibility of $x((2\pi/n)k) + iy((2\pi/n)k)$, $k = 0, 1, \ldots, n - 1$, where 2π denotes the parametrization period. Fifth, these numbers should be the zeros of equation $x(nt) + iy(nt) = 1$, etc. For background material on elliptic integrals the reader can consult McKean and Moll [6, chapter 2]. See also [7].

Acknowledgements

This paper has been partially supported by the Vicerrectoría de Investigaciones of Universidad de Medellín and the Facultad de Ciencias of Universidad
The authors also wish to thank the referees for their valuable suggestions and improvements in the paper.

References

