
105

Ingeniería y Competitividad, Volumen 18, No. 1, p. 105 - 115 (2016)

CHEMICAL ENGINEERING

A unified integral interpretation of 
thermal analysis data

INGENIERÍA QUÍMICA

Una interpretación integral unificada 
de los datos de análisis térmico

J. I. Carrero-Mantilla*§, A. F. Rojas-González*, J. M. Cárdenas-Giraldo*

*Chemical Engineering Department, Universidad Nacional de Colombia. Manizales, Colombia.
§jicarrerom@unal.edu.co, anfrojasgo@unal.edu.co, jumcardenasgi@unal.edu.co

(Recibido: Junio 11 de 2015 – Aceptado: Septiembre 17 de 2015)

Abstract 

Most integral methods for thermal analysis data use linear regressions based on some approximate 
representation of the temperature integral. But this approach is inconvenient because there are many 
approximations and each one can produce a different result for the same data set. This work shows how 
to reduce the search of kinetic parameters to a non-linear regression calculating the temperature integral 
through the incomplete gamma function. In this way the use of approximations is avoided and dependence 
of the preexponential factor on temperature can be included in the model. An isoconversional analysis of 
a data set available in the literature is used to explain the proposed method. 

Keywords: Incomplete gamma function, non-linear regression, temperature integral, thermogravimetric analysis.

Resumen 

La mayoría de los métodos integrales para el análisis de datos térmicos utilizan regresiones lineales, basadas 
en alguna representación aproximada de la temperatura integral. Pero este enfoque es inconveniente 
porque hay muchas aproximaciones distintas y cada una puede producir un resultado diferente para el 
mismo conjunto de datos. Este trabajo muestra cómo reducir la búsqueda de parámetros cinéticos a una 
regresión no lineal calculando la integral de temperatura con la función gama incompleta. De esta forma se 
evita el uso de aproximaciones, y se puede incluir en el modelo la dependencia del factor preexponencial 
respecto a la temperatura. Se usó un análisis isoconversional de un conjunto de datos disponible en la 
literatura para explicar el método propuesto.

Palabras clave: Análisis termogravimétrico, función gama incompleta, integral de temperatura, regresión no lineal.
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1. Introduction   

In thermal analysis by thermogravimetry a 
sample of material is heated, usually at a constant 
rate, and its mass (w) and temperature (T) are 
measured during the heating process. The results 
of the analysis are T and the fractional extent of 
conversion, defined as

where w0 and  w∞ are the measurements at the 
beginning and the end of the analysis, respectively. 
In the kinetic models used in thermal analysis the 
variation in time of α is commonly represented 
as the product of a temperature-dependent rate 
constant k, and a kinetic function f (Blaine & 
Kissinger, 2012),

Including a constant heating rate,  β = d T ⁄ d t , and 
the Arrhenius equation (Arrhenius, 1889)

Eq. 2 becomes (Brown et al., 2000; Vyazovkin, 
2000)

where A is the preexponential factor, E the 
activation energy, and R is the universal gas 
constant. Temperature and activation energy 
are represented in a single dimensionless term, 
x = E ⁄ R T , and A is usually taken as a constant. 
The integration of Eq. 4 from the initial condition, 
x0 (which corresponds to α=0  at T = T 0) , to x 
gives (Flynn, 1997; Flynn & Wall, 1966)

where

is the kinetic mechanism function, and

is the temperature integral (or Arrhenius 
temperature integral). Usually T0 is the ambient 
temperature, and p(x0) is omitted because its value 
is very small. The argument of the function p(x) 
is the lower limit of the integral, that is x=E ⁄RT, 
which is different from the running value in the 
argument of the integral. Therefore, in the integral 
arguments of Eqs. 7, 8, and 13 the temperature is 
represented with the symbol τ and the integration 
variable with χ=E⁄Rτ  to emphasize the difference 
with the limit values.

The interpretation of thermal analysis data can also 
be based on the integration between consecutive α 
values (Cai & Chen, 2012; Vyazovkin, 2001)

which gives

And in some cases the preexponential factor is 
calculated as a function of the temperature T in 
the form

where the value of m is an integer or a fraction 
depending on the reaction or the process (Criado 
et al., 2005). In this way Eqs. 5 and 9 become

and

where

When m = 0  Eqs. 7 and 13 are equivalent, i.e. 
Pm=0(x) = p(x), but we keep different notations 
Pecause p(x) is a much more common occurrence 
in chemical kinetics than the general definition 
Pm(x).

(1)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(2)

(3)

(4)

(6)F

(5)F

A=A 0T m
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Most proposed integral methods are based on 
approximations to the function p(x) that reduce 
the calculation of kinetic parameters to a linear 
regression problem. For example, the Ozawa-
Flynn-Wall method uses the Doyle approximation, 
log1 0  p ( x ) ≅ - 2.315 + 0.457x, applied to Eq. 5 
to give

where C is a constant (Vyazovkin et al., 2011). 
The activation energy, E, is obtained from the 
slope in a linear regression of lnβ vs. 1⁄T  data. The 
approximations to the temperature integral, and 
the regression methods associated to them, are the 
subject of several papers due to their widespread 
application (Aranzazu-Ríos et al., 2013; Jiang et 
al., 2011; Lyon & Safronava, 2013; Sbirrazzuoli, 
2013; Wang & Hsu, 2012; Yunqing, 2014). But 
the result of such parameter search will depend 
on the approximation to the temperature integral 
chosen by the analyst and therefore different 
sets of A, E parameters can be obtained from the 
same data. An analyst can compare results from 
several approximations to select the one that 
gives the best fit, but it is impossible to include 
all the approximations that have been proposed in 
the literature. It makes the data fit uncertain, as 
there always remain the possibility that another, 
unknown, approximation gives a better result.

On the other hand a parameter search based 
on non-linear regression gives a single result: 
the values of A, E that minimize the difference 
between observed data and calculated results. 
Moreover, any kinetic data analysis procedure 
based on the temperature integral is intrinsically 
non-linear due to the dependence of x on E. In 
fact, the non-linear regression interpretation 
of the integral method appears in the ICTAC 
(International Confederation for Thermal 
Analysis and Calorimetry) recommendations, 
but without a detailed formulation (Vyazovkin 
et al., 2011). For example, the advanced 
isoconversional (Vyazovkin-Dollimore) method 
the activation energy at each conversion, E(α), is 
calculated through non-linear, one-dimensional 
minimization (Vyazovkin, 1997). It has been also

proposed the calculation of E(α) with iterative 
search methods, which can be considered 
equivalent to one-dimensional minimization 
(Budrugeac, 2010; Budrugeac, 2011; Cai & Chen, 
2012). But despite the ICTAC recommendations 
the non-linear approach is not widely applied and 
the use of approximations for p(x) appears even in 
analyses based on non-linear regression.

The prevalence of the linear regression based on 
approximations to p(x) can be attributed to three 
reasons. First, non-linear regression seems more 
difficult because it requires an iterative procedure to 
minimize an objective function. Second, contrary 
to linear regression it requires an initial estimate of 
the result, in this case the kinetic parameters. And 
third, non-linear regression requires a univocal 
evaluation of temperature integral, but p(x) does 
not have analytical solution. All three reasons 
are questionable: first, in practice the application 
of non-linear regression is as simple as its linear 
counterpart because the algorithms are included 
in modern numerical analysis software. Second, 
the initial estimates can be typical values found 
in other analysis, or the result of a complimentary 
linear regression based on approximations to p(x). 
And third, there are series representations for p(x), 
it can be rewritten in terms of special functions, 
and this integral can be evaluated through 
numerical quadrature.

A method based on a univocal evaluation of p(x) 
is more reliable than the use of approximations, but 
it requires non-linear regression. Therefore this 
work proposes a unified non-linear interpretation 
for thermal analysis data based on the search of 
parameters E, A with non-linear minimization 
using the incomplete gamma function to evaluate 
p(x). It is explained first how to cast the search 
problem in terms of minimization of the differences 
between calculated and experimental values. 
The evaluation of temperature integral in terms 
of exponential integral and incomplete gamma 
is explained next. Finally, an example based on 
experimental data is used to show the application 
of the proposed interpretation. The evaluation 
of p(x) and  Pm(x) with different methods, power 
series, continued fractions, and numerical integration,

(14)lnβ = C-1.052
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is covered in more detail in supplementary 
material available from the authors.

2. Methods

2.1 Non-linear regression  

With a defined F(α) function and taking logarithms 
Eqs. 5 and 9 become

and

In fact, a similar function was proposed by 
Cai and Chen for an iterative linear integral 
isoconversional method (Cai & Chen, 2012). These 
forms are convenient because the preexponential 
factor A usually has very high values, therefore 
the use of ln A prevents the mixture of terms with 
very different orders of magnitude in the same 
expression. Then, residuals are defined as the 
differences between the left-hand and right-hand 
sides of these equations, i.e.

In this way integral-based analysis of thermal 
decomposition data can be simply described as the 
search of kinetic parameters ln A, E that minimize 
the sum of squares of residuals, defined as

Any data fitting regression procedure based on 
Eqs. 15-18 is intrinsically non-linear because 
x = E  ⁄ RT is a function of the parameter E, and 
therefore yi

calc depends on E through the variable 
x. Given that kinetic data is usually available in 
the form of α, T measurements made at different β 
values the integral analysis can be applied in two ways:

(15)

(16)

(17)

For Eq. 15

(18)

non-isoconversional, grouping measure-
ments made with the same heating rate β. 

isoconversional, with data obtained at the 
same conversion α.

In the non-isoconversional (single heating rate) 
variant T(α) data is used to calculate an A,E 
pair for each β value, but the ICTAC advises 
not applying it (Brown et al., 2000; Burnham, 
2000; Maciejewski, 2000; Roduit, 2000; 
Vyazovkin, 2000; Vyazovkin et al., 2011). In 
the isoconversional variant E(α) is calculated 
grouping the data in sets of T(β) measurements 
corresponding to the same α value, or consecutive 
α values (Vyazovkin, 2001). It is not necessary to 
define in advance the function F(α), and having the 
result E(α) allows to obtain the time necessary to 
reach a given conversion (Vyazovkin, 1997). The 
ICTAC recommends applying isoconversional 
methods on multi-heating rate data because they 
produce a reliable mathematical description of the 
reaction kinetics (Maciejewski, 2000).

Kinetic parameters can be found with isoconversional 
and non-isoconversional methods using Sr 
minimization with                                  integration, i.e. 
using Eq. 15 or Eq. 16. The Vyazovkin-Dollimore 
method is a different isoconversional approach for 
E(α) calculation (Vyazovkin, 1997; Vyazovkin, 
2001). It is based on the equality of the right sides 
of Eq. 5 or Eq. 9 at different β values in the forms

or

for Eq. 16 
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which are grouped in an objective function Φ 
which is minimized to get E(α). The function 
based on the integration         is

and the function based on          is

The subscript identifies the heating rate, i.e. xi=
Ei/RTi where Ti is the temperature measured at the 
heating rate βi (the same stands for j). T1i and T2i are 
consecutive temperatures obtained with the same 
heating rate βi and x1i=Ei/RT1i  and  x2i=EiRT2i.

Equations 19 and 20 reduce the isoconversional 
method to a one-dimensional minimization 
problem: to find, at each α, the E value such that 
Φ becomes a minimum. An iterative search, the 
approximation of Φ with a quadratic parabola, 
and the golden ratio method have been applied 
to find E(α) (Cai & Chen, 2012; Cai et al., 2010; 
Vyazovkin, 1997). The minimization procedure 
is the same when A=A0T m  but in this case p(x) is 
replaced with Pm (x), A with A0, and m is included 
in Eq. 15 or Eq. 16.

2.2 Calculation of the temperature integral

The integral p(x) has no analytical solution, and the 
direct use of series representations to calculate p(x) 
is not practical. But p(x) and pm(x) can be rewritten 
in terms of “special functions”:  the exponential 
integrals

(19)

(21)

(22)

(23)

(20)

and the incomplete gamma function,

which should not be confused with the standard 
gamma function                                       (Askey & 
Roy, 2010). The limitations of series for p(x); and 
the calculation methods for the functions E1 (x), En 
(x), and Γ(a,x) are described in the supplementary 
material available from the authors. 

The generalized temperature integral pm(x) 
defined in Eq. 13 can be calculated with special 
functions in two ways: replacing t=T ⁄ τ  and 
x=E⁄RT  in Eq. 22

or using the fact that En(x) is a special case of the 
incomplete gamma function

with n=m+2 and replacing the result in Eq. 24

To the best of the knowledge of the authors Eq. 
26 is the first proposal to evaluate the generalized 
temperature integral through the incomplete 
gamma function. Additionally p(x) can be written 
in terms of E1 using integration by parts (Farjas & 
Roura, 2011)

It can be also calculated making p(x)=pm=0 
(x): with Eq. 24 p(x)=x-1E2(x), and with Eq. 
26 p(x)=Γ(-1,x). The results obtained in this 
work show that p(x) results are the same with 
x-1E2(x) Γ(-1,x), or e-x ⁄ x -E1(x). However, the 
incomplete gamma function is a more complete 
way to calculate the temperature integral than the 
exponential integral because pm(x)=Γ(-(m+1),x) 
yielded consistent results (low errors) for any m, 
integer or non-integer in the interval  1≤x≤100 
tested in the supplementary material.

The calculation of temperature integral with 
numerical integration, with relatively big stepsizes, 
can be almost as efficient as the application of 
the incomplete gamma function. But it should 
be considered that the use of incomplete gamma 
function does not require to deal with stepsizes or the

(25)

(26)

(27)

(24)

Φ (E(α))

Φ (E(α))

Pm(x) = x-(m+1)Em+2 (x)
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definition of the upper limit of the integral. 
Moreover, there are available codes for the 
calculation of Γ(a,x), and it is implemented in the 
software Matlab. Therefore we recommend to use 
p(x)=Γ(-1,x) or pm(x)=Γ(-(m+1),x), and the 
example in the following section is based on it.

The testing of Eqs. 23, 25, and 26; the details 
involved in the calculation of E1(x), En (x), and 
Γ(a,x)  , and the comparison of execution times are 
described in the supplementary material available 
from the authors.

3. Results and discussion

Kinetic parameters for the decomposition of 
2-nitroimino-5-nitro-hexahydro-1,3,5-triazine 
(NNHT) were obtained from a data set published 
by (Jiao-Qiang et al., 2009). Following the ICTAC 
guidelines the analysis was isoconversional, 
i.e. the parameters were calculated for each α 
minimizing the functions Sr and Φ. We abstain 
from comparing results or making statements 
about the underlying decomposition mechanisms 
because our proposed method only covers the 
calculation of the parameters lnA and  E, it does 
not include any further kinetic interpretation.

The NNHT experimental data included temperatures 
corresponding to 0.025<α<0.975, measured at 
four heating rates: β= 2, 5, 10, and 15 K/min 
(Jiao-Qiang et al., 2009). Following the Popescu 
method two fractional reaction extent values 
(αa, αb) appearing in the data obtained with all 
four heating rates were interpolated at Tb=480K 
and Ta=470K , see Fig. 1 (Popescu, 1996). The 
difference Fab=F(αb)-F(αa) is a linear function 
of 1⁄β, therefore a linear regression of Fab vs. 1⁄β 
was calculated for each function F proposed 
in Table 1. According with the coefficients of 
determination, r2, the best fit was obtained with 
F(α)=(1-α)-1⁄3. This differs from the function 
proposed in the original data source; but it is the 

Figure 1. Experimental data for the the non-isothermal 
decomposition of 2-nitroimino-5-nitro-hexahydro-1,3,5-
triazine (NNHT). Lines, from left to right correspond to 

heating rates β =  2, 5, 10, and 15K ⁄ min.

result of a single heating rate analysis, contrary 
to ICTAC recommendations (Jiao-Qiang et al., 
2009).

The temperature integral was calculated with the 
incomplete gamma function, p(x)=Γ(-1,x) with 
T0≈300K, estimated from the DSC curve shown 
in the data source (Jiao-Qiang et al., 2009). Using 
x0=E⁄(RT0)  it was found that calculations made 
with and without p(x0) terms produce the same 
result because p(x0) values were very small. This 
suggest that the usual omission of p(x0) does not 
influence parameter estimation.

The isoconversional analysis was applied to T sets 
corresponding to the four heating rates for each α, 
therefore the results are presented in Figs. 2 and 3 
as functions of α in both variants,                            
(Eqs. 15 and 16). The function Sr depends on two 
variables (E, ln A), and it was minimized using 
the Nelder-Mead algorithm, as included in the 
software Scilab. The initial estimates of E, ln A 
were 100 kJ/mol and 20 (similar to the results 
in the source of experimental data), and for each 
following α the minimization was started with the 
results from the previous extent of conversion.
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Table 1. Mechanism functions tested for NNHT data with the Popescu method (Jiao-Qiang et al., 2009; Popescu, 1996; 
Sbirrazzuoli, 2013; Vyazovkin et al., 2011). r2  is the coefficient of determination obtained for each mechanism, its values are 

in the same order given for n.  

Figure 2. Isoconversional data fit example 
(activation energy for NNHT non-isothermal 

decomposition, (Jiao-Qiang et al., 2009) Results 
obtained with           integration are re-

presented with ○ (from Sr minimization),
 and  +  (from Φ minimization). Values obtained  

with           integration are represented with ∆ 
(from Sr minimization), and  ×  (from Φ   minimization). 

Figure 3. Confidence intervals (bars) for activation 
energies obtained from isoconversional analysis. 
Upper half: E obtained with         integration. 

Lower half: E obtained with            integration.
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The minimum of the function Φ(E) was found at 
each β value using the golden ratio method (Cai 
et al., 2010). A set of energy activation values 
was created calculating two E values with x=1 
and x=100 for each T(β) measurement. Then, 
the biggest and smallest values of this set were 
used to start the search for the minimum with the 
golden ratio method. This procedure was repeated 
for each set of measurements to get E(α).

The confidence intervals were calculated at a 95% 
level from the joint parameter likelihood region 
associated to non-linear regression using Fisher’s 
F distribution. This region is defined from

where θ* represents the parameter set (E, lnA) 
that minimizes  Sr (Buzzi-Ferraris & Manenti, 
2010; Mendenhall & Sincich, 2011). The value 
F is computed to an α confidence level with q 
parameters and N - q degrees of freedom associated 
to N observations. Equation 28 is solved for each 
parameter, and its respective confidence interval is 
the difference between the values of the parameter 
obtained with θ and  θ*.

The activation energies, E, and their confidence 
intervals (error bars) are shown in Figs. 2 and 3. It 
includes values calculated with the four possible 
combinations, integration from α=0 or between 
consecutive αs, with minimization of Sr or Φ. The 
values of E obtained from the functions S_r and 
Φ were equal, and values from       integration 
coincide with the E(α) curve obtained with 
Ozawa’s method shown in the NNHT thermal 
decomposition paper (Jiao-Qiang et al., 2009). 
The integration        implies a constant E value 
from the initial temperature to Tα producing values 
that vary smoothly, with confidence intervals 
that tended to reduce with α. On the other hand 
results from       integration, and their associated 
confidence intervals, showed no clear tendency.

4. Conclusions

The temperature integral can be evaluated 
univocally with the incomplete gamma function, 

(28)

even in cases where the preexponential factor 
depends on the temperature. The use of the 
function Γ instead of an approximation to p(x) 
allows reducing isoconversional and non-
isoconversional integral analysis of data to a non-
linear regression of parameters. Nevertheless, 
there remains a poignant question: is the use of Γ 
an approximation by itself? In brief the answer is 
“no”, but we will extend such answer drawing an 
analogy between the functions Γ(a,x) and exp(x). 
Results of e x  from calculators or numerical 
software are not considered approximations 
because they are the best possible values within 
system’s floating point arithmetic. In the same 
way Γ is calculated in the most accurate possible 
way using continued fractions until the addition 
of more terms does not produce more digits, as 
described in the supplementary material.

Availability of non-linear regression methods in 
current numerical software makes them as easy 
to apply as linear regression to find the values 
of A and E, but the researcher should be aware 
that it results necessary to cast the minimization 
function in terms of x=E⁄RT and lnA in order to 
avoid numerical conditioning problems related 
with the use of terms with very different orders of 
magnitude. It is also true that the proposed unified 
procedure, being based on a non-linear regression, 
requires initial estimates of E and ln A, but they 
can be obtained from some other method based 
on linear regression, or chosen from previous 
results for similar samples. Another possible 
objection is that different minimization methods 
could give different parameters for the same data 
set, replicating the problem posed by the use of 
approximations. But given that the objective 
function is the same, and supposing that the 
methods are equally capable they should locate 
the same minimum. There remain, however, the 
effects of starting from different initial estimates, 
the hypothetical presence of local minima, or 
limitations in the algorithms. An extensive 
analysis of all these factors is beyond the scope of 
this paper; although it could be addressed in future 
work.  In the same way this unified interpretation 
can be applied to the discovery of more complex 
reaction mechanisms and kinetics.
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Symbol Definition See equations
A Preexponential factor 3, 4

e
Residual, difference between
experimental and calculated values

17, 18

E Activation energy 3

Ei Exponential integral 21, 22
f Kinetic function 2
F Integrated kinetic function 6

m
Power of the temperature when  

A= A(T)=A0Tm

10

p Temperature integral 7
R Universal gas constant, 8.314 J/mol∙K 3
Sr Sum of squares of residuals 18
T Absolute temperature (Kelvin)
x Dimensionless term, x = E ⁄ R T 5
y Variable 17, 18
a Fractional extent of conversion 1
β Heating rate 4
θ Set of parameters 28

τ
Temperature as argument of the 
temperature integral

7, 8

X
Argument of the temperature integral, 
equivalent to x

7

Γ Incomplete gamma function 23
Φ Minimization function 19, 20

Table 2. Nomenclature. 
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