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Abstract 
 
In the past few decades structural optimization through metaheuristics has gain recognition in the scientific community; 

non the less, to guarantee good results we require a good selection of metaheuristic’s parameters. In this paper we 

propose a multi-chromosome genetic algorithm with self-adaptive parameters, to optimize steel trusses in a three-

dimensional space. The design variable are the sections assign to each truss element of the structure. The optimization 

objective is the minimize the weight of the structure, considering the displacement y maximum stress as constrains. 

The propose algorithm was applied to the optimization of two trusses, obtaining designs that had a 35% less weight 

than the initial designs and comparable to results obtained in other papers. However, the adaptation of the parameters 

allows a more robust optimization process when analyzing different types of trusses and eliminates the initial runs of 

the optimization algorithm required to calibrate the initial parameters. 

Keywords: design of truss structures, genetic algorithms, parameters self-adaptation, special coding, structural 

optimization. 

Resumen  

En las últimas décadas, la optimización estructural mediante metaheurísticas ganó acogida en la comunidad científica; 

sin embargo, para garantizar buenos resultados se requiere una correcta selección de los parámetros de la 

metaheurísticas. En este trabajo se propone un algoritmo genético multi-cromosoma auto-adaptado para optimizar 

armaduras de acero tridimensionales. Las variables de diseño corresponden a las secciones asignadas a cada elemento 

en la armadura. El objetivo es la minimización del peso de la armadura, considerando desplazamientos y esfuerzos 

máximos como restricciones. El algoritmo propuesto se aplicó a la optimización de dos armaduras, produciendo 

diseños que pesan hasta un 35% menos que el mejor diseño inicial y son valores comparables al resultado obtenidos 
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en otros trabajos. No obstante, la adaptación de los parámetros permite mayor robustez cuando se desea optimizar 

diferentes tipos de armadura y evita las ejecuciones del algoritmo de optimización que son necesarias para la 

calibración de sus parámetros. 

Palabras clave: algoritmos genéticos, auto-adaptación de parámetros, diseño de armaduras tridimensionales, 

optimización de estructuras, representaciones especiales. 

. 

1. Introduction 

On a civil engineering project, a structural 

designer must guarantee that the structure must 

have an adequate behavior regarding the 

resistance and service, cost-effective and 

complies with the architectonic and construction 

requirements. To archive this, the engineer should 

go through a “manual process” that modifies 

iteratively the initial structural configuration, 

considering the stablished design codes and the 

experience of the designer. Typically, few 

iterations are made during the design process, 

therefor, the following question is valid: does the 

quantity of iterations made guaranties that the 

structural configuration is the lowest cost? A way 

to improve the quality of the design (in terms of 

cost-efficiency) consist in the automatization of 

the design process through the realization of the 

denominated Structural Optimization, which is 

divided in the following categories (1,2): I) element 

section optimization, II) material optimization, 

III) shape optimization and IV) topologic 

optimization. 

The solution to the optimization problem requires 

the selection of a numerical technique capable of 

solving the current problem, in this case being the 

metaheuristics a group of optimization algorithms 

that has good performance (3-7). The metaheuristic 

is an approximate optimization algorithm used in 

the efficient determination of “adequate” 

solutions of difficult and complex problems in 

science and engineering, but it cannot guaranty an 

optimal solution (8). One of the most used 

metaheuristics is the genetic algorithm technique 

(GAs), which is based in the Darwin’s theory of 

natural selection and evolution of species. 

Various authors in literature have introduced 

modifications either to the structure of the 

algorithm or the representation of solutions with 

the objective of increasing the algorithm 

performance in the solution of the problem of 

optimizing trusses. One of them consist in the 

definition of group of elements assigned with the 

same cross-section (3) to reduce the variable of the 

problem (therefor, reducing the search space of 

the solution). Considering the computational cost, 

the usage of solution representation schemes 

different from that of the binary codification 

could reduce significantly the time needed for the 

optimization of structure with great numbers of 

variables (4). Additionally, improvements in the 

convergence process can be achieved by changing 

the way on how the violation of constrains is 

handled (5), the usage of initial populations 

generated heuristically (6) and the modification of 

the genetic operators (like in the case of the usage 

of a probabilistic operator for the selection (7)), 

among other strategies. Non the less, the effect 

that the genetic parameters have over the 

optimization process of trusses have not been 

studied in depth, being that the values assumed on 

these parameters could affect de performance of 

the GA. 

Generally, the selected GA parameters in truss 

optimization correspond to the values found by 

the researches that generated the best results after 

testing various parameter combinations. Non the 

less, there are 3 aspects that could indicate that the 

previous procedure is not the most adequate: 
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• The GA should be run for every 

parameter combination, which increases 

the number of evaluations of the 

objective function (at the same time, each 

evaluation of the objective function 

requires a structural analysis). 

• A unique combination of genetic 

parameter is used for all analyzed trusses; 

although, there is no guarantee that the 

search space would be the same por each 

structure analyzed. 

• The values are kept constant throughout 

the search process, but the dynamicity of 

the process could require assigning 

different values in function of the stages 

in which the optimization process is. 

Therefore, it would be recommended the usage of 

GAs with low levels of dependency from the 

parameters used, being that it could be possible 

the application of control techniques for the 

parameters, like the adaptive or self-adaptation (9). 

The present paper introduces a methodology for 

the three-dimensional steel trusses based on 

genetic algorithms, but that does not require the 

definition of genetic parameters from the user. In 

this manner the proposed methodology could be 

applied directly to any truss (under the constrain 

presented in this paper) without being necessary a 

previous calibration of the genetic paraments. 

Finally, from the obtained results it can be 

determined if the search space is unimodal or 

multimodal. 

1.1. Genetic Algorithms  

The GAs are a type of optimization algorithm 

proposed by John Holland on 1975 (10), the GAs 

evolve a population of possible solution through 

mathematical operations based on the principle of 

reproduction and survival of the fittest of Darwin.  

The application of a GA to an optimization 

problem requires the definition of a representation 

scheme (binary, real, combination, among others) 

of the possible solutions. A possible solution is 

codified through a vector called chromosome, 

with each of the design variable corresponding to 

a section of this vector (gen). Then, it must be 

defined the genetic operators used in the 

transformation process (evolution) of the 

population and the genetic parameters that 

condition the application of the operators. The 

size of the population must be defined by the user. 

The iterative process starts with either the 

heuristic or random generation of the initial 

population. The random generation requires that 

the process of generating random numbers is 

defined between the range of values of each 

variable, while the heuristic form implies that the 

knowledge of the characteristics of the problem 

must be used in the generation of the individuals 

of the population to accelerate the search process. 

Then, the genetic operations are applied in a 

consecutive manor: I) Selection, II) Reproduction 

and III) Mutation. The Selection choses the best 

individuals of the population considering the 

value of their fitness (measured in terms of the 

objective function). In the Reproduction o 

Crossover two new solutions are generated from 

the combination of two individuals chosen by the 

selection process. Finally, the Mutation alters 

randomly the characteristics of some individuals 

with the aim of introducing diversity to the 

population. The frequency on which the last two 

operators occurs must be limited through 

parameters know as Crossover Rate and Mutation 

Rate. Additionally, we can implement Elitism to 

preserve the best individual between two 

successive generations. The application of the 

previous operations creates a new population of 

individuals that is expected to be better than their 

predecessor. This process is repeated iteratively 

until a convergence criterion is reached (example, 

maximum number of generations). Given that the 

algorithm is stochastic, it is required that it must 
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be executed multiple times before giving an 

answer to the user. 

2. Methodology 

In figure 1 the flowchart shows the proposed 

methodology for the optimization of the structural 

designs of the trusses. The process starts by 

reading the initial data of the trusses (node 

location, element description and materials, loads, 

etc.). Next, the initial population of solutions is 

generated, where each of the individuals 

corresponds to a determined structural design, by 

assigning randomly to each element (or group of 

elements) a cross-section from an available set of 

options. Then a finite element analysis is run for 

each structural configuration to determine the 

reactions of the structure (in terms of element’s 

stresses and displacements in the nodes) under the 

effect of solicited loads. Given the previous 

information the following steps carry out: I) 

Evaluation of the self-weight of each individual 

 

Figure 1. General flowchart for the 3D optimization of trusses 
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(structure), II) Verification of the constrain set in 

section 2.1, to establish if the design is viable or 

not, and III) Penalty of the cost of the solution 

following the criteria given in section 2.3, if the 

structural configuration violates any constrain. 

On this part, the criteria to stop the algorithm are 

evaluated, which are: I) a maximum number of 

allowed iterations and II) specific quantity of 

iteration where the fitness of the best induvial 

does not considerably change. If one of the 

criteria does not comply, a new solution is created 

through the operators detailed in section 2.2; on 

the contrary, the algorithm stops it execution and 

shows most cost-effective structural design 

found. 

2.1 Problem Formulation for the 
Structural Optimization.  

In this section the characteristics of the problem 

in study are defined in terms of design variables 

and parameters, objective function and 

constrains. In that sense, the variable of the design 

problem corresponds to the properties of the cross 

sections of the elements (area), meanwhile the 

properties of the steel and the geometric 

configuration are kept constant during the 

evolutionary process. The objective function is 

configured in terms of the self-weight of the 

structure (W), shown in Ec.1, and the constrains 

established in Ec. 2 to 4: 

Minimize: W = ρ ∑ li
 ng

i =1 Ai     i = 1, 2,…ng   Ec.1 

Subject to:   δj(Ai) ≤ δmax       j = 1, 2,…nj   Ec.2 

σk(Ai) ≤ σadm     k = 1, 2,…nm                      Ec.3 

Ail ≤ Ai ≤ Aiu                                                 Ec.4 

being, ρ the unit weight of steel (0.28 lb/in3), li 

and Ai the length and the cross-section area the 

element’s in group i, respectively, ng  number of 

groups, δj node displacement,  j, δmax maximum 

allowed displacement, nj number of nodes, σk 

maximum stress on the element k, σadm maximum 

allowed stress on the element and nm number of 

elements in the structure. Aiu y Ail are the 

minimum and maximum values that the variables 

can take. Due to constructive constrains, it is not 

possible to assign an unique cross-section to each 

individual element in the structure, because of 

this, groups of elements are assigned with the 

same cross-section, producing one design 

variable per group. The reduction in quantity of 

design variables also leads to a reduction in the 

search space to consider less possible solutions. 

The algorithm was implemented on the integrated 

development environment Eclipse®, version Juno 

Service Release 2 complimented with JDK 1.7. 

(Java Development Kit), that includes the tools to 

develop, debug and monitor JAVA® 

applications. 

It is important to consider that the mathematical 

formulation defined in the paper was used with 

the objective of comparing the performance of the 

methodology proposed with other algorithm in 

the literature. Non the less, the model of physical 

constrain is limited due to the exclusion of 

important phenomena in the steel structural 

design like the susceptivity to buckling.    

2.2 Configuration of Multi-chromosome 
Genetic Algorithm.  

A multi-chromosome GA (MCGA) is proposed to 

find the solution to the optimization problem 

established in section 2.1. The algorithm uses an 

especial representation for the individuals (figure 

2), which are constituted by two chromosomes: 

(I) one binary chromosome with Gray 

codification to represent the solution of the 

problem, in other words, a combination of 

sections and II) a real chromosome that allows to 

self-adapt the genetic parameters during the 

evolutionary process. Said representation allows 

to simultaneously establish adequate values for 

the cross-section of the structure’s elements and 

the genetic parameters required in each stage of 
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the optimization process. The adaptation of the 

parameters is attached to each individual, this 

means that each parameter does not have one 

unique value through the optimization process, on 

the contrary, it varies through the process. From 

the above it is possible to diminish the algorithm 

success dependency from the values of the 

parameter defined by the user, which is present in 

the traditional approach with constant parameters 

for all the population. And so, the success of the 

algorithm is evaluated from the solution found 

and considering the reduction in the number of 

objective function evaluations, which is obtained 

as a consequence of the elimination of the trial 

and error process used to calibrate the genetic 

parameters. 

The Figure 2 shows an example of an individual 

that represents a 3D truss with 6 groups of 

elements. Each of the columns of the binary 

chromosome indicates the codification of cross-

section to be assigned to each element, starting 

with group 1 (left end) and ending with group 6 

(right end). Considering that a data base of 30 

sections requires 5 binary digits to represent any 

position in said data base, the elements 2 and 5 

will take the cross-section 18 and 27 from the data 

base of profiles, respectively.  Regarding the real 

chromosome, this is used to evolve the genetic 

parameters through the process. From left to right, 

the values correspond to cross rate and mutation 

rate for the real and binary chromosome, 

respectively. The proposed representation allows 

for the exact values of the different rates to no be 

defined by the user, but to establish intervals for 

the possible values (Table 1), expecting that the 

performance of the algorithm is in a lesser degree 

dependent of its parameters. These values were 

selected from the reference11 since it was shown 

to be adequate in the solution of another problem 

in the structural engineering field. In this manner, 

the performance of the methodology would be 

evaluated when the range of the values of the 

parameters does not require to be inputted by the 

user. 

The next step for the MCGA configuration 

consists in selecting the genetic operator that will 

generate new solution form the current 

population. The selected operators were taken 

from the reference 11, like shown in Table 2, due 

to the effectiveness shown in said paper. The way 

of applying these operators to each type of 

chromosome (binary or real) can be found in 

classic texts of genetic algorithm, like shown in 
(12). A study of the effect of the usage of other 

operators was not made, since the focus of this 

research lies on the impact that the definition of 

genetic parameters has; non the less, it must be 

studied in future work to define de most adequate 

parameters for the problem. 

Binary Chromosome – Cross-Section Position for Each Element 

10110 10010 01001 11110 11011 10100 

            

  

 

Real Chromosome – Genetic Parameters   

  0.785 0.856 0.008 0.011   
 

Figure 2. Example of binary and real chromosomes representation of an individual. 
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For handling the problem’s constrains, a 

penalization technique is used to transform the 

problem in a “non- restrained” one. In this 

manner, a dynamic penalization factor was 

included in the objective function to “punish” 

those solutions that violates the constrains. The 

scheme allows the increase of the penalization as 

the evolutionary process advances and given by 

(5): 

∅(x) = f(x) + (0.50*t)
2 ∑ [g

i
(x)k] n

 i =1             Ec. 5 

where f is the objective function of the problem, 

x is the variable vector of the design, t is current 

number of the iteration, g is the penalization 

function and k is the magnifying factor for the 

penalization. The efficiency of the previous 

function is conditioned by the value of k. Erbatur 

et al.(5) took a value k = 10, while in the present 

study a value of k =15 is taken, with the objective 

of increasing the penalization of the worst 

solutions. Such as strategy tries to guide the 

search to a zone where the best solution for an 

individual could be found. This value was 

obtained by trial and error of tests with different 

values of k. 

On this paper, a total of 50 runs of the GA was 

made for each of the examples studied, where the 

solution found corresponds to the best individual 

at the end of the evolutionary process. As a 

stopping criterion a maximum number of 

iterations was used, which was defined for each 

case studied. The solution provided to the user 

corresponds to the structural configuration the 

minimum self-weight among the set of good 

solutions.  

2.3 Structural Analysis of 3D Trusses 

The evaluation of the constrains requires that it 

must be known the internal forces of the elements 

and displacement of the structure that are caused 

by external loads. To manage this a program of 

lineal analysis for the structure using finite 

elements was developed on MatLab®. The 

complement deplovtool was used to transform the 

MatLab® code in to a file package (function) 

JAVA®, with the objective of connecting the 

Table 1. Limits for the Genetic Parameters for the Solution (11) 

Limit 
       Crossing        Mutation 

Binary Real Binary Real 

Inferior 0.70 0.80 0.005 0.03 

Superior 0.90 0.95 0.020 0.06 

 

Table 2. Genetic Operators for the Simulation (11) 

Chromosome Selection Crossing Mutation 

Real 
Tourney, n=3 

BLX- α  α = 0.50 Creep 

Binary Two points Jump 
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codes. All the data entries (geometry, loads, 

constrains, connectivity, etc.) and element 

properties are read form an Excel® spreadsheet. 

The program was configured by interfaces to 

manage a polymorphic behavior, so that the file 

reading mode stays open.  

3. Numeric Examples 

Two classic examples reported in literature were 

used to evaluate the performance of proposed 

methodology, in terms of the self-weight of the 

optimized structure and the number of evaluations 

of the objective function. In both examples the 

structure is made out of a material with a density 

of 0.1 lb/in3 (2678.8 kg/m3) and an elastic module 

of 10000 ksi (68947.6 MPa). The results obtained 

are compared with those reported by diverse 

authors that have employed metaheuristic to 

resolve the same examples. Likewise, the diverse 

configuration of the elements that results from the 

last generations are analyzed to categorize the 

objective function in terms of the presence or lack 

there of local optimums. Finally, the convergence 

process toward the final solution for the two 

examples will be observed. In relation with the 

optimization algorithm, 50 runs will be executed 

with 100 individuals and 250 iterations, values 

that were determined after trial and error tests. 

3.1.Example 1: Spatial Trussing of 25 
Elements 

In Figure 3, the structural configuration for the 

spatial truss is shown, which has 25 elements, 

with a total of 18 degrees of freedom and 4 hinged 

supports. The elements were grouped so that only 

8 possible different cross-sections maximum 

could be assigned (design variables). As shown in 

Table 3, generic sections are used using only the 

cross-section area, being that they vary in a 

discreet way between 0.1 (6.45E-5 m2) and 3.4 

(2.19E-3 m2) every 0.1 in2 (6.45E-5 m2). 

Figure 3. Spatial Truss with 25 Elements (13) 

Regarding the constrains, the maximum allowed 

displacement is 0.35 in (8.89E-3 m) in all 

direction and the limit stress are presented in 

Table 3. The loads assigned over the structure 

appears on Table 4. 

Table 4. Load conditions for the Truss of 25 Elements 

Table 3. Restrictions for the Truss of 25 Elements 

Design 
Variables (in2) A1 A2 A3 A4 A5 A6 A7 A8 

Compression 

stress limit ksi 

-Mpa 

35.09- 

241.93 

11.59- 

79.91 

17.31- 

119.35 

35.09- 

241.93 

35.09- 

241.93 

6.76- 

46.61 

6.96- 

46.61 

11.08- 

76.39 

Tension stress 

limit (ksi) 

40.00- 

275.79 

40.00- 

275.79 

40.00- 

275.79 

40.00- 

275.79 

40.00- 

275.79 

40.00- 

275.79 

40.00- 

275.79 

40.00- 

275.79 
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Node 
Fx Fy Fz 

kips kN kips kN kips kN 

1 0.00 0.00 20.00 88.96 -5.00 22.24 

2 0.00 0.00 -2.00 8.90 -5.00 22.24 

 
3.2. Example 2: Spatial Trussing of 72 

Elements 

In Figure 4, the structural configuration for the 

spatial truss with 72 elements is presented, which 

are gathered into 16 groups (Table 5). It is 

established a minimum cross-section area of 0.1 

in2 (6.45E-5 m2) that can be increased by 0.001 

in2 (6.45E-7 m2), until it reaches 3 in2 (1.935 E-3 

m2). The loads are localized in the axis z with a 

value of – 5 kips (22.24 kN) on the nodes 17, 18, 

19 y 20. The material used present maximum 

allowed stress of 25 ksi (172.37 Mpa) to 

compression and 25 ksi (172.37 Mpa) to tension. 

The displacement constrain is set to 0.25 in 

(6.35E-3 m) in all directions. 

4. Results 

4.1. Truss Optimization 

Table 5-8 reports the results of the application of 

MCGA and other optimization techniques on the 

trusses presented in section 3, which were 

organized with the best result to the left of the 

table. The criteria to evaluate the performance of 

the algorithm corresponds to the self-weight of 

optimized truss and the quantity of structural 

analysis carried out. The initials N.R. indicate the 

authors of methodology did not report the 

corresponding information. The total quantity of 

structural analysis used on the optimization 

process (values with a ̈ *¨) are determined through 

a multiplication of the number of iterations by the 

size of the population. It is important to note that 

it is not possible to include the number of runs in 

the comparison, due to others authors reported the 

number of evaluations based on the best run and 

not the number from the total of runs. Likewise, 

diverse authors did not report the quantity of 

evaluations made to calibrate the genetic 

parameters.  

 
Figure 4. Spatial Truss with 72 elements: (a) Elevation View. (b) Standard Floor (14)  
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On Table 5 and 6 the results for different GAs 

methodologies are shown. The self-weight 

obtained by the MCGA for example 1 and 3 is just 

2.5% and 1% greater than the minimum self-

weight found by other authors, respectively. One 

comparison of quantity of structural analysis 

made indicates that there is no defined pattern to 

the behavior of the different methodologies. If the 

quantity of analysis made for GA from reference 
(4) and MCGA are compared, it is observed that 

the MCGA executed 6100 additional analysis for 

example 2 and 5200 less analysis for example 1. 

The analysis of results regarding the number of 

analysis made is not completely just if we 

consider the following: I) the quantity shown 

correspond to the best run of each one of the 

reported algorithms and not to the sum of the 

analysis carried out in each of the runs of the 

algorithms; II) the quantity of times that it was 

necessary to try out combinations of genetic 

parameters to find the most adequate one is not 

reported. Actually, the total of structural analysis 

made should be calculated considering the 

number of tests necessary to calibrate the genetic 

parameters, the quantity of runs made, the number 

of iterations to reach a solution and the size of the 

population. The MCGA has the advantage that is 

does not require to calibrate the parameters, and 

that in general, it uses a lesser quantity of 

evaluations of the objective function compared to 

those required for the GAs shown in Table 5 and 

6 

Tables 7 and 8 show the performance of different 

metaheuristics used on GAs to optimize the 

studied trusses. The MCGA obtained a 

configuration for example 1 which is 2.3% more 

heavy than the lightest structure obtained by other 

metaheuristics, being that diverse techniques 

produced the same configuration. The later can be 

due to low quantity of variables optimized. In the 

case of quantity of evaluations, the MCGA 

occupied the second place in quantity of analysis 

made. Regarding the example 2, the self-weight 

of the truss and the quantity of the required 

evaluations it in the mean of values obtained by 

other methodologies. This shows that future 

research must be done to improve the search 

ability of the algorithm. Finally, from the reported 

data, it is inferred that the metaheuristics 

produced a determined level of success in 

function of the analyzed truss. For example, The 

Harmony Search algorithm obtained results in par 

with other methodologies used with trusses with 

25 elements, while with trusses of 72 elements it 

obtained worst results. 

Table 5. Results of other methodologies that use GAs for the Truss with 25 elements  

Reference (3) (7) (6) (4) (5) MCGA 

Weight in pounds (kg) 
483.35 

(220.14) 

484.64 

(219.83) 

484.85 

(219.92) 

485.90 

(220.40) 

493.80 

(223.98) 

495.33 

(224.68) 

Populations 40 N. R. 200 900 N. R. 100 

No. of Iterations N. R. N. R. 146 400 N. R. 148 

No. of structural analysis N. R. N. R. 29,200* 360,000* 20,000 14,800* 

 

Table 6. Results of other methodologies that use GAs for the Truss with 72 elements 

Reference (7) (4) (6)  (5) MCGA 

Weight in pounds (kg) 
380.05 

(172.39) 

380.78 

(172.72) 

382.35 

(173.43) 

383.12 

(173.78) 

383.87 

(174.12) 

Populations N. R. 1500 100 N. R. 100 

No. of Iterations N. R. 600 191 N. R. 252 

No. of structural analysis N. R. 898,500* 19,100 30,000 25,200 

 



Villalba-Morales, et al./Ingeniería y Competitividad, 23(1), 7337, enero-julio2021 

11 / 14 

4.2 Analysis of the configuration of the 
solutions found  

Tables 9 and 10 show the best configurations of 

the cross-sections found for the examples by the 

metaheuristics presented in section 3.1. The 

results prove the existence of different cross-

section configuration that produce a similar self-

weigh for the structure. Reference (15) and (18) 

reported trusses configuration of 25 elements that 

present sections different for 3 of the 8 groups of 

elements with a difference in self-weight of 0.3%. 

The configuration obtained by the MCGA 

presents a considerable difference in the cross-

section area of group 2 compared with the best 

solution, reason why the self-weight obtained was 

not the best. In the truss with 72 elements there is 

more variation between the solutions, being that 9 

groups presents differences in the cross-section 

area greater than 5% in case of references (19) and 
(6), with a difference in self-weight of only 0.7%. 

The proposed algorithm obtained similar values 

to other analyzed methodologies in the paper. The 

previous results show a multimodal nature to the 

problem, reason why it is necessary to introduce 

a characteristic to the GA to manage this type of 

characteristics. With this, it is expected a better 

convergence of the proposed algorithm to the 

global optimum. 

 

Table 7. Results of other methodologies that use GAs for the Truss with 25 elements  

Reference (15) (13) (16) (14) (17) MCGA 
proposed 

Metaheuristic 
Simulated 

Annealing 

Harmony 

Search 

Ant 

Colony 

Big-Bang 

Big 

Crunch 

Particle Swarm 

Optimization 

Genetic 

Algorithm 

Weight in pounds 

(kg) 

484.33 

(219.69) 

484.85 

(219.92) 

484.85 

(219.92) 

484.85 

(219.92) 

484.85 

(219.92) 

495.33 

(224.68) 

Populations 1 30 N. R. 100 50 100 

No. of Iterations 39,201 N. R. 100 N. R. 500 148 

No. of structural 

analysis 
39,201 18,734 N. R. 9,090 25,000 14,800 

 

Table 8. Results of other methodologies that use GAs for the Truss with 72 elements 

Reference (18) (19) (14) MCGA 
proposed (17) (13) 

Metaheuristic 

Bee 

Colony 

Opt. 

Teach. 

Learn. 

Based Opt. 

Big-Bang 

Big 

Crunch 

Genetic 

Algorithm 

Particle 

Swarm 

Opt. 

Harmony 

Search 

Weight in pounds 

(kg) 

363.84 

(165.4) 

379.63 

(172.19) 

379.85 

(172.30) 

383.87 

(174.12) 

388.94 

(176.42) 

389.08 

(176.48) 

Populations N. R. N. R. N. R. 200 N. R. N. R. 

No. of Iterations N. R. N. R. N. R. 126 N. R. N. R. 

No. of structural 

analysis 

N. R. 19,709 19,621 25,200 N. R. 27,113 
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Table 10. Cross-section configuration found by diverse authors for truss with 72 elements 

  References  
Groups Elements (18) (19) (14) (4) (6) MCGA 

1 1-4 0.1675 0.1562 0.1565 0.156 0.154 0.158 

2 5-12 0.5346 0.5493 0.5507 0.555 0.604 0.546 

3 13-16 0.4443 0.4097 0.3922 0.370 0.442 0.411 

4 17-18 0.5803 0.5698 0.5922 0.510 0.604 0.511 

5 19-22 0.5208 0.5317 0.5209 0.620 0.505 0.610 

6 23-30 0.5178 0.5159 0.5172 0.530 0.550 0.553 

7 31-34 0.0100 0.1000 0.1004 0.100 0.109 0.100 

8 35-36 0.1048 0.1000 0.1005 0.100 0.118 0.100 

9 37-40 1.2968 1.2617 1.2476 1.250 1.288 1.116 

10 41-48 0.5191 0.5111 0.5269 0.523 0.469 0.553 

11 49-52 0.0100 0.1000 0.1000 0.101 0.100 0.100 

12 53-54 0.0101 0.1000 0.1012 0.105 0.100 0.100 

13 55-58 1.7907 1.9064 1.8577 1.860 1.702 1.808 

14 59-66 0.5166 0.5061 0.5059 0.513 0.496 0.525 

15 67-70 0.0100 0.1000 0.1000 0.100 0.100 0.100 

16 71-72 0.0100 0.1000 0.1000 0.100 0.100 0.100 

Weight  363.86  379.63 379.85 380.78 382.35 383.87 

 
(a) (b) 

Figure 5. Total Self-weight vs. Number of iterations for truss with de (a) 25 y (b) 72 Elements 

4.3 Convergence of the MCGA 

In Figure 5a is shown that by using 200 

individuals is possible to obtain a better solution 

in the first 100 iterations, but with the advance of 

iterations (around iteration 170) the solution is of 

the same quality. Results for the truss with 72 

elements presents a different behavior (Figure 5b) 

where the solution found is better. The previous 

shows that it is important to determine a 

mathematical equation for the adequate size of the 

population in function of the truss complexity 

(number of cross-sections that most be defined 

and size of the data base for the available 

profiles). Finally, it can be observed that the 

improvement of the design reaches 35% 
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approximately compared to the initial value of 

both examples. 

5. Conclusion 

In this paper a methodology based on self-

adaptive genetic algorithm was presented to 

minimize the self-weight of steel trusses, 

which was validated at a functional and 

computational level, through its application 

to two trusses reported in literature. The 

obtained designs for the trusses 

(configuration of the cross-sections for the 

elements) show that the algorithm is capable 

of satisfactorily obtaining economical 

solutions from a data base of previously 

defined sections by the user. The obtained 

results (self-eight and objective function 

evaluation) are comparable to those obtained 

in other metaheuristics. Even thought none 

of the examples obtained the least weight, 

the proposed methodology presents the 

advantage that does not requires the 

definition of the parameters by the user, the 

above leads to requiring less amount of 

evaluations of the objective function and that 

the results have less dependency with the 

values of the genetic parameters. Likewise, 

the results show diverse structural 

configurations for the truss having a similar 

weight in the search space (multi-modal 

search space). Thus, for the best performance 

of the proposed GA there’s techniques that 

can be used for the management of 

multimodal functions. From the above, it is 

expected to increase the possibility that the 

optimal solution found could be global.  
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