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Abstract 
In this paper, two new methods that address the multi-class superfamily prediction problem are presented. In the 
multi-class superfamily recognition problem each amino acid sequence has to be classified into one of the known 
structural classes (i.e., superfamilies). Most of the strategies that have been proposed to predict superfamilies are 
based on using the binary classifiers that detect remote homologs. The remote homology detection problem is 
about finding a classifier that is able to separate remote homologs from non-remote homologs. The current methods 
for multi-class superfamily recognition take the outputs of the binary classifier (i.e., the scores) for each SCOP 
superfamily in the data set and build a classification model (i.e., multi-class classifier). Unlike the current methods, 
which represent a protein considering the amino acids composition, in this research we use the number of times 
that 3D models enriched with physicochemical properties occur in both its predicted contact map and its interaction 
matrix. We hypothesize that including both 3D information and physicochemical properties might have an impact in 
the accuracy obtained during the superfamily prediction. In this paper, we present two new strategies for predicting 
superfamilies that use 3D models enriched with physicochemical properties, the single-MCS and the hierarchical-
MCS methods, which reach an accuracy percentage of 74% and 76% on the SCOP 1.53 data set, respectively. In 
addition, tests on the SCOP 1.55 and the SCOP 1.61 are also presented.

Keywords: Superfamily prediction, Physicochemical properties, Binary classifiers, SCOP superfamily, 3D 
enriched models.

Resumen 
En este artículo se presenta dos nuevos métodos para la predicción de superfamilias. En el problema de la predicción 
de superfamilias cada secuencia de aminoácidos se debe clasificar en una de las clases estructurales conocidas (i.e., 
superfamilias). La mayoría de las estrategias que se han propuesto para predecir superfamilias se basan en usar 
los clasificadores binarios que detectan homólogos remotos. Detectar homólogos remotos está relacionado con 
encontrar un clasificador que es capaz de indicar si una proteína es, o no, un homólogo remoto de un conjuntos de 
proteínas. Los métodos actuales para detectar superfamilias toman las salidas de los clasificadores binarios para cada 
superfamilia y construyen un modelo de clasificación. A diferencia de los métodos actuales, los cuales representan 
a las proteínas considerando la composición de aminoácidos, nosotros usamos el número de veces que modelos 
3D enriquecidos con propiedades fisicoquímicas ocurren tanto en el mapa de contacto predicho como en la matriz 
de interacción. Nuestra hipótesis es que al incluir los modelos 3D con las propiedades fisicoquímicas se puede 
tener un impacto en la exactitud obtenida durante la predicción de superfamilias. En este artículo se presenta dos 
nuevas estrategias para predecir superfamilias, los métodos single-MCS y hierarchical-MCS, los cuales alcanzan 
una exactitud del 74% y 76% en el conjunto SCOP 1.53, respectivamente. Además, se presentan otras pruebas 
realizadas en los conjuntos SCOP 1.55 y SCOP 1.61.

Palabras clave: predicción de superfamilias, propiedades fisicoquímicas, clasificadores binarios, superfamilia 
SCOP, modelos 3D enriquecidos.
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1. Introduction

Remote homology detection focuses on the binary 
classification problem of discriminating between 
positives samples (i.e., remote homologs) and 
negative samples (i.e., non-remote homologs). 
Positive samples are proteins from a single structural 
class (i.e., a superfamily) and negative samples 
represent the rest of the proteins in the data set. For 
instance, in the SCOP 1.53 data set, 54 families 
are considered, and thus, 54 classifiers have to 
be built. Each classifier in the remote homology 
detection problem is trained to distinguish between 
proteins from a specific structural class (i.e., a given 
superfamily) and proteins from other folds. Even 
though each classifier is able to separate remote 
homologs from non-remote homologs, a more real 
problem is related to the multi-class superfamily 
recognition. The multi-class superfamily recognition 
problem is defined as the task of taking an amino 
acid sequence and predicting its corresponding 
superfamily. The importance about predicting 
the superfamily of a protein based on its primary 
sequence is that it allows understanding the function 
of a protein, which is considered a difficult task in 
Bioinformatics.

Predicting superfamilies based on the binary 
classifiers that detect remote homologs has been 
addressed in previous works (Ding & Dubchak, 
2001; Huang et al., 2003; Rangwala & Karypis, 
2006; Ie et al., 2007; Leslie et al., 2007; Lin & Li, 
2007; Lin, 2008). The current methods for multi-
class superfamily recognition take the outputs of 
the binary classifier (i.e., the scores) and build a 
classification model (i.e., multi-class classifier) to 
predict the SCOP superfamily of each protein in 
the data set. Support vector machines (SVM) are 
commonly used to obtain the multi-class superfamily 
predictor. The difficulty when building the multi-
class superfamily model is that the scores produced 
by the binary classifiers are not comparable, and thus, 
a classification model that captures the behaviour of 
the scores is needed. In this paper, we use binary 
classifiers that consider 3D models enriched with 
physicochemical properties. Unlike the current 
methods, which use binary classifiers that consider

the frequencies of k-mers (i.e., k-length subsequences 
of amino acids), we use a protein representation 
related to the 3D structure of the protein. We 
hypothesize that our protein representation in 
the binary classifiers is suitable for predicting 
superfamilies because there is a relationship between 
the 3D information and the function of the protein 
(Yang et al., 2008).

In this paper, we propose two new multi-class 
superfamily predictors called single-MCS and 
hierarchical-MCS. The single-MCS method builds 
a multi-class superfamily model using a collection 
of binary classifiers that are based on 3D models 
enriched with physicochemical properties. The 
hierarchical-MCS method is divided into two 
steps. First, the SCOP class is predicted and then 
a multi-class superfamily predictor for each SCOP 
class is used. In the following section every step 
in the single-MCS and hierarchical-MCS methods 
are explained in detail. In Section 3, the results are 
shown considering the SCOP 1.53, SCOP 1.55, 
and SCOP 1.61 data sets. Finally, the conclusions 
are presented in Section 4.

2. Methodology

2.1 The single-MCS method

In the multi-class superfamily recognition problem, 
the binary classifiers that discriminate remote 
homologs are used. Each protein is represented 
as a vector (i.e., the output vector) that holds the 
real-valued discriminant scores obtained when the 
protein is submitted to the binary classifiers. This 
strategy is called one-vs-all approach and is based 
on the idea of using None-vs-the-rest classifiers to 
obtain an output vector of size N and then make a 
prediction. 

The single-MCS (single Multi-Class Superfamily 
predictor) method is based on the following steps: 
(1) Splitting the training data set into five cross-
validation sets; (2) training a classifier for every 
family using four subsamples of the partitioned 
training set; (3) submitting one subsample of the 
partitioned training set to the classifiers to obtain 
the discriminant scores (i.e., testing the classifiers); 
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(4) repeat steps 2 and 3 five times changing the subset 
that is taken for testing; (5) training a multi-class 
classifier with the scores obtained in the previous 
step and using the superfamily as the class label; (6) 
re-training the family classifiers on the full training 
set; (7) submitting the full test set to the classifiers 
and obtaining the scores; (8) submitting the scores 
to the trained multi-class classifier to predict the 
superfamily.

Figure 1 shows the process of obtaining the scores 
from the binary classifiers. Each binary classifier is 
built for distinguishing the remote homologs and 
non-remote homologs of a specific family. When 
tested, classifier reaches a performance score on a 
given amino acid sequence. Every score is a real 
value ranging from 0.0 to 1.0, where the higher the 
score the more probable the test protein is a remote 
homolog of the family. The single-MCS method is 
based on training a multi-class classifier with the 
scores of the binary classifiers, and thus, a strategy 
to obtain the scores is needed. Every family has 
a training set with positive and negative samples. 
Both positive and negative samples in the training

set are divided in five parts. Four out of the five 
parts from both positive and negative samples are 
taken to build a binary classifier. Then, the proteins 
in the remaining part (i.e., the testing part) are 
submitted to 23 binary classifiers. Even though 
54 classifiers are needed to detect the remote 
homologs in the SCOP 1.53 data set, we selected 
one classifier for each superfamily. The considered 
SCOP 1.53 data set is formed by 23 superfamilies, 
and thus, a total of 23 classifiers have to be used in 
the multi-class superfamily recognition problem. 
The classifiers considered in this research use 3D 
models enriched with physicochemical properties. 
Every protein is represented as the number of times 
that each model is observed in a predicted contact 
map and an interaction matrix as presented in 
Bedoya & Tischer (2015). Submitting a test sample 
to the whole set of binary classifiers produces a 
score-vector. In this research, the score-vector is a 
23-length vector that holds the scores of a given 
amino acid sequence when is submitted to the 23 
binary classifiers. The process shown in Figure 1 
is repeated five times changing the subsamples that 
are taken as the testing data set.

Figure 1. Four steps included in the single-MCS method to 
obtain the scores from the proteins in the SCOP 1.53 data set.
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   A binary classifier is obtained for each SCOP 
class. There are seven classes in the SCOP 
1.53 data set, and thus, seven binary classifiers 
are obtained. Proteins inside a SCOP class are 
considered positive samples and proteins outside 
the class are taken as negative samples. 

      A multi-class classifier is trained using the seven 
scores of the binary classifiers. Every protein is 
represented by seven values (i.e., the scores that 
the protein obtains when it is submitted to the 
models that represent every SCOP class). The 
class labels in the multi-class SCOP class problem 
are the values {1,2,3,4,5,6,7}, which correspond 
to the SCOP classes in the data set. 

    A test set is submitted to the multi-class classi-
fiers to obtain a prediction of the class. At the end 
of the first stage of the hierarchical-MCS method, 
a prediction of the SCOP class for each protein in 
the test set is available. 

In the second stage of the hierarchical-MCS method, 
a multi-class superfamily classifier is built for the 
superfamilies in each SCOP class. The SCOP 1.53 
data set includes proteins from seven SCOP classes 
(i.e., all alpha proteins, all beta proteins, alpha and 
beta proteins (a/b), alpha and beta proteins (a+b), 
multi-domain proteins, membrane and cell surface 
proteins and peptides, and small proteins). Every 
SCOP class has a given number of superfamilies. For 
instance, there are five SCOP superfamilies in the 
class ‘all alpha proteins’, eight SCOP superfamilies in 
the class ‘all beta proteins’, five SCOP superfamilies 
in the class ‘alpha and beta proteins (a/b)’, and five 
SCOP superfamilies in the class ‘small proteins’. 
In the hierarchical-MCS method, a multi-class 
superfamily classifier considers the superfamilies 
inside a specific class. For instance, the multi-class 
superfamily classifier that is built for class ‘all alpha 
proteins’ has only five class labels (i.e., instead of 23 
as in the single-MCS method).

3. Results and discussion

In this section, the results of the experiments 
are shown. Tests on different SCOP versions are 
presented.

The score-vectors and their corresponding class 
labels are used to train a multi-class classifier. 
The class label is the SCOP superfamily of a gi-
ven protein. Each protein is represented by the 
23 values in the score-vector (i.e., holding the 
scores when submitting the protein to the binary 
classifiers) and one class label (i.e., indicating 
the superfamily of the protein). Support Vector 
Machines (SVM) along with One-vs-all classi-
fiers have been used to build a model in the mul-
ti-class recognition problem (Leslie et al., 2007; 
Rangwala & Karypis, 2006). In this research, in 
addition to using the SVM technique we also use 
three classification strategies that are suitable for 
multi-class problems (i.e., LogitBoost, Random-
SubSpace, and RandomForest). LogitBoost is a 
boosting classification algorithm based on addi-
tive logistic regression. Boosting strategies try 
to use a set of weak learners to create a single 
strong learner. A weak learner is a classifier that 
exhibits a low correlation with the true classifi-
cation. RandomSubSpace is a classification te-
chnique that uses multiple trees constructed sys-
tematically by randomly selecting subsets of the 
components in the feature vector (i.e., the sco-
re-vector), which are represented by trees cons-
tructed in subspaces that are randomly chosen. 
RandomForest is a classification technique for 
constructing a forest of random trees. The out-
put of the RanfomForest technique is the mode 
of the classifications obtained by the individual 
random trees.

2.2 The hierarchical-MCS method

The hierarchical-MCS method addresses the 
multi-class superfamily recognition problem by 
introducing a hierarchical model. The hierarchical-
MCS method is divided in two stages. First, the 
SCOPclass of a given protein is predicted by using 
a multi-class SCOP class predictor. Then, a multi-
class superfamily classifier is used to predict the 
superfamily. Each SCOP class has a multi-class 
superfamily predictor. In the first stage of the 
hierarchical-MCS method, a multi-class SCOP 
class recognition model is obtained by using the 
following three steps. 
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Table 1 shows the superfamilies that were 
chosen for testing. As observed, two super-
families were selected from each SCOP class 
in the data set. Table 1 also shows the speci-
fic ROC score reached for each superfamily 
when different methods for detecting remote 
homologs are used. In the remote-3DI method 
(Bedoya & Tischer, 2015) every protein is re-
presented using a predicted contact map and 
an interaction matrix. The remote-3DI method 
uses models with 3D information (i.e., typical 
3D interactions that occur in the contact map) 
enriched with physicochemical properties. Ta-
ble 1 shows the ROC score when the ‘Alpha 
helix propensity’ and the combination of indi-
ces ‘pK (-COOH)’ and ‘Atom based hydropho-
bic moment’ are used. The mean ROC score of 
the remote-3DI method with the ‘Alpha helix 
propensity derived from designed sequences’ is 
0.953±0.060.  In addition, the remote-3DI with 
the combination of physicochemical properties 
‘pK (-COOH) + Atom-based hydrophobic mo-
ment’ reach a mean ROC score of 0.942±0.070. 
The specific ROC scores shown in Table 1 allow 
having an idea about which superfamilies can 
be more difficult to predict. For instance, su-
perfamily 7.39.1 in class 7 has the lowest ROC 
score for an individual superfamily in most of 
the methods used to detect its remote homologs.

3.1 Accuracy measure

In this paper, the top1 accuracy is used to eva-
luate the multi-class superfamily predictors. 
For each test instance t, a given multi-class su-
perfamily predictor outputs 23 scores. The ins-
tance t is assigned to the superfamily with the 
highest score yielded by the classifier. An ins-
tance is considered to be correct if its true class 
is among the n highest-ranked classes. The top1 
value measures whether the multi-class method 
is able to identify the correct superfamily of the 
test instance.

3.2 Selecting the test set

For each superfamily, we kept one family for 
testing the superfamily prediction and we used 
the remaining families for training the multi-
class superfamily predictor. For instance, the su-
perfamily 1.4.1 has three families (i.e., 1.4.1.1, 
1.4.1.2, and 1.4.1.3). We kept the family 1.4.1.1 
for testing and the families 1.4.1.2 and 1.4.1.3 
for training. Even though there are 54 families 
in the SCOP 1.53 data set, a total of 23 super-
families can be used for testing the multi-class 
superfamily recognition. We selected eight out 
of the 23 superfamilies in the SCOP 1.53 data 
set for testing the multi-class superfamily re-
cognition problem. 

Superfamily Number 
of

 proteins

ROC score with 
remote-3DI (alpha 

helix)

ROC score with remote 3DI 
(pK (-COOH) + Atom-based hydrophobic 

moment)
1.27.1 6 0.996 0.995
1.4.1 23 0.984 0.989
2.1.1 31 0.989 0.991

2.56.1 8 0.996 1.000
3.1.8 10 0.992 0.996

3.42.1 10 0.996 0.997
7.3.6 26 0.884 0.864

7.39.1 14 0.877 0.797

Table 1. Superfamilies chosen for testing and their corresponding number of proteins and 
accuracy values when using different physicochemical properties.
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derived from designed sequences’ and SVM c=100 
as multi-class classifier are used. Table 3 shows 
the mean ROC score for each physicochemical 
property  and the corresponding mean top1 accuracy. 
As expected, the physicochemical properties that 
have high ROC scores tend to reach high top1 values. 
For instance, the mean ROC score of the remote-3DI 
method with the ‘Alpha helix propensity’ is highest 
in the experiments (i.e., 0.953). The top1 accuracy 
reached when the ’Alpha helix propensity’ is used 
to predict superfamilies is also the highest in the 
experiments. In addition, the lowest top1 value is 
0.40, which is reached by the combination ‘alpha+C’. 
The remote-3DI using ‘alpha+C’ also exhibits one 
of the lowest mean ROC scores. One of the most 
important results that the Table 3 suggests is that 
there is clear a relationship between the ROC score 
of the binary classifiers and the top1 accuracy of the 
multi-class superfamily predictors. There are some 
physicochemical properties that exhibit higher ROC

3.3 Evaluating the single-MCS method

Table 2 shows the top1 values when different 
physicochemical properties for the binary classifiers 
and different multi-class superfamily classifiers 
are used. As observed, SVMs are tested using three 
different values for the misclassification cost (i.e., 
c=10, 20, 100). According to Rangwala & Karypis 
(2006), the results of the multi-class classification 
process depend on the value C, which is the 
misclassification cost that determines the trade-off 
between the generalization capability of the model 
being learned and maximizing the margin. An 
optimization of the value C has to be done. The 
optimization process helps preventing under-fitting 
and over-fitting the data during the training process. 
The mean top1 at superfamily level of the single-
MCS method is 0.50±0.11. The highest top1 value is 
0.74, which is achieved when binary classifiers in the 
remote-3DI method with ‘Alpha helix propensity 

Binary classifier Logit-

Boost

Random-

Subspace

Random-

Forest

SVM 

(c=10)

SVM 

(c=20)

SVM 

(c=100)
remote-3DI (alpha helix) 0.62 0.58 0.65 0.70 0.73 0.74

remote-3DI (Hydropathy) 0.49 0.46 0.54 0.62 0.59 0.50

remote-3DI (pK (-COOH)) 0.52 0.45 0.47 0.48 0.47 0.56

remote-3DI (alpha+atom) 0.46 0.37 0.46 0.61 0.60 0.62
remote-3DI (alpha+pK) 0.54 0.41 0.46 0.49 0.50 0.56

remote-3DI (alpha+C) 0.41 0.40 0.52 0.36 0.36 0.33

remote-3DI (pK+atom) 0.43 0.43 0.50 0.44 0.44 0.44
remote-3DI (pK+C) 0.52 0.46 0.46 0.53 0.49 0.48
remote-3DI (atom+C) 0.40 0.38 0.40 0.41 0.44 0.46

remote-3DI (hydropathy+pK) 0.43 0.40 0.44 0.41 0.42 0.45

remote-3DI (alpha+pK+atom) 0.46 0.45 0.39 0.53 0.50 0.54

remote-3DI (alpha+pK+C) 0.47 0.49 0.46 0.57 0.55 0.55

remote-3DI (alpha+atom+C) 0.57 0.51 0.53 0.51 0.50 0.47

remote-3DI (pK+atom+C) 0.56 0.55 0.56 0.55 0.60 0.61

remote-3DI (alpha+pK+atom+C) 0.43 0.50 0.62 0.60 0.59 0.57

Table 2. Top1 accuracy achieved by the single-MCS method when using 15 combinations 
of physicochemical properties and six different classification techniques.
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and cell surface proteins and peptides', and 'Small 
proteins' have 804, 950, 694, 737, 54, 121, and 992 
positive samples, respectively. The negative samples 
for a given SCOP class are the proteins outside that 
class. For instance, because there are 4352 proteins 
in the SCOP 1.53 data set and 804 proteins in the 
class ‘all alpha proteins’, a total of 4352-804=3548 
negative samples are available for that SCOP 
class. In the hierarchical-MCS method, we kept 
all the proteins of some superfamilies for testing 
and we trained the classifiers with the remaining 
proteins. For instance, the superfamily 1.27.1 has 
18 proteins in the SCOP 1.53 data set. We kept the 
18 proteins in the superfamily 1.27.1 for testing the 
multi-class SCOP class predictor and we trained 
the binary classifiers and the multi-class classifier 
for class 1 with 786 positives samples (i.e., 804-
18) and 3548 negative samples. We repeated the 
same methodology for each superfamily in our test 
set (i.e., the eight superfamilies 1.27.1, 1.4.1, 2.1.1, 
2.56.1, 3.1.8, 3.42.1, 7.3.6, and 7.39.1).

scores than others. The results suggest that the higher 
the ROC score of a physicochemical property used 
in a binary classifier, the higher the top1 accuracy. 
Another result that the test set suggests is about 
the classification technique that is more suitable 
for predicting superfamilies in the single-MCS 
method. As observed in Table 2, even though we 
are using six strategies to obtain a multi-class 
superfamily classifier, the Support vector machines 
with c=100 is the technique that reaches the highest 
top1 accuracy in eight out of 15 physicochemical 
properties. The test set suggests that SVMs with a 
misclassification cost of 100 is a classifier that is 
suitable for the single-MCS method.

3.4 Evaluating the hierarchical-MCS method

There are seven classes in the SCOP 1.53 data set. 
SCOP classes 'all alpha proteins', 'all beta proteins', 
'alpha and beta proteins (a/b)', 'alpha and beta 
proteins (a+b)', 'Multi-domain proteins', 'Membrane

Physicochemical properties mean ROC score
using remote-3DI 

mean top1
 accuracy

Alpha-helix propensity 0.953±0,060 0.67

Hydropathy index 0.945±0,067 0.53

pK (-COOH) 0.950±0,069 0.49

Alpha-helix propensity, 
Atom-based hydrophobic moment 0.950±0.066 0.52

Alpha-helix propensity, pK (-COOH) 0.947±0.071 0.49

Alpha-helix propensity, Relative preference value at C’ 0.947±0.071 0.40

pK (-COOH), Atom-based hydrophobic moment 0.942±0.070 0.45

pK (-COOH), Relative preference value at C’ 0.945±0.071 0.49

Atom-based hydrophobic moment,
Relative preference value at C’ 0.944±0.071 0.42

Hydropathy index, pK (-COOH) 0.943±0.052 0.43

Alpha-helix propensity, pK (-COOH),
Atom-based hydrophobic moment 0.944±0.069 0.48

Alpha-helix propensity, pK (-COOH),
Relative preference value at C’ 0.944±0.076 0.52

Alpha-helix propensity, Atom-based hydrophobic 
moment, Relative preference value at C’ 0.944±0.072 0.52

pK (-COOH), Atom-based hydrophobic moment,
Relative preference value at C’ 0.945±0.070 0.57

Alpha-helix propensity,  pK (-COOH), Atom-based hydropho-
bic moment, Relative preference value at C’ 0.941±0.069 0.55

Table 3. mean ROC scores and their corresponding mean top1 accuracy in the single-MCS 
method when using 15 combinations of physicochemical properties
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Binary classifier Logit-
Boost

Random-
Subspace

Random-
Forest

SVM 
(c=10)

SVM 
(c=20)

SVM 
(c=100)

remote-3DI (alpha helix) 0.71 0.72 0.73 0.71 0.71 0.71
remote-3DI (Hydropathy) 0.73 0.71 0.67 0.68 0.68 0.68
remote-3DI (pK (-COOH)) 0.73 0.71 0.70 0.70 0.70 0.70
remote-3DI (alpha+atom) 0.66 0.67 0.66 0.66 0.66 0.66
remote-3DI (alpha+pK) 0.71 0.71 0.71 0.71 0.71 0.71
remote-3DI (alpha+C) 0.70 0.72 0.63 0.67 0.67 0.67
remote-3DI (pK+atom) 0.70 0.72 0.67 0.64 0.66 0.66
remote-3DI (pK+C) 0.71 0.71 0.64 0.70 0.69 0.71
remote-3DI (atom+C) 0.68 0.72 0.68 0.70 0.70 0.70
remote-3DI (hydropathy+pK) 0.70 0.69 0.67 0.69 0.69 0.69
remote-3DI (alpha+pK+atom) 0.74 0.76 0.74 0.74 0.74 0.74
remote-3DI (alpha+pK+C) 0.71 0.71 0.70 0.71 0.71 0.71
remote-3DI (alpha+atom+C) 0.71 0.71 0.69 0.71 0.71 0.71
remote-3DI (pK+atom+C) 0.69 0.69 0.67 0.68 0.68 0.68
remote-3DI (alpha+pK+atom+C) 0.71 0.67 0.70 0.69 0.71 0.71

Table 4. Top1 accuracy achieved by the hierarchical-MCS method when using 15 
combinations of physicochemical properties and six different classification techniques.

In the hierarchical-MCS method, a binary classifier is 
obtained for each SCOP class. We select the classifier 
with the highest ROC score using 5-fold cross 
validations on the training data set. We chose between 
the same classification techniques (BayesNet, 
NaiveBayes, NaiveBayes Multinomial, Multilayer 
perceptron, Hyper pipes, VFI, LMT) that were 
considered for detecting remote homologs in Bedoya 
and Tischer (2015). Then, a multi-class SCOP class 
predictor is obtained by using the same steps that 
we used in the single-MCS method but considering 
SCOP classes instead of SCOP superfamilies. In the 
second stage of the hierarchical-MCS method the 
multi-class superfamily classifiers are built using 
the same binary classifiers that were considered in 
the single-MCS method (i.e., the binary classifiers 
for the 23 superfamilies). Every protein in the data 
set is represented by the scores of the 23 binary 
classifiers and the class label. However, each multi-
class superfamily classifier in the hierarchical-MCS 
method has fewer class labels than in the single-MCS 
method, and thus, the prediction might be improved. 
For instance, eight class labels are used in the SCOP 
class ‘all beta proteins’ (i.e., class labels 6, 7, 8, 9, 10, 
11, 12, and 13) and five class labels are used in the 

SCOP class ‘alpha and beta proteins (a/b)’ (i.e., class 
labels 14, 15, 16, 17, and 18).

Table 4 shows the top1 accuracy at superfamily level 
for 15 different combinations of physicochemical 
properties and different multi-class classification 
techniques. Even though we predicted the SCOP 
class for all the proteins in some superfamilies, 
we only took proteins in one family for testing the 
superfamily prediction accuracy of the hierarchical-
MCS method. The other families inside a given 
superfamily were used for training as it was 
explained in the single-MCS method. The top1 
values at superfamily level were calculated using 
only the proteins in the same test set that were used in 
the single-MCS method. The mean top1 accuracy of 
the hierarchical-MCS method at superfamily level is 
0.70±0.16. The highest top1 accuracy is 0.76, which is 
achieved when the combination of physicochemical 
properties ‘alpha+pK+atom’ in the multi-class 
superfamily classifier and the RandomSubSpace 
technique are used. In the hierarchical-MCS method, 
the RandomSubSpace strategy reached the highest 
top1 accuracy in 11 out of the 15 combinations of 
physicochemical properties.



73

Ingeniería y Competitividad, Volumen 18, No. 2, p. 65 - 74 (2016)

The main difference between the single-MCS 
and the hierarchical-MCS methods is the fact of 
predicting the SCOP class and then using a multi-
class superfamily predictor. In the single-MCS 
method, only one multi-class superfamily is trained 
using 23 class labels (i.e., the superfamilies). 
In the hierarchical-MCS method, a classifier is 
trained for the superfamilies that are inside each 
SCOP class. There are five superfamilies in class 
1, eight superfamilies in class 2, five superfamilies 
in class 3, and five superfamilies in class 7. Once 
the SCOP class is predicted for a given protein, 
we predict its superfamily considering only the 
superfamilies inside the predicted SCOP class. 
Having a multi-class superfamily classifier inside 
each SCOP class allowed us having fewer class 
labels, which actually improved the prediction. As 
observed, the hierarchical-MCS method achieves 
higher top1 values than the single-MCS method.

3.5 Evaluating the proposed methods on more 
recent SCOP versions

The SCOP 1.53 data set is considered a gold 
standard in remote homology detection. Therefore,  
the 3D models enriched with physicochemical 
properties used in this research were obtained 
from that SCOP version in order to use the same 
data set that has been used in previous works. 
Since more recent versions of the SCOP data set 
have been released (i.e., SCOP 1.75 in 2009 and 
SCOP 2.04 in 2014), new collections of models 
should be obtained to include these versions in the 
experiments. However, in addition to the SCOP 
1.53 data set, we also used the SCOP 1.55 and 
the SCOP 1.61 data sets during the experiments 
because these SCOP versions are close to the 
SCOP 1.53 data set, and thus, the models are still 
suitable. The SCOP 1.55 data set has 3527 proteins 
divided in 51 families. The SCOP 1.61 data set has 
10569 proteins divided in 206 families. There are 
some families in common between the SCOP 1.53 
and the SCOP 1.55 data sets, such as the families 
in the superfamilies 2.1.1 and 3.2.1. Some other 
families were not included in the SCOP 1.53 but 
they appear in the SCOP 1.55 data set, such as the 
families 3.66.1.10 and 6.2.1.2. In this section, we 
retrained the multi-class superfamily predictors

using the proteins in some superfamilies of the 
SCOP 1.55 (i.e., 3.1.8) and the SCOP 1.61 (i.e., 
1.4.1, 3.1.8, and 3.2.1) data sets. Including all the 
superfamilies in the SCOP 1.55 and the SCOP 
1.61 data sets has to be done by building a binary 
classifier for each superfamily and then retraining 
the multi-class superfamily classifiers. Therefore, 
we built a new binary classifier and retrained the 
multi-class predictor only for the superfamilies 
3.1.8 in the SCOP 1.55 and superfamilies 1.4.1, 
3.1.8, and 3.2.1 in the SCOP 1.61 data set. The 
mean top1 accuracy on the SCOP 1.55 using the 
single-MCS (i.e., with SVM c=100 and ‘alpha 
helix propensity’) and the hierarchical-MCS (i.e., 
with RandomSubSpace and 'alpha+pK+atom') 
methods increased to 0.75 and 0.88, respectively. 
The mean top1 on the SCOP 1.61 data set using the 
single-MCS and the hierarchical-MCS methods 
increased to 0.65 and 0.81, respectively.

4. Conclusions

In this paper, two multi-class superfamily 
predictors were presented. The mean top1 
accuracy of the single-MCS and the hierarchical-
MCS methods on the SCOP 1.53 data set are 
0.50±0.11 and 0.70±0.16, respectively. The 
mean top1 value of the single-MCS and the 
hierarchical-MCS methods increased on both 
the SCOP 1.55 and the SCOP 1.61 data sets. 
The main result achieved in this research is that 
using a hierarchical strategy allows increasing the 
accuracy of the superfamily prediction. When the 
SCOP class of a protein is initially predicted, the 
prediction of the superfamily becomes an easier 
task because fewer class labels are considered in 
the multi-class superfamily recognition. 

We also found that the more accurate the binary 
classifiers, the higher the top1 accuracy in the 
superfamily prediction. A higher ROC score of a 
binary classifier means that the positive samples 
(i.e., the remote homologs) get higher scores than 
the negatives samples. When the binary classifier 
of a given superfamily S has a high ROC score, it 
means that proteins in that superfamily are getting 
higher scores than the proteins that do not belong to 
S. The results suggest that having binary classifiers
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with high ROC scores allows identifying the 
correct superfamilies in the test set. Testing on 
different combinations of physicochemical properties 
might help to improve the accuracy of the multi-
class superfamily prediction. We found that 
more accurate binary classifiers actually help to 
increase the top1 accuracy, and thus, working on 
improving the ROC scores of the binary classifiers 
should be done.
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