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Resumen
La contaminación del aire por monóxido de carbono (CO) es uno de los principales factores que afecta la calidad 
del aire en las grandes ciudades, pues está directamente relacionado con las actividades urbanas. El comportamiento 
medio y de la variabilidad de las concentraciones de CO a lo largo de un día varía constantemente debido 
principalmente al tráfico vehicular en el lugar. El objetivo de este trabajo es proponer un modelo de suavización 
no paramétrico para la concentración horaria de CO en el aire, considerando varianza no constante, que permita 
describir su comportamiento a lo largo de un día. Para esto se usaron los registros de contaminación por CO en 
una estación ubicada en el centro de la ciudad de Cali, Colombia. Se estimaron las curvas por medio de regresión 
lineal local y la función de varianza por medio de un estimador de la función de varianza. Las curvas estimadas 
permitieron describir el comportamiento del CO, mostrando mayores concentraciones en horas “pico” y menores en 
la madrugada, además la estimación de una función de varianza permitió modelar de mejor forma el comportamiento 
heterocedástico de los datos.

Palabras claves: contaminación atmosférica, estimadores basados en diferencias, monóxido de carbono, regresión 
no paramétrica. 

Abstract
Air contamination by carbon monoxide (CO) is one of the main factors affecting the air quality in big cities, since 
it’s directly related to urban activities. The CO concentrations variability average behavior changes constantly 
mainly due to the traffic in the place. The objective of this article is to propose a non-parametric smoothing 
model for the hourly CO concentration in the air, considering non-constant variance that allows the description 
of its behavior through the day. To this end, contamination records by CO in a downtown pollution monitoring 
station in Cali, Colombia were used. Curves were estimated by using local lineal regression and variance function 
through an estimator of variance function. The estimated curves allowed describing the CO behavior, showing 
bigger concentrations in rush hours and smaller concentrations in the early morning, besides the variance function 
estimation allowed to better model the data’s heteroscedastic behavior.

Keywords: atmospheric contamination, carbon monoxide, difference-based estimators, non-parametric regression.
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1. Introduction

The development going on since the 20th century 
has notoriously changed the demographic 
characteristics of Latin American population, 
so that nowadays more than 70% of these 
countries population is located in urban areas, 
and in Colombia most of the urban population is 
concentrated in four main cities (Jaramillo et al., 
2009). Because of this, the industrial and economic 
activities and the constant vehicles circulation have 
increased rapidly in urban centers, in some cases, 
without a good planning in environmental terms, 
which creates in the end, harmful effects to the 
environment that affect life quality of the citizens 
(Romieu et al, 1991).

Air pollution in the cities, that it is a product 
of human activities, has a negative impact on 
people’s health, these effects go from short time 
effects such as eye and nose irritation and sore 
throat to chronic respiratory diseases (Xia & 
Tong, 2006). These consequences can be worse 
on people with chronic diseases, children and the 
elderly. Amongst all of the contaminants that can 
be found in a city we find CO, which is produced 
by the incomplete combustion of hydrocarbons, 
being the emissions from vehicles’ exhausts 
the main source in urban areas (Georgoulis et 
al, 2002). Due to this CO’s behavior is highly 
determined by vehicle’s circulation and industrial 
activities. According to Samoili et al (2007) CO 
concentration shows a spatially heterogeneous 
behavior in a city, but its biggest concentrations 
appear in places with high volume of traffic.

Due to the fact that CO concentration is highly 
related to urban activities, it is important to study 
how its behavior is throughout the day, since 
high values are expected to show up when there 
is high activity, for instance, in rush hours when 
the volume of traffic is higher. Reina & Olaya 
(2012) and Montoya et al (2005) have shown 
that the non-parametric regression techniques, 
such as spline or local regression, are appropriate 
to modeling the daily behavior of contaminants 
and are also useful in the decision making about 

air quality, emphasizing the use of variability 
bands to the comparison of different estimated 
curves for contaminants. However, to use these 
bands it is necessary to estimate the variance in 
the contaminant concentration for each hour of 
the day; generally this is assumed as constant 
and one of the estimators proposed in literature 
is used (Rice 1984; Gasser et al, 1986; Hall et 
al, 1990). But the hourly behavior of CO does 
not seem to adjust to this assumption, since the 
variability measures seem to be higher when there 
is a higher human activity and vice versa. In these 
cases the use of alternative techniques for the use 
of variability bands is necessary.

Taking into account the negative effects of 
this contaminant over the population, a tool 
to understand its behavior throughout the day 
becomes relevant, this would allow to take 
control and prevention measures. Therefore the 
main purpose of this paper is to propose a non-
parametric model for the hourly behavior of the 
CO concentrations using non-homogeneous 
variability bands, using the variance estimator 
proposed by Brown & Levine (2007).

In order to illustrate this model the CO hourly 
measuring records from 2004 in a pollution 
monitoring station located in downtown Cali, 
Colombia (station named CALLE15) were used. 
This station is one of interest due to its location 
on a zone of high commercial activity, besides 
a high volume of traffic and pedestrian activity. 
The data used for this was provided by the Red 
de Monitoreo de la Calidad del Aire (RMCA) 
of DAGMA, which in 2006 had 8 fixed stations 
located in different sectors of the city. From 2010 
on the RMCA restarted operations, but only with 
2 fixed stations located in the north of the city.

2. Methodology

2.1 Non-parametric regression model

Härdle (1990) suggests that non-parametric 
regression has as an objective to adjust a regression 
curve that describes the relation between the 
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variables xi and yi, where is considered that xi 
explains the value of yi. If n observations appear 
(xi, yi), the regression curve is commonly modeled 
as:

( )y m xi i if= +                       (1) 

Where ε is a random variable that indicates the 
variation of Y around m(x), that represents the 
mean of the regression curve E (Y|X = x). Besides it 
has to be assumed that εi have E(εi) = 0 and var(εi) 
= σ2 < ∞.

In the framework of non-parametric regression 
estimations through variability bands can be made, 
these are equivalent to the confidence intervals in 
parametric regression, where it’s necessary to have 
variance estimation. In literature several variance 
estimators can be found, such as the estimators 
based on differences proposed by Rice (1984), 
Gasser et al (1986) and Hall et al (1990). In some 
cases it’s not possible to assume that the variance of 
εi is constant, but that it depends on the independent 
variable (xi), because of this a variance estimation 
different from the above mentioned would be 
needed. For the estimation of a heteroscedastic 
model in Brown & Levine (2007) the regression 
model is set in this way: 

( ) ( )y m x f xi i i ie= +                  (2)

And a variance function estimation f(x) through a 
smoothing that reflects the variability of m(x) in 
function of x is proposed.

2.2 Estimation of the regression curve

As mentioned in Olaya (2012) the goals of the 
analysis of the non-parametric regression are the 
same than its parametric counterpart. It’s valid to 
say, estimate and prove the characteristics of the 
regression function. The procedure to estimate the 
regression function m in model (1) in the framework 
of non-parametric regression is called smoothing.

To use smoothing techniques, unlike parametric 
regression techniques that possess several 

assumptions in the model, it’s only necessary to 
assume that m is smooth, which could say that 
for the curve adjustment in a determined point of 
x, is expected that observations yi associated to xi 
near x, possess information of m in the interest 
point of x (Eubank, 1999). For the function to be 
smooth it must be considered that m belongs to a 
space of functions W, where W is assumed as the 
group of all functions m that have k continuous 
derivatives in (a,b)  (Olaya, 2012).

This said, these methods make a weighted average 
of yi depending on the distance of xi, where the 
most common smoothers are the linear estimators 
that look like: 

( ) ( , ; )x n K x x yi ii

n
i

1

1
m= -

=
/               (3)

Where K (x, xi; λ) is a collection of weights 
that depend on the smoothing technique, the 
distance between points {xi; i = 1, 2,... , n}, point 
x of estimation and of a λ > 0 called smoothing 
parameter, in charge of determine the smoothing 
degree to the data. Therefore λ is the only parameter 
necessary to be estimated for the adjustment of 
the curve.

One of the most used linear estimators is the local 
average estimator or Nadayara-Watson, which is 
a modification of (3) where it’s assured that the 
addition of weights equals one. This estimator is 
defined as: 
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Where K is a Kernel function that is in charge 
of assigning weight to the observations near the 
point of estimation x, with the characteristic that 
the weights of this estimator do not depend on the 
group of values X that intervene in the estimation.

Another choice for the construction of the data 
local average is to adjust a local linear regression 
(Azzalini & Bowman, 1997), as shown in (5).
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where: sr (x; λ)={∑(xi-x)r K(xi - x; λ)} n-1

Same as estimator (4), the objective of weight 
function K is to guarantee that the observations 
near x have a bigger weight on the estimations. Fan 
& Gijbels (1996) show the excellent theoretical 
properties of this estimator. In particular, the 
estimations near to the boundaries through local 
linear regression are superior than the ones through 
local average.

The smoothing parameter λ determines the width 
of the Kernel function, therefore, if λ is small, the 
estimations will be close to the observed values, 
a small bias, but acquiring a high variability. 
Otherwise, the estimation will be too smooth, 
reducing the bias, but the variance would increase 
(Azzalini & Bowman, 1997). Taking this into 
account, the selection of an optimal λ becomes 
important in the adjustment of the estimated curve.

Cross validation is the most used method for the 
selection of the smoothing parameter (Azzalini 
& Bowman, 1997), which consists in finding a λ 
that reduces the mean quadratic error of m(xi). This 
method is based on the prediction of the answer in 
point xi through the adjustment of the curve with 
the remaining observations{xj, yj}, i ≠ j.  Taking 
that into account the cross validation function is 
defined as: 

( ) ( ( ))CV n y m x1
i ii

n
1

2

1
m = - -=

t/
       

(6)

For a point xi, its prediction is denoted as m-i(xi), 
where the sub index –i indicates that observation 
(xi, yi) was omitted . Therefore the cross validation 
method consists of finding the value of λ that makes 
function (6) minimum.

2.3 Variability bands

In any statistics modeling the representation of the 
estimated curve through confidence intervals is of 

great usefulness, since these indicate the degree of 
uncertainty associated to the estimation of m(x). One 
of the assumptions made while forming confidence 
intervals is that errors are normally distributed, in 
which case the confidence interval can be made 
through the following pivotal quantity: 

( )
( ) ( ) ( )

( , )
v x

m x m x b x
N 0 1+

- -
t

t

       (7)

Where v̂(x) indicates the variance of m̂(x) and b(x) 
indicates the estimation bias. The inconvenience 
resides in the fact that the estimation of b(x) 
could become a complex problem (Azzalini & 
Bowman 1997).

One alternative is the use of variability bands, 
these can be used as an indicator of the variability 
level involved in the non-parametric estimation 
without attempting to adjust for the inevitable 
presence of bias (Azzalini & Bowman 1997). The 
difference with the confidence intervals is that 
the bands indicate pointwise confidence intervals 
for E(m̂(x)) instead of m(x), therefore one must 
be careful with the interpretations. Taking that 
into account, they can be formed by indicating 
the size of two standard errors above and below 
the estimation. Where it would have a variability 
estimation of m̂(x).

2.4 Estimation of the variance

Due to the estimations of  m(x) are biased, in the 
non-parametric context there is a considerable 
number of estimators of σ2, where the difference-
based estimators that use yi responses associated 
to a predetermined neighborhood of x, are the most 
used since these have the advantage of not depending 
explicitly of the smoothing technique that is being 
used (the order of the differences is determined by 
the number of successive observations used for the 
calculations of the local pseudo-residual). These 
types of estimators are presented in a general way 
by Gasser et al (1986) and Hall et al (1990).

Brown & Levine (2007) do not suggest a point 
variance estimation, instead they suggest the 
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estimation of a variance function, in order to do 
that, consider the model suggested in (2).

Where it’s assumed that the errors ϵi are 
independent and identically distributed N(0,σ2), 
it is assumed for convenience that the design is 
fixed. The main idea is that the variance does not 
follow a necessarily constant behavior for all x, 
but this is ruled by an unknown function f(xi) and 
the purpose is to estimate it in the presence of 
m(x).

Brown & Levine (2007) propose that the variance 
function can be estimated as a weighted local 
average of the square of the pseudo residuals 
of the order r. Where each pseudo residual is a 
normalized difference of the observations r + 1, 
defined as: 

d y,r i j j ij

r

0

1
D = +=

-/                   (8)

Where the differences {dj} satisfy the conditions 
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present several alternatives to the section of 
values {dj}.

Based on the pseudo residuals, the estimator of the 

variance curve f̂h(x) is defined as the smoothing of 
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Where λ is the bandwidth proposed and K is a 
Kernel function. Therefore the pseudo residuals’ 
squares are defined and then locally smoothed 
in order to produce a Kernel estimation of the 
variance. Given that ,r i

2D  are not independent; 
this estimator is not equivalent to the Nadayara-
Watson estimator.

3. Results and discussion

3.1 Descriptive statistics

In order to know the behavior of the hourly CO 
concentration throughout an ordinary day, Figure 
1 shows through a boxplot the contaminant for 
each hour of the day in ordinary days (Monday 
through Friday) and non-ordinary days (Saturday, 
Sunday and holidays). It can be appreciated that 
the CO behavior during ordinary days have its 
maximum level of concentration around 8 am, at 

Figure 1. Boxplot and wire diagrams timetable for CO concentration levels in 
CALLE15 station in ordinary days (a) and weekends (b)
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this time it starts descending until approximately 
4 pm where another peak appears and later on the 
observations drop to the minimum in the early 
morning period, between 0 hours and 6 am. During 
non-ordinary days the levels of the contaminant 
show lesser magnitudes, noticing a maximum peak 
between 10 am and 12 pm. Besides this average 
behavior it is noticed that the CO distributions 
for every hour, present different dispersions, very 
spread distributions in rush hours and only a small 
dispersion in the early mornings, which can suggest 
a heteroscedastic behavior.

3.2 Regression curve

The variance function estimation for both 
ordinary days and non-ordinary days is made 
through the smoothing of the squared pseudo-
residuals, using the local linear regression 
estimator (5) and a bandwidth estimated by 
cross validation (λ = 0.313) which are expected 
to show the heteroscedasticity of the data. In 
Figure 2 the behavior of the pseudo-residuals can 
be appreciated for the data in both types of days, 
where it is clear that for ordinary days the higher 
values are between 7 am and 9 am, the hours of 
higher dispersion in CO concentration, while the 
smooth curve presents lesser values during the 
early morning, which is expected since at that time 

we found the lowest dispersion. For non-ordinary 
days a similar behavior can be found although in 
lesser magnitude. Taking this into account, the 
smooth curve of the squared pseudo residuals 
satisfactorily represents the variance behavior for 
the hourly CO concentration throughout the day.

Figure 3 presents the daily estimation of the typical 
curves for both types of days using the local 
linear regression estimator (5) and a bandwidth 
estimated by cross validation (λ = 0.313). The 
estimated curve for ordinary days shows the 
mean behavior of the hourly CO contamination, 
with maximum concentrations around 8 am and 
a lesser peak around 5 pm, besides the minimum 
values during the early morning. In non-ordinary 
days the estimations present much lesser values, 
although a peak can be appreciated around 9 am. 
These graphics also show the variability bands for 
the estimation, taking into account the estimated 
variability function which presents as well wide 
bands in hours when data variability is higher 
and short bands when the dispersion is low. For 
comparison effects the bands for the case where 
the variance is supposed as constant is presented, 
making evident that the bands are unnecessarily 
big during the hours with less variability and too 
small on the opposite case, altering the proposed 
confidence level.

Figure 2. Hourly regression curve of the squared pseudo residuals for ordinary days 
(a) and weekends (b)
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Figure 3. Typical daily curve for the hourly concentration of CO in the station 
CALLE15 on an ordinary day (a) and weekends (b)

Cyclical behaviors of CO concentrations during 
an ordinary day, where two maximums are noticed 
throughout the day and the lesser magnitude 
curves for non-ordinary days, are coherent with 
the hypothesis that says that vehicles circulation 
and human activities are the main causes of high 
level of pollution. It could be noticed that during 
rush hours -when the traffic volume is higher- the 
biggest measures for CO appeared. Besides on 
weekends when there’s less commercial activity 
in downtown the curves had lesser levels.

It was noticed that CO distributions for each hour 
have different variability; therefore Brown & Levine 
(2007) proposal for the estimation of the variance 
function was accurate. This estimation represented 
in a more realistic way the heteroscedastic behavior 
of the variable. This is reflected in the estimated 
variability bands, since they show higher variability 
in hours when the dispersion was higher and vice 
versa. The use of bands assuming constant variance 
could lead to erroneous conclusions since it would 
be altering their confidence level.
 
4. Conclusions

Taking into account that the negative impact on 
people’s health depends on exposure time and the 

contaminants concentration (Samoli et al, 2007). 
The estimated curves are of great importance to 
the entities in charge of controlling the quality of 
air, since they can be used to generate policies for 
the reduction of pollution levels, especially during 
hours when the levels are at maximum.

The use of a model that allows the modeling 
of contaminants concentrations in the air 
during an ordinary day will act as a supply so 
the entities in charge of health can promote 
epidemiology studies that determine the impact 
that the exposure to the contaminants has on 
health, particularly on the population that is 
exposed during long periods of time on hours 
where the concentration is higher. According 
to the negative effects and the estimated curves 
of the hourly concentration of contaminants, 
preventive measures can be created for the 
population of higher exposure in these places.

Non-parametric regression methods and the 
variance function estimator used are useful 
tools for the modeling of the daily behavior 
of the contaminants concentration. For these 
contaminants show very variable behaviors in the 
average and variance which makes difficult the 
use of a parametric technique.
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The introduced model although it models the 
heteroscedastic behavior of the hourly concentration 
of CO, does not take into account other atmospheric 
and climatological factors that could alter the 
regular behavior of the contaminants, such as 
temperature, wind speed or precipitation (Reina & 
Olaya, 2012; Montoya et al, 2005). Therefore the 
use of generalized additive models (GAM) (Hastie 
& Tibshirani, 1990) is recommended, these allow 
the introduction of these covariates in the non-
parametric model and this way obtain a model that 
can better describe the contaminants behavior.

One aspect to take into account is the temporary 
correlation that the data could show, since this alters 
the bandwidth selection through cross validation, 
giving values of λ that can over smooth the curve 
estimation (giving biased estimations) if there is 
a negative correlation, or leads to a interpolation 
of the data (high variability estimations) if the 
correlation is positive. For this, several authors 
(Altman, 1990; Hart, 1991; Opsomer et al 2001) 
have proposed a series of bandwidth selectors 
based on the structure of data correlation.

The same correlation problem appears for the 
estimation of the variance function. An alternative 
proposed by Brown & Levine (2007) is the use 
of the cross validation k-fold, which is not based 
on the prediction of each observation through 
the adjustment of the curve with the remaining 
observations, but on the prediction in k groups of 
observations.

Although non-parametric regression models 
were a satisfactory way for the modeling of 
this contaminant, the functional data analysis 
(Ramsay & Silverman, 2005) could also be used, 
since on data structure the hourly observations of 
each day could be treated as functional data for its 
modeling.
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