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Abstract
The experimental validation of a mathematical ball bearing model with localized outer race defects is presented 
in this paper. The bearing is considered as a mass – spring – damper system, considering each rolling element 
as a contact spring – damper pair, based on Hertz equations for contact deformation, moving along the races. In 
accordance with the obtained results, in this work a bearing model is validated with a purpose built test bench. To 
compare the vibration signals from the real system and the model, spectral and high frequency analysis is used, 
particularly techniques commonly used on commercially available vibration analysis equipment, such as envelope 
and Peak Value analysis. The studied model shows a frequency behavior similar to that of the experimental data 
and the envelope and Peak Value analysis clearly reveal the characteristic frequencies of the studied type of defects.

Keywords: Ball bearing, envelope, peak value, vibrations.

Resumen
En este trabajo se presenta la validación experimental de un modelo matemático de rodamiento de bolas, en el 
que se incluye fallas en la pista externa. En el modelado se considera el sistema como un conjunto masa - resorte 
- amortiguador, tomando los elementos rodantes como conjuntos amortiguador – resorte de contacto, basados en 
las ecuaciones de Hertz para la deformación en contacto, desplazándose sobre las pistas. Acorde con los resultados 
obtenidos, en este trabajo se valida un modelo de rodamiento mediante un banco de pruebas construido para tal 
fin. En la comparación de las señales de vibración del sistema real y del modelo se utiliza análisis espectral y el 
análisis de alta frecuencia que se emplea en equipos comerciales de análisis de vibraciones, tales como análisis de 
envolvente y Peak Value. Se muestra entonces que el modelo estudiado presenta un comportamiento en frecuencia 
similar al ensayo experimental y que los análisis de envolvente y de Peak Value revelan con claridad las frecuencias 
características del tipo de fallos estudiados.

Palabras clave: Rodamiento, envolvente, peak value, vibraciones.
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1. Introduction

On industrial applications, ball bearings are 
considered critical mechanical components. If, 
during normal service, a failure occurs in them, 
it may cause noise, vibrations, malfunction or 
even complete failure of the machine (Tandon & 
Choudhury, 1999; Patil, Mathew, Rajendrakumar 
& Desai, 2010; Tadina & Boltezar, 2011; Liu, 
Shao & Lim, 2012), unless those defects are 
detected on time.

That is the reason why ball bearings have received 
a lot of attention in the field of machine condition 
monitoring (Kiral & Karagulle, 2003), which is a 
fundamental piece in the operation of preventive 
maintenance programs, and is considered an 
essential part of every modern manufacturing 
plant. Proper monitoring allows the prediction of 
a possible failure before it actually occurs (Patil, 
Mathew, Rajendrakumar & Desai, 2010).

Theoretical ball bearing models help understand 
the mechanisms that generate vibration signals, 
additionally they allow to study the influence 
of several parameters, such as load and force 
transmission paths, to better comprehend the 
vibration generated at the beginning of an 
incipient defect (Tandon & Choudhury, 1999; 
Patil, Mathew, Rajendrakumar & Desai, 2010). 
Different models have been created for the 
simulation of the ball bearing movement in the 
presence of a localized defect. The model proposed 
by Tandon & Choudhury (1999) simulates the 
acceleration signal as the sum of vibration modes 
due to each different component and defect. Kiral 
& Karagulle (2003) performs a finite element 
simulation of the system. There have also been 
models based on Newton’s equations (Patil, 
Mathew, Rajendrakumar & Desai, 2010; Liu, 
Shao & Lim, 2012). Signal analysis has been done 
mainly with frequency domain transformations 
(Patil, Mathew, Rajendrakumar & Desai, 2010; 
Liu, Shao & Lim, 2012), although time domain 
analysis such as rms and kurtosis have also been 
applied to ball bearings (Kiral & Karagulle, 
2003). Analytical and numerical models are 
usually validated with three different methods: 
Comparison with literature references (Tandon 

& Choudhury, 1997) and experimental validation 
of two types: In-situ measurements (Wang & 
Kootsookos, 1998) and test bench experiments 
(Patil, Mathew, Rajendrakumar & Desai, 2010; 
Mcfadden & Toozhy, 2000; Siegel, Al-Atat, 
Shauche & Liao, 2012; Randall & Antoni, 2011; 
Pan & Tsao, 2013; Cong, Chen, Dong & Pecht, 
2013). 

The main motivation for the present work is the 
validation of the analytical model signal analysis 
algorithms developed by the research group. 
Although investigations have already been done 
(particularly in countries like India and China), 
our main problem focuses in the lack of properly 
classified and identified ball bearing vibration 
data bases, to support further research in vibration 
monitoring and fault detection in the region.

The relevance of the present work lies in conducting 
the experimental validation of a theoretical ball 
bearing model for the prediction of characteristic 
frequencies in the presence of localized defects, 
based on Newton’s equations, considering the 
ball bearing as a mass – spring – damper system 
where rolling elements are simulated as a contact 
spring – damper group following Hertz equations 
for contact deformation. Envelope and Peak 
Value signal analysis techniques, commonly 
used in commercially available vibration analysis 
equipment, are used to detect a localized defect 
on the outer race. To validate the model, these 
techniques were applied to the mathematical 
model and on the analysis of the experimental 
data obtained from a purpose built test bench to 
study ball bearing failure. The test bench was 
designed and built by the research group for the 
mechanical vibrations laboratory, to be used on 
ball bearing vibration monitoring research and to 
support teaching activities. This bench will allow 
future implementation and validation of different 
models that include additional or alternative 
characteristics and conditions to those presented 
in this paper, and the mathematical bearing model 
will support further researches in the field of 
bearing vibrations monitoring, serving as the 
baseline for more complex models  considering 
other types of defects, additional parameters and 
increase the reliability and functionality of the 
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model thus expanding the regional knowledge 
in the area of vibration and fault monitoring of 
rotating machinery.

The development of the mathematical model and 
defect generation is presented in the first part of 
the paper. In the second part the spectral and high 
frequency analysis techniques are showed and 
used in the comparison between the model and 
the experimental data. In the third part, results are 
presented for the analysis of experimental data of 
a ball bearing with an outer race defect and these 
are compared with the response of the model. In 
the fourth part conclusions are presented.

2. Methodology

2.1. Ball bearing model

To determine the vibrations generated in a ball 
bearing, a model must be created to find the equations 
that define its movement. The model used in this 
paper is based on the works of Patil et al. (2010) 
& Liu et al. (2012). The bearing is considered as a 
spring – damper – mass system, as shown in Fig. 
1, with an applied radial load, and considering the 
radial clearance between the elements. The shaft 
and inner race (rigidly fixed) are the lumped mass, 
while the outer race is considered rigidly fixed to 
the housing, therefore it doesn’t rotate. The rolling 
elements (which transmit the force between inner 
and outer races) are modeled as a damper – contact 
spring pair, because they are in constant relative 
motion with the races.

In the interaction between rolling elements and 
races, an elastic deformation occurs, which is 
modeled as a nonlinear relationship between force 
and deformation, based on Hertz equations for 
contact deformation:

F K r
nd=                        (1)

Where δr is the spring deformation, K is the 
load – deformation factor or Hertzian elastic 
contact deformation constant, and n is the load 
- deformation exponent which is: 3/2 for ball 
bearings and 10/9 for roller bearings. The load 
– deformation factor K is considered as a single 
value for each rolling element, but it must be 
considered that there are two elastic deformation 
contacts for each element, one with the inner 
race, and the other with the outer race, therefore 
the total effect is that of two springs in a serial 
configuration, which gives:
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Where Ki and K0 are the contact coefficients for 
the inner and outer race, respectively, which are 
determined based on Harris equations (Harris & 
Kotzalas, 2007):

. ( )K 2 15 10 / * /
p

5 1 2 3 2
# t d= - -/       (3)

Where ∑ρ is the curvature sum, which is calculated 
using the radii of curvature of a couple of principal 
planes that pass through the point of contact. δ* is 
the dimensionless contact deformation based on 
curvature difference (Harris & Kotzalas, 2007).

Given that contact stress happens only during 
compression, the springs in the model operate only 
in that condition. To calculate the deformations, the 
conventions shown in Fig. 2 are used, considering 
the presence of radial clearance, and the forces 
produced by every spring are calculated, for the x 
and y directions, as:
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Figure 1. Bearing model.
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Therefore, when a rolling element passes over a 
defect, the forces must be calculated by these new 
equations, whereas the rest must be calculated with 
Eq. (4) and (5).

The resulting differential equations systems are 
transformed to state space variables, and their 
solution is obtained by a numerical integrator, a 
fourth – order Runge – Kutta method.

The solution to the system is obtained, according 
to the flow chart in Fig. 3.

The characteristic frequencies that appear in the 
vibration signal of a ball bearing are mainly the 
rotating frequency of the shaft, cage frequency, 
the BPFO and BPFI. The cage frequency is:

cosF N
2 60 1C

s
D
d

# a= -^ h          (11)

The BPFI is the frequency in which a rolling 
element passes over a point on the inner race, and 
can be calculated as:

Where Cr is the radial clearance and θi the angular 
position of i element. By applying Newton’s 
equations for the shaft – inner race group in the x 
and y directions, the motion equations are obtained:
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Where M is the mass of the system, C is the damping 
coefficient.

2.2. Model of the localized defect

In the presence of a localized defect, the model 
is affected in the calculation of the forces in the 
springs. For the present document a localized 
defect in the outer race is modeled. The presence 
of this defect affects the deformation calculation 
of the spring, in the same way as radial clearance.

The localized defect is modeled, in this case, as 
a half – sinusoidal wave. By introducing it in the 
spring force calculation expressions Eq. (8), (9) 
and (10) are obtained:
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Figure 2. Bearing model.
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And the BPFO is the frequency in which a rolling 
element passes over a point on the outer race:

cosBPFO Z N
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D
d

# a= -^ h
       

(13)

Where D is the pitch diameter, and is the average 
between the inner and outer race diameters, d is 
the rolling element diameter, α is the contact angle 
and NS is the shaft speed in rev⁄min.

2.3 Experimental validation

To validate the results from the mathematical 
model, experimental results were obtained from a 
purpose built test bench designed and built by the 
research group, to study ball bearing failure and 

vibration monitoring. Fig. 4. Shows the test bench 
built in the laboratory. 

The module consists of a shaft supported by two 
single row ball bearings, (in this case the bearings 
used are SKF reference 6005 2ZNR) mounted on 
detachable housings. In the middle of the shaft 
a perforated disk is mounted (holes located in 
two rows and spaced 30 degrees between each 
other), allowing testing of unbalance loads by 
using screwed weights. To move the module an 
asynchronous electric motor is connected through 
a flexible coupling, the motor is controlled via 
a frequency inverter that communicates with a 
computer to manipulate precisely its speed and 
operating characteristics. In order to simulate load 
in the shaft (torsion) a hydraulic brake is installed. 
Vibration measuring is performed with a vibration 
measuring and analyzing device currently being 
developed by the research group, and for this 

Figure 3. Process flow diagram.
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work, consists of a couple of piezoelectric 
accelerometers, one mounted horizontally and 
the other vertically over one of the ball bearings, 
a data acquisition device connected to a computer 
and a program designed and created (in house) 
to collect, analyze and display the digital signal 
obtained, is used here to store the signal data 
for further processing. An artificially induced 
outer race defect on the ball bearing was used to 
simulate the conditions of damage due to wear, 
and to be able to compare the obtained signal with 
the mathematical model. A rotary tool was used to 
carve the outer race of the bearing.

2.4 Vibration signal analysis

Once the vibration signal is obtained from the 
mathematical model, and the measurement done 
in the test bench, a special mathematical treatment 
must be performed to be able to clearly identify 
in the signals, the characteristics that allow the 
identification of the condition of operation of the 
ball bearing.

Time – frequency transformations are amongst the 
most useful tools for vibration signal analysis. Many 

of the commercially available vibration analysis 
devices use these transformations, when delivering 
the results to the user. Two fairly common of these 
tools, normally used on commercial equipment, 
are the envelope and Peak Value analysis.

A. Envelope analysis:

The process of the analysis begins by obtaining 
the time domain vibration signal. That signal goes 
through a rectifier and a low band pass filter, with 
parameters determined based on the constructive 
characteristics and working conditions of the ball 
bearing, aiming at eliminating unnecessary and 
unwanted signal components. Once filtered, an 
envelope detector is used. In the same way, the 
envelope detector is executed in a particular way 
based on the conditions of the ball bearing. A 
fast Fourier transformation (FFT) is used on the 
envelope signal, to obtain the final spectrum of the 
envelope of the signal.

B. Peak Value Analysis:

The analysis begins by taking the measured time 
domain signal of the vibration and getting it 

Figure 4. Ball bearing vibration monitoring test bench.1. Shaft. 2. Detachable ball bearing 
housings. 3. Perforated disks. 4. Electric motor. 5. Coupling. 6. Frequency inverter. 7. Control box.
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through a high band pass filter, then the filtered 
signal passes a process of segmentation in time, 
then the maximum value for each segment and 
subsample is determined. The processed signal is 
then transformed to frequency domain using the 
FFT, obtaining the final result.

2.5 Model simulation

For the simulation, the selected inputs for the model 
are the characteristics of the same ball bearing 
used in the test bench, under the same operating 
conditions (rotational frequency of 1800 rpm, with 
a localized outer race defect). The bearing used 
is reference 6005 from SKF, whose geometric 
properties are presented in Table 1.

Figure. 5. Acceleration signal in the y direction obtained 
with the numerical simulation.

Experimental data, as previously stated, was taken 
on a 6005 ball bearing from SKF operating at an 
angular speed of 1800 rpm, with a localized defect 
in the outer race. Fig. 6 shows the results of the 
envelope analysis (low frequency) for the simulated 
and experimental acceleration signals. As shown in 
Fig. 6 a peak appears in the experimental vibration 
signal at a frequency equal to the rotation of the 
shaft (1X). This peak is a characteristic response in 
cases of unbalance and misalignment in the shaft 
that carries the ball bearing. When the ball bearing 
suffers a defect in the outer race, the frequency 
spectrum is expected to have the highest peak at 
the BPFO (Ball Pass Frequency Outer), since this 
defect generates an impulse every time the ball 
passes over it. As seen on the experimental signal, 
the highest peak appears at BPFO, indicating the 
presence of a defect on the outer race of the bearing. 
The signal from the model, since it is only affected 

Inner race diameter 28.2 mm
Outer race diameter 43.8 mm
Rolling elements diameter 7.795 mm
Radial clearance 5 μm
Number of rolling elements 10

Table 1. Geometric characteristics of ball bearing 6005.

For the model, the load – deformation factor 
is estimated at K = 8.375 GN⁄m3⁄2 , whilst the 
damping constant has a value of C = 200  Ns⁄m. 
A radial load is assumed as W = 20 N and a mass 
of M = 0.6 kg.

Initial conditions for the integration algorithm 
are assumed zero for the speeds in the x and y 
directions, and equal to 1 µm for each position. 

3. Results and discussion

For the model validation, the numerical simulation 
of the equations previously shown is performed. 
The conditions for the defect are selected arbitrarily 
in terms of length and depth, because the objective 
of the present analysis is the frequency response. 
Therefore the selected parameters of the defect 
are: length 40 µm, depth 40 µm, and it’s located 
in the outer race’s lowest position (270° measured 
counterclockwise from the positive x axis). The 
analyses were performed on the vibration signals 
(model and experimental) in terms of acceleration, 
and the numerical results of the model, in the y 
direction, are shown on Fig. 5.
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by an outer race defect, shows a much clearer peak 
at the BPFO frequency.

Fig. 7 shows the results of the Peak Value analyses 
for the experimental and simulated acceleration 
signals. By using the Peak Value analysis, both the 
simulated and experimental signals, behave in the 
same way as they did on the envelope analysis. For 
the experimental signal the highest peak shows at 
the BPFO, which will indicate the presence of a 
localized defect in the outer race of the ball bearing. 
A peak also appears at the rotational frequency of 
the shaft (1X), indicating once more the presence 
of unbalance or misalignment in the bearing shaft. 
For the analysis applied to the results from the 
model, a peak clearly appears at BPFO frequency 
because of the only defect present in the simulation 
(Localized outer race defect). The designed and 
built test bench provided a good set of data that 

allowed the validation of the model. With our 
own test bench, a lot of tests and experimentation 
can be done to support the development not only 
of the classes instructed, but the graduation and 
research projects in the field of bearing vibration 
monitoring.

In a very similar way the mathematical bearing 
model will support further researches in the field of 
bearing vibrations monitoring, and also there are 
a lot of possible improvements that can be done, 
like modeling other types of defects, consider 
additional parameters and increase the reliability 
and functionality of the model.

4. Conclusions

A mathematical model was elaborated for the 
determination of the vibrations of a ball bearing, 

Figure 6. Low frequency envelope analysis.

Figure 7. Peak Value analysis.
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in the presence of a localized outer race defect, 
using Newton’s equations. Simulating the 
defect as a half sinusoidal wave it was possible 
to find, in the signal response, the characteristic 
frequency peaks for the kind of simulated defect. 
Obtaining, for the localized outer race defect, that 
there are peaks at BPFO frequency. The resulting 
frequency peaks are similar to those present in the 
experimental signal, validating the model.

Two of the most common procedures in 
commercially available vibration analysis 
equipment, Peak Value and envelope analysis, are 
used in this work. By using them, it was possible 
to find, clearly, the characteristic frequency 
components of the localized outer race defect, 
both in the experimental and simulated model 
data, validating its capabilities for the detection of 
fault signals in ball bearings.

The use of the test bench provided useful data 
for experimental validation of the mathematical 
model. The experiments were performed under 
controlled circumstances and the results were in 
accordance with the theory. The bench will allow 
further testing in different areas of vibration and 
condition monitoring of ball bearings.
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