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Resumen
Este trabajo trata la dinámica directa de mecanismos de un Grado de Libertad (GDL). Se presenta un método de 
Propósito General (PG) basado en cadenas en el que un mecanismo es desagregado en grupos estructurales de Assur. 
Los análisis cinemático y de fuerzas de los grupos de Assur se resuelven individualmente para formar una librería de 
módulos independientes.  Esta propiedad es usada para reducir los parámetros inerciales y las fuerzas exteriores en 
cada grupo (módulo) que forma el mecanismo. La reducción se propaga de módulo a módulo hasta que se alcanza 
el eslabón conductor, entonces la dinámica directa se resuelve analizando exclusivamente ese eslabón. El método 
PG presentado tiene una flexibilidad comparable con los métodos PG basados en juntas. El método es usado en la 
dinámica directa de un mecanismo de seis barras (Watt) con resultados que son comparables con software comercial 
para dinámica de Sistemas  Multicuerpo (MBS).

Palabras clave: Análisis modular, dinámica directa, mecanismos.

Abstract
This work deals with the forward dynamics of mechanisms with one Degree of Freedom (DOF). There is presented 
a chain-based General Purpose (GP) method in which a mechanism is disaggregated into structural Assur groups. 
Kinematic and force analyses of Assur groups are individually solved to form a library of independent modules. 
This property is used to reduce inertial parameters and external forces in each structural group (module) that forms 
the mechanism. The reduction is propagated from module to module until the driving link is reached, and then the 
forward dynamics is solved analyzing exclusively that link. The presented GP method has a flexibility which is 
comparable with respect to the GP joint-based methods. The method is applied to the forward dynamics of a six-
bar (Watt) mechanism with results that are comparable to the commercial software for Multibody Systems (MBS) 
dynamics.

Keywords: Forward dynamics, mechanism, modular analysis.
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1. Introduction

Nikravesh (1988) and Hansen (1996) classify the 
methods for computer aided analysis of mechanical 
systems into two categories: i) Special Purpose (SP), 
and ii) General Purpose (GP). 

The GP methods are codified as libraries without 
specific mechanisms, though they include the 
elements necessary to assemble these mechanisms 
virtually. The modules that constitute a GP library 
may be developed on the concept of kinematic 
joint, as in the majority of commercial software 
for Multibody System (MBS) dynamics, or on 
the concept of kinematic unit. In case of planar 
mechanisms, the kinematic unit corresponds with a 
structural kinematic chain which is conventionally 
called Assur group. A mechanism may be designed 
as a sequential union of one or more driving links 
and one or more Assur groups.

This study presents a contribution to the dynamics 
of planar mechanisms. The developed method is a 
GP method based on kinematic units. Given that 
each kinematic unit is statically determinate, then 
it is possible to find an independent solution for its 
kinematics as well as for its kinetostatic analysis 
(inverse dynamics). Kinematical and kinetostatical 
independence are a basis for the modular method, 
which is extended in this study to the simulation 
(forward dynamics). The proposed method consists 
in a modular reduction of inertial parameters and 
forces, beginning with the last kinematic unit in 
the formation sequence of the mechanism, and 
propagating the reduction until the driving link 
(reduced link) is reached. The reduction is carried 
out as a function of the generalized coordinate and 
it is independent of time and velocity of the system. 
Finally, the forward dynamics is solved exclusively 
for the reduced link as a function of the generalized 
coordinate and the initial conditions.

The following references discuss GP methods 
for kinematics, which are based on kinematic 
units: Cavic et al. (2007) show an iterative 
method for the kinematics of high-class Assur 
groups (higher than a dyad), in which high-class 

groups are approximated by a set of dyads that 
should be geometrically adjusted to describe the 
displacement of the original group. Zhang et al. 
(2006) present an alternative to the study of Cavic 
et al. (2007), in which the solution of the position 
is solved by means of an iterative algorithm by 
virtual search. Buśkiewicz (2006) and Calle et al. 
(2001) show general and optimized methods for 
calculating the kinematics of a mechanism, given 
its rule for the Assur group formation. Modular 
reductions of mass and force analyzed in this 
paper require a kinematics library; this library was 
adopted from the study of Calle et al. (2001). The 
library is a unit based GP and it is also used for the 
post-processing in dynamics since the calculated 
movement of the reduced link should be extended 
towards the other Assur groups. Durango (2007), 
Marghitu & Crocker (2001) and Bràt & Lederer 
(1973) present GP methods for inverse dynamics 
based on kinematic units where the friction in 
joints is assumed to be negligible. In general, these 
methods are reduced to the solution of a linear set 
of equations that represent dynamic equilibrium in 
the system. In contrast to the studies of Durango 
(2007), Marghitu & Crocker (2001) and Bràt & 
Lederer (1973); in the analysis made by Ruiz et 
al. (2010), a GP method is extended to include the 
effects of friction in the joints using a successive 
approximation method for the force analysis. None 
of these studies discusses the problem related to the 
solution of differential equations of the system’s 
motion, i.e. a forward dynamics problem.

Wang et al. (2008) describe a modular dynamics of 
mechanisms using Assur groups and a state space 
representation which  increases the computational 
expenses since it requires a simultaneous solution 
of differential equations of the motion for all the 
kinematic units that form the mechanism. Hansen 
(1996) also develops a GP method based on kinematic 
units in which the dynamic calculations are built on 
a correction of driving links’ accelerations under 
a given state of load. Once the accelerations are 
calculated,  then numerical integration is done in order 
to solve position and acceleration and to advance to 
the following time step. This methodology is similar 
to the one presented in this paper. However, there is 
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a difference in the calculation of the driving link’s 
acceleration: while Hansen (1996) calculates the 
accelerations by an iterative correction process, 
the method shown in this study requires to apply a 
procedure of force and inertial parameters reduction 
whose equations are closed and explicit, decreasing 
thus the computational expenses. On the other hand, 
the method developed by Hansen (1996) allows to 
calculate the dynamics of mechanisms with several 
Degrees of Freedom (DOF) and with a floating drive, 
e.g. mechanisms in which the engine is situated 
between two moving links; meanwhile the current 
study is limited to mechanisms with one DOF where 
the driving link has a fixed point. This study is meant 
to be extended in the future to mechanisms with 
various DOFs including floating drive. 

The described reduction method conserves the 
advantages of GP methods based on bodies and 
joints and based on kinematic units: it is flexible 
(allows to analyze huge groups of mechanisms 
with only a few modules) and computationally 
efficient (reduced equations for each module are 
closed expressions). An additional advantage of 
this  modular approach for planar mechanisms 
dynamics is the simplification of the solution of 
differential equations of motion, i.e. the analysis 

has been reduced to a single link which may be 
modelled as a body rotating around a fixed axis or 
as a translational body, as appropriate.

2. Methodology for modular dynamics

Dynamical simulation or time response analysis 
is a problem in which a mechanism with known 
geometry and inertial properties is loaded by a 
set of external and driving forces (e.g. functions 
of generalized coordinate or couple - velocity 
functions). The result of this analysis is the 
mechanism kinematics, i.e. positions, velocities 
and accelerations of the links as functions of time. 
The simulation requires numerical integration of 
differential equations describing the motion of the 
system; and this defines its complexity level.

This article presents a GP method based on 
kinematic units for the forward dynamics of 
mechanisms with one DOF. Kinematic units are 
independent and reusable modules for analysis, 
representing a mechanism when they are assembled 
in an appropriate sequence. A collection of kinematic 
units forms a library, which, in this work, was 
implemented following the structural group concept 
developed by Assur (1913), i.e. kinematic units 

Figure 1. Modular dynamics of mechanisms.
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whose characteristic is that they do not have any effect 
on the DOF of the mechanism. The Assur groups 
constitute analysis units which are independent from 
the point of view of the kinematics as well as the 
kinetostatics. Here, this property is extended to the 
force and inertial parameters reduction: each group 
can be reduced independently, and the reduction 
may be propagated up to the driving link. The 
described reduction of forces is based on the power 
equivalence, while the inertial parameters reduction 
establishes kinetic energy equivalence between 
the system and its reduced equivalent. The method 
for the analysis is shown in Figure 1 and it is also 
explained in the following points:

i) Modular kinematics with unitary driving 
velocity. Velocities of all the links and points of 
interest (centers of mass, force application points) 
are calculated using the modular method described 
by Calle et al. (2001). The analysis starts with the 
driving link, which is assumed to have a unitary 
velocity. The solution, then proceeds following 
the sequence of mechanism formation towards the 
other modules as it is shown in Figure 2. Given 
that each module is kinematically determined, 
therefore it has one independent solution. 

ii) Modular reduction of forces and inertial 
parameters up to the driving link. Given the 
kinematics calculated in (i), and knowing the 
loads and inertial parameters of each group, the 
reduction of every kinematic unit is calculated 
the way towards the link which connects this 
unit with the kinematic unit directly preceding 
in the formation sequence, see Figure 2. This 
sequence is adopted to establish a convention that 
would facilitate computational implementation. 
However, this reduction order is not strict since 
the groups may be reduced without any particular 
order and directly to the reduced link. The 
process of reduction simplifies the system into the 
driving link through the power and kinetic energy 
equivalence. Thus, energy and power are related 
by means of the virtual work principle. Eq. (1) is 
obtained for a reduced link in rotation:

( ) ( )
( ( ) ( ))d

J q q
q q dq2

red
red

2~
x x= +c m

 (1)

where q is the generalized coordinate, ω is the 
angular velocity, τ is the driving torque, τred is the 
reduced couple, and Jred is the reduced inertial 
moment. For obtaining the angular acceleration ζ 

Figure 2. Modular propagation of the kinematic analysis and of the reduction of 
forces and inertial parameters in mechanisms. 
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Eq. (1) is differentiated and Jred is approximated by 
finite differences between qi and qi +1, then Eq. (2) 
is obtained:
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where ∆ is the discretization step in radians. 
Linear acceleration of a translational reduced link 
is obtained analogously.

iii) Integration of the differential equation of 
motion. Given the initial conditions of motion, the 
differential equation obtained in (ii) is numerically 
integrated with respect to the generalized 
coordinate. The result of the integration will be 
the driving link’s velocity, which is then applied 

in the following step of generalized coordinate 
discretization. This point is one of the advantages 
of this method as the mechanism has been reduced 
to one single differential equation instead of a 
system of differential equations.

iv) Modular kinematics with reduced link velocity. 
The velocity calculated in (iii) is propagated until 
it reaches the last kinematic unit, as it is shown in 
Figure 2. Velocities of all the links are obtained.
 
v) Updating of external forces. Given the velocities 
calculated in (iv) and knowing the generalized 
coordinate, the values of external forces dependent 
on the velocity, generalized coordinate, or time, are 
updated. Now, it is possible to return to the step (ii) 
and continue with the next integration.

The following section develops the modular 
dynamics methodology for the case study of 
mechanisms with driving link in rotation and one 
or more Assur groups of two links with rotational 
pairs. Other results may be obtained analogously 
for mechanisms with driving link in translation or 
mechanisms formed by other Assur groups.

3. Results and discussion

3.1 Force reduction

For the force reduction, there are given external 
forces and external couples which act in each 
kinematic unit. The principle of virtual displacements 
is used in this reduction; by this principle, power 
equivalence is obtained between the original system 
and its reduced equivalent. 

Assur group with two links and rotational pairs. 
Figure 3.a presents an Assur group with two 
links and rotational pairs where link 3 is assumed 
to be the reduced link. It is also assumed that 
the driving link has a fixed pivot and therefore 
the system of forces and couples is diminished 
to a single reduced couple  , which acts instead 
of the set of external loads. Eq. (3) represents 
power equality for the calculation of the reduced 
couple:

Figure 3. Force reduction. a) In an Assur group with two 
links and rotational pairs. b) In a driving link with fixed 

pivot A.



164

Ingeniería y Competitividad, Volumen 16, No. 1, p. 159 - 168 (2014)

,coscos
3

5
5

3

4
434

3

4
43

3

3
3 ω

ω
τ

ω
ω

ττα
ω

α
ω

τ ++++= FF
red

v
F

v
F

  (3)

where Fj represents the magnitude of the load on the 
link j, τj is the couple on the link j, νFj is the velocity 
magnitude of the application point of the j-th load, 
αj is the angle between the force and the velocity of 
its application point, j = 3, 4 for Figure 3.a and τ5 
represents the reduced couple that comes from the 
group preceding in the reduction propagation. 

Driving link with fixed pivot. Figure 3.b presents 
a driving link with fixed pivot. This is the reduced 
link of the whole mechanism. Eq. (4) represents the 
power equivalence of the system for calculation of 
the reduced couple, which acts on the driving link: 
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where F2 is the magnitude of external force on the 
link, τ2 represents the action of external couples that 
act on the link without including the driving torque, 
νF2 is the velocity of the application point of F2, α2 
is the angle between external force and velocity of 
the application point, and τ3 represents the reduced 
couple that comes from the group preceding in the 
reduction.

3.2 Inertial parameters reduction

The reduction of inertial parameters is calculated 
by means of equivalence in energy between the 
original system and the reduced one. The reduction 
is a function of link velocity ratios; therefore it 
is determined from a modular kinematics with 
unitary driving velocity. Inertial parameters of all 
the links are given.

Assur group with two links and rotational pairs. 
Figure 4.a shows an Assur group with two links 
and rotational pairs where the link 3 is assumed 

to be the reduced link. It is also supposed that 
the driving link has a fixed pivot and therefore 
the set of inertial parameters is diminished to 
a single reduced moment of inertia Jred which 
represents the dyad. Eq. (5) describes the kinetic 
energy equivalence for calculation of the reduced 
moment of inertia:
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where mj is the mass of the link j, vGj is the velocity 
of the center of mass j, j = 3, 4 for Figure 4.a and J5 

Figure 4. Inertial parameters reduction. a) In an Assur 
group with two links and three rotational pairs. b) In a 

driving link with fixed pivot A.
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is the reduced moment of inertia that comes from 
the group preceding in the reduction propagation.

Driving link with fixed pivot. Figure 4.b shows a 
driving link with fixed pivot. This link has been 
assumed to be the reduced link of the whole 
mechanism. Eq. (6) represents the equivalence of 
the system’s kinetic energy for calculation of the 
reduced moment of inertia:
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where mj and J2 stand for inertial parameters of 
the link, vG2 is the center of mass velocity and J3 
represents the reduced moment of inertia that 
comes from the group preceding in the reduction 
propagation.

The reduction of forces and inertial parameters 
for an Assur group with two links and three 
rotational pairs and for a driving link with fixed 
pivot is described in the sections 3.1 and 3.2. These 

reductions constitute two modules in the library 
of modular dynamics of planar mechanisms. The 
modules may be assembled and recycled in the 
simulation of diverse mechanisms. It is necessary 
to develop additional modules for the formation 
sequences that require other structural groups. The 
flexibility is lower than in case of GP programs 
based on joints in which the combination of a 
few modules allows simulation of wide groups of 
mechanisms. However, just a few modules based 
on kinematic units are enough to study the majority 
of mechanisms used in modern technic, thereby 
minimizing the difference with respect to programs 
based on joints, and proving the flexibility reported 
by Hansen (1996).

In terms of computational efficiency, the reduced 
equations are characterized by being algebraic 
and explicit, e.g. Eq. (3) and Eq. (5) for an Assur 
group with two links and rotational pairs.  In 
case of mechanisms with one DOF the system is 
represented, by reduction, by means of one single 
differential equation. This is an advantage when 
compared with strategies that require the solution 
of a system of differential equations, as in the study 
of Wang et al. (2008), or that require iterations 
to correct the driving acceleration in addition to 
solving the differential equation, as for example 
Hansen (1996). The following section presents 
forward dynamics of a six-bar mechanism using 
the modular approach.

3.3 Case study

Figure 5 shows a Watt’s planar six-bar mechanism 
with geometric and inertial parameters registered in Figure 5. Case study, Watt’s mechanism.

Parameter Value
[m]

Parameter Value
[kg]

Parameter Value
[kg m2]

lO2A 1,0 m2 1,0 J2 0,0833
lAB 1,5 m3 1,5 J3 0,2813
lBO4 1,5 m4 1,5 J4 0,2813
lCE 1,0 m5 1,0 J5 0,0833
lDE 1,0 m6 1,0 J6 0,0833

lO2O4 1,6

 Table 1. Geometrical and inertial parameters of the case study.
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Table 1. The mechanism starts its motion from rest 
under the action of its weight at   and with negligible 
friction. The simulation is being developed until 
the mechanism reaches the standstill again. 

The formation sequence of the mechanism is: An 
Assur group formed by links 3 and 4 is added to 
the driving link 2 between the points A and O4, 
and finally a second Assur group formed by links 5 
and 6 is added between the points C and D, as it is 
shown in the graph (structural diagram) (7):

(7)

where vertices represents the structural groups 
(fixed and driving link and Assur groups) and 
edges represents the group connections, e.g. vertex 
2,0(5,6) represents a module formed by 2 links (links 
5 and 6) and which adds 0 DOF to the kinematical 
structure, this is, the module is an Assur group. 
Both Assur groups, vertices 2,0(3,4) and 2,0(5,6), 
have the same topology and are represented by 
the same module. The dynamic simulation is 
carried out following the methodology described 
in section 2 and in Figure 1. The required modules 
correspond to the kinematics and to the reduction 
of forces and inertial parameters for a driving link 
with fixed pivot, and for an Assur group with two 
links and three rotational pairs. 

Figure 6. Forward dynamics of the case study’s reduced link. a) Generalized coordinate (θ_2). b) Angular velocity (ω). c) 
Pair reactions (F). Convention for the figures a) and b):       modular dynamics;     commercial MBS. Convention for the 

figure c):* reaction in O2; + reaction in A; x reaction in E.
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The integration of the differential equation of 
motion is calculated assuming that the acceleration 
is constant for small steps (Euler’s integration). The 
size of the adopted step was 1x10-3 rad, which is, 
in fact, a small size. Since the focus of this study is 
the modular approach, no other numerical methods 
were considered. To diminish the discretization 
and improve the efficiency, multistep methods 
may be implemented, as for example the Runge-
Kutta methods; this is proposed for a future study. 
The results are registered in Figure 6, describing 
the forward dynamics of the driving link in terms 
of its angular displacement (Figure 6.a) and its 
angular velocity (Figure 6.b). The results are also 
presented applying commercial MBS software 
based on joints. Additionally, Figure 6.c shows the 
magnitude of the reactions in the pairs O2, A, and 

Figure 7. Energy variation for the case study. a) Kinetic 
and potential energy. b) Total energy. Convention:        T, 

kinetic energy;         V, potential energy;       E = T+V.

E, which were calculated by the modular method. 
The sequence of the force calculation is contrary 
to the sequence of formation of the mechanism 
described in (7).

Figure 7 presents a validation of the simulation by 
means of energy conservation. The conservation 
is formulated in the absence of all external forces 
different from the weights, and it is registered in 
Eq. (8):                                                                                 

(8)

where ΔT is the change in kinetic energy and   is the 
change in potential energy of the system, taking as 
reference the Oxy system from Figure 5. Figure 7.b 
presents the details on the energy variation which 
is explained partially by the application of Euler’s 
integration.

4. Conclusions

In this study, there has been presented a 
contribution to the modular dynamics of planar 
mechanisms with one DOF. The methodology, 
described in Figure 1, is based on the concept 
of kinematic unit, which allows formulation 
of independent solutions (modules) for the 
kinematics and for the reduction of forces and 
inertial parameters. A minimal expression of the 
system, in the form of an ordinary differential 
equation, is obtained systematically by means 
of modular reduction of forces and inertial 
parameters. The behavior of the mechanism is 
therefore represented by the driving link under 
the action of the driving force and a reduced 
force and a reduced inertia, which altogether 
directly describe the system’s dynamics.

This contribution keeps the flexibility of GP 
methods, since it is possible to simulate wide 
families of mechanisms by combination of 
few modules. This includes the majority of the 
mechanisms used in modern technic. It is also 
emphasized that the kinematic solution for each 
unit is tailored, which corresponds with the 
advantage of SP methods. 

,gVT ∆−=∆
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The methodology was implemented into the 
analysis of Watt’s six-bar mechanism (section 3.3), 
and the results were compared with a commercial 
MBS software.
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