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Abstract
This study proposes an algorithm to simulate population samples, supported by the Monte Carlo and 
Bootstrap methods, where the sample size is not representative of the universe being studied. This scenario 
is characteristic of investigation processes or events which span a long time period. This study developed 
an example with real-life data collected from a harvesting machine, calculating the lifetime reliability 
gamma index for a hydraulic element. The implementation of the algorithm was developed with the 
mathematical assistant MATLAB and the block diagram is shown at work. From the analysis of the 
results it is conclusive that, when the sample size being studied is very small, the proposed methodology 
is appropriate to estimate the necessary probabilistic distribution and therefore allows to estimate the 
confidence interval of the reliability index that is being sought.
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Resumen
En el trabajo se hace una propuesta de algoritmo para la simulación de muestras poblacionales basado 
en los métodos de Monte Carlo y Bootstrap, cuando el tamaño de la muestra no es representativo para 
el universo estudiado. Tal necesidad es característica en las investigaciones de procesos o eventos cuyo 
intervalo de ocurrencia es muy amplio. En el trabajo se desarrolla un ejemplo a partir de datos reales 
recolectados de una máquina cosechadora a la cual se le calculó el índice de fiabilidad Vida Útil Gamma 
a uno de sus elementos hidráulicos. La implementación del algoritmo se desarrolló con el asistente 
matemático MATLAB y el diagrama de cálculos se muestra en el trabajo. Del análisis de los resultados 
se concluye que para investigaciones donde el tamaño de la muestra no sea representativa es útil aplicar 
la metodología propuesta para la estimación de las funciones de distribución necesarias y con ello estimar 
los intervalos de confianza de los indicadores buscados.

Palabras clave: Índices de fiabilidad, método de Monte Carlo, muestra poblacional, simulación muestral.
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1. Introduction

Reliability is defined by Dhillon (1) and Nachlas 
(2) as the probability that an article will perform 
the assignment satisfactorily over a period of time, 
when it is used according to specified conditions, 
identifying four factors: probability, proper 
functioning, environment and time. Dhillon (1) 
adds that many mathematical definitions and 
probabilistic distributions are used to perform 
different types of reliability studies.

Nachlas (2) and Mitra (3) argue that the distribution 
function that is most often used to model reliability 
is that of Exponential distribution; on other 
occasions different theoretical distributions are 
used, such as the Weibull or the Gamma. They 
add that for the statistical methods of reliability 
estimation, whether parametric or non-parametric, 
the failure data obtained during the life tests of the 
components are used. Regarding the calculation 
of confidence intervals, in Kundu & Basu (4) 
it is argued that the best results are obtained 
through the Exponential and Weibull distributions. 
Other authors, such as Percontini (5) make new 
distribution proposals, such as ZETA-G. However, 
Wang & Pham (6) point out that in practice many 
systems are complex, they can follow different 
failure distributions and many times there is not 
sufficient failure data, therefore it is impossible 
to obtain the confidence intervals for the different 
reliability indexes. According to Makhdoom & 
Nasiri (7), many researchers are unable to observe 
the life cycle of the tested units due to a lack of 
time, resources, or problems with data collection; 
the sample is therefore truncated, resulting in 
different types of errors. Mitra (3) states that the 
study of the life cycle of elements is important in 
many aspects, the primary interest being to find out 
the distribution that supports the data collected.

It should be noted that failure data obtained during 
component life tests are carried out by hurried and 
costly methods, in which environmental conditions 
cannot always be fully emulated. Therefore, 
obtaining the minimum amount of data needed 
to perform the calculations under real operating 
conditions is extremely difficult, since you have to 
observe the events naturally as they occur during 

the operation of the machines. This situation causes 
many difficulties when trying to obtain an adequate 
minimum sample size of failures, as it is necessary 
to wait for years of operation, making it impossible 
to carry out the investigations since they will not be 
valid or the equipment will have already aged and / 
or will be obsolete.

It has been proven that the Monte Carlo technique 
combined with other methods is a powerful tool 
for dealing with this type of problem; Wang 
& Pham (6). Since the 1940s, tools have been 
developed to simulate the occurrence of events. To 
date, the most popular and widely used has been 
the Monte Carlo method in some of its variants: 
crude, stratified, by complements and others; 
Lieberman & Hillier (8). This situation explains 
why, in many cases, reliability studies to adjust 
maintenance plans are not performed. In other 
words, it is very unlikely that in the production 
processes, reliability studies will be carried out. 
This may be due to different causes, such as:

Maintenance management is poor, with the 
consequence of failing to log and monitor the 
occurrence of the failures; the data recorded is not 
reliable; engineering staff do not have sufficient 
knowledge or skill to deal with statistical 
techniques, or do not know how to use the 
computer tools that currently exist. 

In many entities and branches of the economy 
there is a poor understanding of how important 
these studies can be to improve or perfect the 
functionality, safety and durability of machinery; 
in other words, operational reliability. 

Finally, some data is sometimes available, but 
due to its scarcity (the number of elements in the 
sample not being sufficient), it does not allow for 
the calculation and research required. To solve 
the problem of not having the sample size needed 
to estimate the necessary parameters, several 
algorithms are proposed, supported by the Monte 
Carlo simulation method, Wang & Pham (6). These 
numerical methods allow the solution of different 
types of problems by means of probabilistic systems 
models and the simulation of random variables. It 
is worth highlighting that in other studies, Paz-
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Sabogal et al. (9), there is an assumption that the 
theoretical distributions of failure are known, as is 
the case with Lognormal and Weibull, a situation 
that is generally unknown at the actual stage of 
operation and maintenance of the machines.

The work of Ramírez et al. (10) demonstrates how 
difficult it is to determine the minimum sample size 
and the number of bootstrap samples to be used to 
obtain appropriate sample distributions; for said 
study, the simulation of the samples was obtained 
through the Gamma distribution. According to 
Efron & Tibshirani (11), the term bootstrap could 
be interpreted as “To advance by one’s own effort”, 
“To multiply one’s experiences from those already 
lived”. It is no more than a method of re-sampling 
data, i.e., from an original sample the same one is 
replicated several times, Ledesma (12). According 
to Edwards et al. (13), it is of particular interest to 
estimate percentiles in reliability studies and the 
study argues that when sample sizes are sufficiently 
large, reasonable approximations are obtained, 
but not for cases where the sample is insufficient 
and it states that the fundamental idea behind the 
use of bootstrap is that the empirical distribution 
thus obtained provides an approximation to the 
theoretical sample distribution of interest. However, 
Christopher et al. (14) suggest that bootstrapping 
is an ambiguous statistical method, since in most 
applications the methodology leaves the researcher 
with two types of errors: those originated by the 
initial data set and those generated by the re-
sampling system, and therefore propose a method 
to eliminate re-sampling errors. In the processes of 
operation and maintenance of the machines, under 
environmental conditions that were not considered 
by the manufacturer, two real problems arise:

The functions of the components’ and subsystems’ 
joint distribution of failure are unknown.

Failure data is insufficient to estimate confidence 
intervals for different reliability indices necessary 
to adjust and refine maintenance plans for machines 
and installations.

Taking into account these difficulties, the present 
work proposes a methodology based on the Monte 
Carlo and bootstrap method that would allow to 

obtain the function of failure distribution of the 
machines and with it enable the calculation of 
the confidence intervals for different reliability 
indices and thus enable the readjustment of the 
maintenance plans in real time, in accordance 
with the technical state of the machinery.

2. Methodology
The need to carry out research within a given 
time period and not having, for the sample being 
studied, sufficient data that allows to make up a 
representative sample, is a common occurrence in 
the daily life of the researcher, so it is necessary 
to simulate such data under the conditions in 
which the probabilistic distribution of the sample 
is unknown. For the new simulated data to be 
representative of the elements to which the sample 
belongs, the authors of this work propose the 
following procedure: 

Define and delimit the sample space or universe 
(U) where the phenomena or events that will be 
studied occur.

Register a minimum amount of data regarding 
the phenomenon that conform to the sample 
elements. With a bigger sample size, the results 
will be better. It is worth highlighting that this is 
the problem that one trying to solve, because the 
reality is that the sample often does not exceed 5 
or 6 elements. 

With the data observed, the interpolation process 
is carried out to obtain a continuous function f(x). 

The empirical probability of the occurrence of 
the events is determined as the ratio between the 
number of type A events that happened and the 
total number of observed events. The occurrence 
of the events is considered completely random. 
It is necessary to clarify that this process can be 
carried out with the original data or with data 
calculated from the function and interpolation 
already obtained. 

   (1)

With the calculated probabilities, a new inter-
polation process is carried out with which an 
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accumulated continual probabilistic distribution 
p(x) is able to be obtained. 

Supported by the crude Monte Carlos method, 
random numbers ni between 0 and 1 are generated, 
for each ni the equation p(x) = ni is set out and 
resolved with the objective of obtaining the value 
of the corresponding pre-image x. 

In obtaining a value for the pre-image x, this is then 
evaluated in the function f(x), thereby revealing 
a new simulated figure which will become the 
elements that make up the population sample that is 
needed to define the probabilistic density function 
necessary to find out which type of theoretical 
distribution the data resembles most. 

Once the theoretical distribution is known, said data 
is used to carry out the calculations appropriate to 
the problem to be solved.

3.Results and discussion
3.1. Example of the application of the 
aforementioned algorithm

It is necessary to perform a study of the Gamma 
Resource durability index (T(γ)) of a determined 
mechanical element E1, which in turn belongs to 
a more general system S, which contains other 
mechanical elements denoted as E2, E3,...., En-1, En. 
The system S belongs to a population of machines. 

To calculate the Gamma Resource (Gamma dis-
tribution Lifespan) T(γ) of element E1, it is necessary 
to look at the statistics relating to its central tendency 
and dispersion: its mean-time to failure, the standard 
deviation and the gamma percentile. To carry out the 
calculations of said statistics it is necessary that the 
machine element E1 has failed enough times that the 
sample made up of said events is representative of 
its population (u). As the number of working hours 
necessary for element E1 to fail is relatively large, a 
period of time would be needed that is too long to 
carry out a study of the Gamma Resource durability 
index of this machine element. The solution used 
in practice is to simply do without said study as its 
completion turns out to be impossible. 

To seek and encounter an investigative alternative 
it is necessary to apply the procedure describe in 
this work.

The sample space or universe (U) is defined and 
delimited as that made up of all of the possible 
ways in which element E1 could fail during the 
life-cycle of the range of machines available in the 
country. Due to the nature of this phenomenon it 
can be confirmed that the sample space is infinite. 

The failures of element E1 are registered. For the 
particular case studied, the working hours of the 
machines sampled is given as the mean-times 
until the failure: 120, 250, 267, 320. The data is 
shown in Table 1 for the purpose of interpolation 
and identification of the analytical function f(x).

With the data observed in point 2 the interpolation 
process is carried out, obtaining the continuous 
function (equation 2), which is represented in 
Figure 1:

 (2)

The empirical probability of occurrence of the 
events is determined as the ratio between the 
number of accumulated hours in which the failure 
of element E1 occurred and the total accumulated 

Variable Machine working hours
X 0 120 370 637 957
Y 0 120 250 267 320

Table 1. Accumulated working hours of the machine and 
duration until element failure E1
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Figure 1. Continuous interpolation function f(x).
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hours observed, as shown in Table 2. As can be 
seen, for convenience of calculation, the table 
shows the empirical probabilities of the original 
data. However, any value of failure time can be 
obtained by evaluating for the number of hours 
worked in Eq. (2), thereby calculating the empirical 
probability of occurrence of the failure.

Table 2. Empirical probabilities of element failure E1.

 (3)

With the probabilities calculated in step 4, a new 
interpolation process is performed to obtain a 
continuous probabilistic function p(x), represented 
graphically in Figure 2:

Figure 2. Function of probabilistic empirical distribution p(x).

  (4)

Supported by the Lieberman & Hillier (8) Monte 
Carlo method, the random numbers ni are generated 
between 0 and 1, for each ni one poses and solves 
the equation p(x) = ni to obtain the value of the 
corresponding Pre-image x. Using the MATLAB 

application, the random number 0.2311 was 
generated with the “rand” function, which is equal 
to the probabilistic function obtained in step 5 and 
from this equation, the possible roots are calculated 
by any of the classical numerical methods:

The pre-image calculated is x = 221.1653.

The found value of pre-image x is evaluated in the 
function f(x), finding a new simulated data (mean 
time between failures of element E1). All of the 
above steps are developed with the help of the block 
diagram shown in Figure 3, which was programmed 
with the mathematical assistant MATLAB.

Figure 3. Calculation algorithm.

Variable / function Machine working hours
X (Independent) 0 120 370 637 957
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The investigated reliability index, i.e. the Gamma 
lifetime, also called Gamma Resource, is calculated 

in a 90% confidence interval with the simulated 
data shown in Table 3: 

 (5)

Where
t = 235.2 – Mean time between failures
S= 65.7 – Standard deviation
P = 276.7 – Percentile for 90% confidence
The proposed procedure allows the realization of 
the number of replicates required and to be able 
to estimate the parameters of the probabilistic 
distribution function that represent the data 
initially collected and thus calculate the necessary 
statistics that will allow performing the required 
calculations. In the particular case of the study 
shown, a hundred data were generated, which are 
shown in Table 3 and, when processed, the mean 
time between failure, the standard deviation and 
the percentile needed to calculate the reliability 
index of the gamma life was obtained.

With the data obtained, other reliability indicators 
might be calculated, such as the probability of 
working without system failure up to a pre-
established number of hours. The proposed 
procedure is easy to program, based on the block 
diagram provided in this work. In order to evaluate 
the possible errors of estimation of the calculated 
statistics the methodology proposed in the work by 
Ramírez et al. (10) is suggested. On the other hand, 
the authors insinuate to find news methodologies 
to evaluate the possible errors of estimation of the 
calculate statistics.

 simulated sample
172 272 266 248 238 268 211 217 269 267
268 268 258 274 219 261 202 264 266 62
211 174 225 273 238 266 277 67 268 268
172 267 166 268 268 268 266 314 268 53
17 271 169 266 266 267 129 269 178 256
266 21 267 282 227 300 13 257 248 225
261 267 224 269 271 267 281 267 267 277
291 248 268 268 269 278 172 235 267 16
263 270 140 269 246 155 223 259 263 266
257 266 266 267 266 310 267 188 269 306

Table 3. Example of a simulated sample of 100 elements.

4. Conclusions

With the proposed procedure, we can simulate 
the data of a sample so that it is representative of 
its population size and from the obtained values, 
the parameters for the studied population can be 
inferred. 

In addition, this makes it possible to carry out 
the necessary calculations of the research task in 
particular.
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