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Abstract 
 

This paper addresses the two-machine permutation flowshop problem with deterioration. The objectives are 

minimizing the makespan and the average tardiness. Jobs have a baseline process time in each machine and have a 

due date. The actual time to process a job depends on the machine performance level at the start of each job, which is 

a function of the previously processed jobs and their wear/deterioration effect on the machine. The article proposes 

multiple heuristics and a comprehensive set of experiments.  The results indicate that as a group, the heuristics 

generate solutions that are very close to the optimal for both criteria. Furthermore, no heuristic approach is dominant 

for all experimental conditions, thus heuristic selection to solve practical problems should be based on the specific 

problem characteristics.   

Keywords: Maintenance, Makespan, Permutation flowshop, Scheduling, Sequence-dependent systems, Tardiness. 

Resumen  

Este articulo aborda el problema permutation flowshop con deterioro. Los objetivos son minimizar el tiempo total 

para completar las operaciones y el promedio de su tardanza. Los trabajos tienen un tiempo de proceso base en cada 

máquina y una fecha de vencimiento. El tiempo real de proceso depende del nivel de rendimiento de la máquina al 

inicio de cada trabajo, que es una función de los trabajos procesados previamente y su efecto de desgaste/deterioro en 

la máquina. El artículo presenta múltiples heurísticas y un conjunto exhaustivo de experimentos.  Los resultados 

indican que, como grupo, las heurísticas generan soluciones que están muy cerca de los valores óptimos para ambos 
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criterios. Además, ningún enfoque heurístico es dominante para todas las condiciones experimentales, por lo que la 

selección heurística para resolver problemas prácticos debe considerar las características específicas del problema.   

Palabras clave:  Mantenimiento, Programación de la producción, Sistemas de Secuencias, Tardanza, Tiempo 

máximo de operación. 

 

1. Introduction 

Research about the Flow-shop Scheduling 

Problem (FSP) is extensive and the interest on 

this problem does not abate. A key reason for the 

continued interest in the FSP is that it represents 

how many real-world production systems 

operate; a product requires a sequence of steps 

performed by different resources with the 

constraint that each step of the process must be 

completed for the next to start (1). Researchers 

have addressed many variations of the FSP 

considering the diverse settings and 

characteristics of our industrial world. Some 

problem versions allow skipping steps (2), others 

have multiple parallel machines per step (3), and 

others include due date windows (4).  

This paper considers one of the most basic cases 

of the FSP, called the permutation flowshop 

problem where all jobs must be processed in the 

same order in each of the steps, there is a single 

machine per step, and there is no waiting or 

setups between jobs and between machines. The 

key difference with previous work, and the 

contribution of this article to FSP research, is 

that the proposed model and analysis considers 

the case where the resources (the machines) have 

heterogeneous deterioration based on the job 

sequence. This research considers two measures 

of performance: the completion time of the last 

job on the schedule (e.g., the makespan) and the 

average tardiness. These two are among the most 

commonly addressed measures in the FSP 

literature (5-7). 

Research in the flowshop problem with 

deterioration has been previously addressed by 

multiple authors. Research that addresses the 

minimization of the makespan include Kononov 

and Gawiejnowicz (8), Wang and Xia (9), Wang et 

al. (10), Lee et al. (11), Lee et al. (12), Wang et al. 
(13), Wang and Wang (14) and Sun et. al (15). With 

the exception of (13), the models addressed by 

these authors considers the processing time as a 

linear function which is dependent on its starting 

time: the time to process a job 𝑗 in machine 𝑘 is 

assumed to be 𝑎𝑗,𝑘 +  𝜆𝑡𝑗,𝑘 where 𝑎𝑗,𝑘 is the 

basic processing time of job 𝑗 in machine 𝑘, 𝜆 is 

the deterioration rate, and 𝑡𝑗,𝑘 is the start time of 

job 𝑗 in machine 𝑘. In Wang et al. (13) the 

position of the job is relevant, noting their model 

includes both deterioration and learning. Under 

this model the time to process a job 𝑗 in machine 

𝑘 is assumed to be 𝛼𝑗,𝑘𝑡𝑟𝑏 where 𝛼𝑗,𝑘 is the 

deterioration rate of job 𝑗 on machine k, 𝑡 is the 

start time of job j on machine 𝑘, and 𝑟 is the 

position of job 𝑗 on the sechedule, and 𝑏 is the 

learning index (𝑏 ≤  0).   

Research that addresses the minimization of the 

total tardiness for the flowshop problem with 

deterioration has not received much attention, 

with Bank et al (16) and Lee et al. (17) being the 

only two articles on the subject. As in most of 

the pervious papers, the deterioration of the jobs 

is based on a linear function of their starting 

times. Research in the related measure of 

maximum tardiness by Sanchez-Herrera et al. (18) 

considers position-based deterioration. 

Therefore, previous research typically considers 

the situation where the jobs deteriorate 

depending on the time at which they start being 

processed or based on their position in the 

sequence. This view of the system fails to 

consider environments where the machines (or 
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worker) are the elements that are wearing 

down/deteriorating, and each job may have a 

different effect on the condition of the machine. 

Therefore, a job’s processing time would not 

depend on the start time or the number of jobs 

previously processed (position), but rather in the 

condition of the machine, where the condition of 

the machine does not depend on the time or just 

the number of jobs, but rather on the specific set 

of jobs processed. An approach to model 

deterioration in this manner was proposed by 

Ruiz-Torres et al. (19) and has been used in 

several follow up work including Santos and 

Arroyo (20), De Araújo et al. (21), Perez et al. (22) 

and Ding et al. (23).  

Furthermore, this approach to modeling 

deterioration is an element of a software 

developed for the optimization of logistics 

during well drilling (24). As in the case of drilling, 

there are multiple real-world settings where the 

equipment (machines) deteriorates based on the 

particular sequence, for example processes 

associated with metal cutting and shredding 

where equipment performance decreases as it 

processes the materials. The cutting tools’ 

characteristics in terms of sharpness and 

hardness deteriorates due to the heat and 

pressures of the involved processes, and as this 

occurs, the time required to process a job in 

order to meet the required specifications will 

increase in comparison with the original plan. 

However, the wear/deterioration effect on the 

machine is not the same for all jobs being 

processed.  

For instance, material that is softer will have a 

smaller effect than material that is harder. For 

example, at time 𝑡 =  35 a set of easy jobs 

would have been completed and as a result the 

machine would be performing at 90%. In this 

case the time to process job 𝑗 would be 5 hours 

to complete given the machine status. On the 

other hand, if at time 𝑡 =  35 a set of ℎ𝑎𝑟𝑑 jobs 

would have been completed and, therefore, the 

machine would be performing at 75%. In this 

case, the time to process job 𝑗 would be 6 hours. 

Another simple illustrative example relates to a 

person doing exercises following a multi-step 

routine. This person can either start the routine 

by running 2 kilometers or walking 1.5 

kilometers (and we assume this person can 

complete any of them in 12 minutes at the start 

of the routine – when “fresh”). For most people, 

the level of deterioration (tiredness) for position 

2 (second exercise of the routine) or conversely 

at time = 12 minutes would be very different 

depending on the decision of what exercise to do 

first (run or walk), and thus performing the next 

exercise may take different amounts of time in 

each case. 

Given the time to process jobs increases as the 

machines degrades, a simple option is to run the 

softer jobs first. However, this simple approach 

is only true if all jobs have the same processing 

times (19). It is worthwhile noting that the 

proposed model also has direct application to the 

scheduling of people. The sequence of jobs 

performed by an operator can have diverse 

effects on the level of mental/physical tiredness 

of that person, therefore a type of deterioration. 

This is probably the reason why many people 

like to do the easy tasks first. 

This research contributes to the body of 

knowledge in production and engineering as it 

takes on a different view of the system 

concerning deterioration in flowshop scheduling, 

where the machines deteriorate based on the set 

of jobs previously processed by the resource. 

Furthermore, this research is relevant as it 

expands on the study of the effect that 

deterioration has on the tardiness criteria, which 

is relevant in customer service and therefore 

competitiveness. This paper is organized as 

follows; Section 2 provides the methodology 

including the problem description and heuristics 
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proposed to generate schedules, Section 3 

presents computational experiments and results, 

while Section 4 provides conclusions and 

directions for future work. 

2. Methodology  

2.1. Problem description  

Consider a set 𝑁 = {1, … , 𝑗, … 𝑛} of 𝑛 

independent jobs to be processed on a flowshop 

with two machines. All jobs flow in the same 

sequence (permutation flowshop), from machine 

1 to machine 2. All jobs are available at time 0 

(static case) and cannot be preempted or divided. 

Each machine can process only one job at a time. 

At time 0 (the start of the schedule) both 

machines are at their baseline state (e.g., 0% 

wear = 100% performance). Let 𝑝𝑗,𝑘 be the 

baseline processing time of job 𝑗 on machine 𝑘; 

𝑤𝑗,𝑘 be the wear/deteriorating effect of job 𝑗 on 

machine 𝑘 with 0 ≤ 𝑤𝑗,𝑘 ≤ 1, and let 𝑑𝑗 be the 

due date of job 𝑗.  

Let 𝑋 be the ordered set of jobs and 𝑥[ℎ] be the 

job assigned to positon ℎ. Let 𝑞ℎ,𝑘 be the 

performance level for the job in positon 

ℎ of machine 𝑘. For 𝑘 = 1, 2 the value of 𝑞ℎ,𝑘 is 

defined by (1 − 𝑤𝑥[ℎ−1],𝑘) × 𝑞ℎ−1,𝑘 when ℎ >

1, and 𝑞ℎ,𝑘 = 1 when ℎ = 1 (as mentioned 

earlier, the model assumes the machines are at 

their “best” operating level at the start of the 

schedule). Let 𝑝𝑥[ℎ],𝑘
′  be the actual processing 

time of job 𝑥[ℎ] in machine 𝑘, and 𝑝𝑥[ℎ],𝑘
′ =

𝑝𝑥[ℎ],𝑘 𝑞ℎ,𝑘⁄ . This function to define resource 

deterioration was first used in (19) and used in 

follow up research as mentioned in the 

Introduction section (20-23). 

The completion time of a job 𝑗 in machine 𝑘 is 

𝑐𝑗,𝑘 and the tardiness of a job is 𝑡𝑗 = 

max[0, 𝑐𝑗,2 − 𝑑𝑗]. The measures under analysis 

are the makespan: 𝑐𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑗∈𝑁 𝑐𝑗,2 and the 

average tardiness: 𝑡𝑎𝑣𝑒 = ∑ 𝑡𝑗𝑗∈𝑁 𝑛⁄ . 

A simple example is presented next to illustrate 

the problem. There are 𝑛 = 6 jobs with 

processing times, wear/deterioration, and due 

dates parameters as in Table 1. We first consider 

the makespan measure of performance and use 

Johnson’s algorithm(24) to determine a schedule 

given it provides the optimal solution in the 

basic case with no wear/deterioration. Note that 

Johnson Algorithm (JA) iteratively selects the 

job with the smallest processing time in any of 

the machines and assigns them to the sequence: 

if the process time is in machine 1, the job is 

placed in the “front” of the schedule, and if it’s 

on the second machine, its placed on the “back” 

of the schedule, working towards the center of 

the sequence until all jobs are assigned (a formal 

description is provided in section 2.2.2).  

Therefore for this example, job 5 is selected first 

and placed at the “back” of the schedule, then 

job 6 is selected and placed at the “front”, then 

job 3 is selected and placed at the front (but after 

6), then job 2 is placed at the “back”, but ahead 

of job 5, next is job 1 which is placed at the front 

(but after 3), and finally job 4 stays in the middle 

remaining position for the sequence: 6-3-1-4-2-

5.   

Table 1. Job information 

𝒋 𝑝𝑗,1 𝑝𝑗,2 𝑤𝑗,1(%) 𝑤𝑗,2(%) 𝑑𝑗 

1 34 51 2 5 100 

2 80 30 6 6 145 

3 25 60 1 7 210 

4 48 45 9 2 260 

5 60 18 5 1 280 

6 20 50 4 9 350 

The top diagram of Figure 1, schedule s1, 

presents the JA based schedule with no machine 

wear/deterioration (in other words 𝑤𝑗,1 = 𝑤𝑗,2 =

0  ∀𝑗 ∈ 𝑁). Schedule s1 includes the completion 

time of each job on each of the two machines. 

This schedule has a makespan of 285, which as 

mentioned is optimal when no machine 
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wear/deterioration is considered. Schedule s2 of 

Figure 1 presents the same sequence of jobs but 

including machine deterioration. The diagram 

includes the completion time of each job on each 

machine as well as the machine performance 

level at the end of that job (position assigned to 

that job).  

 
Figure 1. Three schedules: JA not considering 

wear/deterioration (s1), JA considering 

wear/deterioration (s2), optimal makespan schedule 

considering wear/deterioration (s3) 

Next, it is described how the machine’s 

performance level and the actual job’s 

processing times are determined when machine 

wear/deterioration is considered. The 

performance level of machine 1 is at 100% in 

position 1 (ℎ = 1, 𝑞1,1 = 1 ), the position 

assigned to job 6. The actual process time of job 

6 is 20 (𝑝6,1
′ = 𝑝6,1 𝑞1,1⁄ = 20/1 = 20). Given 

𝑤6,1 = 4%, the machine performance level at 

the end of job 6 (therefore for position ℎ = 2) is 

96% (𝑞2,1 = (1 − 𝑤6,1) × 𝑞1,1 = 0.96 × 1 =

0.96). The actual process time for job 3 (the job 

assigned to position 2) is 26 (𝑝3,1
′ = 𝑝3,1 𝑞2,1⁄ =

25/0.96 = 26). Given 𝑤3,1 = 1%, the 

performance level of machine 1 after job 3 

(therefore for position ℎ = 3) is 95.04% 

(𝑞3,1 = (1 − 𝑤3,1) × 𝑞2,1 = 0.99 × 0.96 =

0.9504). The actual process time for job 1 (the 

job assigned to position 3) is 35.8 (𝑝1,1
′ =

𝑝1,1 𝑞3,1⁄ = 34/0.9504 = 35.8).  The same 

calculations are repeated for the remaining 

positions and for machine 2 (considering the 

availability for the job in the second machine). It 

is noted that the performance level at the end of 

the schedule will be the same value for all 

possible sequences as it is the effect of 

processing all jobs in the machine (total 

wear/deterioration). The makespan of this 

schedule is 327.4, a difference of almost 15% 

versus the case when machine deterioration is 

not considered (Schedule 1 of Figure 1). 

Schedule s3 in Figure 1 presents a third schedule 

considering machine wear/deterioration with a 

makespan of 319.8. This sequence was obtained 

by a full enumeration search (in other words, all 

possible schedules were generated) and it results 

in the lowest makespan for the example problem. 

It is evident with this example that the schedules 

generated by JA are not optimal for the proposed 

problem. 

Figure 2 presents the schedules generated when 

ordering jobs according to the Earliest Due Date 

rule (EDD). Schedule s4 illustrates the schedule 

when machine wear/deterioration is not 

considered and the bottom schedule when it is 

considered. The jobs in grey are late. The 

additional row of information below the 

schedule is the tardiness for each job (tj). When 

machine wear/deterioration is not considered, all 

the jobs are on time, therefore an average 

tardiness of 0 (Schedule s4). As it can be noted 

in schedule s5 of Figure 2, when machine 

wear/deterioration is considered, five jobs are 

tardy with an average tardiness of 5.18. From the 

previous discussion, it should be clear that 

ignoring machine wear/deterioration is very 

important as it could lead to incorrect/poor 

decisions in work planning. 

2.2 Heuristics 

This section describes basic algorithms used to 

generate job sequences and improve on the 

resulting measures of performance. The 

algorithms used to generate job sequences are 
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based on list ordering and on Johnson’s 

algorithm. The improvement methods are based 

on job exchange strategies. 

 
Figure 2. Two schedules ordered by due date, one not 

considering wear/deterioration (s4) and another 

considering wear/deterioration (s5) 

2.2.1 Ordering using one job characteristic 

The job sequence is based on a single 

characteristic for each job. Eight characteristics 

are analyzed, where in all cases the list is in non-

decreasing order of the characteristic. 

• EDD: due date (𝑑𝑗). 

• Slack: slack time based on the baseline 

process times (𝑠𝑗  =  𝑑𝑗  – 𝑝𝑗,1  − 𝑝𝑗,2). 

• w1: wear/deterioration effect on the first 

machine (𝑤𝑗,1). 

• w2: wear/deterioration effect on the second 

machine (𝑤𝑗,2). 

• p1: baseline process time on the first 

machine (𝑝𝑗,1). 

• p2: baseline process time on the second 

machine (𝑝𝑗,2). 

• p_w1: ratio of baseline process time over 

the performance level effect on the first 

machine (𝑝𝑗,1/(1 − 𝑤𝑗,1)). 

• p_w2: ratio of the baseline process time 

over the performance level on the second 

machine (𝑝𝑗,2/(1 − 𝑤𝑗,2)). 

2.2.2 Ordering using two job characteristics 

The job sequence is created by using information 

from both machines. Three rules are analyzed 

that use the wear/deterioration effects, the 

baseline process times, and the ratio of process 

time to performance level. The first rule is in 

principle similar to Johnson’s but attempts to 

assign the jobs with lower wear/deterioration 

effect in the first machine at the front of the 

sequence, and the jobs with higher 

wear/deterioration jobs in the second machine at 

the “back” of the sequence. The second and third 

algorithms are Johnson’s and a modified version 

that uses the ratio characteristic, respectively. 

Wear effect algorithm (WA) 

Step 1.  Let 𝑁’ = 𝑁, 𝑓 = 1, 𝑏 = 𝑛, 𝑤𝑚𝑖𝑛 =

𝑚𝑖𝑛𝑗∈𝑁𝑤𝑗,1, and 𝑤𝑚𝑎𝑥 =

𝑚𝑎𝑥𝑗∈𝑁𝑤𝑗,2. 

Step 2. Let  𝑤′𝑗,1 = 𝑤𝑗,1 − 𝑤𝑚𝑖𝑛, 𝑤′𝑗,2 =

𝑤𝑚𝑎𝑥 − 𝑤𝑗,2 ∀ 𝑗 ∈ 𝑁.  

Step 3.  Let 𝑗′ = {𝑗 |𝑗 ∈  𝑁′, 𝑘 = 1,2 ∶

 𝑚𝑖𝑛 [𝑤′𝑗,𝑘]}. 

Step 4.  If 𝑤𝑗′,1 < 𝑤𝑗′,2 then 𝑥[𝑓]  =  𝑗’, 𝑓 =

 𝑓 + 1 else  𝑥[𝑏]  =  𝑗’, 𝑏 = 𝑏 − 1. 

Step 5.  Let 𝑁′ = 𝑁′ − 𝑗’.  

Step 6.  If |𝑁′| ≠ ∅ then return to Step 3. 

 Johnson’s algorithm (JA) 

Step 1.  Let 𝑁’ = 𝑁, 𝑓 = 1, 𝑏 = 𝑛 

Step 2.  Let 𝑗′ = {𝑗 |𝑗 ∈  𝑁′, 𝑘 = 1,2 ∶

 𝑚𝑖𝑛 [𝑝𝑗,𝑘]}. 

Step 3.  If 𝑝𝑗′,1 < 𝑝𝑗′,2 then 𝑥[𝑓]  =  𝑗’, 𝑓 =

 𝑓 + 1 else 𝑥[𝑏]  =  𝑗’, 𝑏 = 𝑏 − 1. 

Step 4.  Let 𝑁′ = 𝑁′ − 𝑗’.  

Step 5.  If |𝑁′| ≠ ∅ then return to Step 2. 

Modified Johnson’s algorithm (MA) 

Step 1.  Let 𝑁’ = 𝑁, 𝑓 = 1, 𝑏 = 𝑛 
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Step 2.  Let 𝑗′ = {𝑗 |𝑗 ∈  𝑁′, 𝑘 = 1,2 ∶

 𝑚𝑖𝑛 [𝑝𝑗,𝑘/(1 − 𝑤𝑗,𝑘)]}. 

Step 3.  If 𝑝𝑗′,1/(1 − 𝑤𝑗′,1) < 𝑝𝑗′,2/(1 −

𝑤𝑗′,2) then 𝑥[𝑓]  =  𝑗’, 𝑓 =  𝑓 + 1 

else 𝑥[𝑏]  =  𝑗’, 𝑏 = 𝑏 − 1. 

Step 4.  Let 𝑁′ = 𝑁′ − 𝑗’.  

Step 5.  If |𝑁′| ≠ ∅ then return to Step 2. 

2.2.3 Improvement methods 

These improvement methods exchange jobs to 

reduce the measure of performance under 

consideration. Let 𝑣 be the current value of the 

measure of performance of interest (makespan or 

average tardiness) for a schedule with job 

sequence 𝑋. As in Wang et a. (2012) the First 

Improvement (FI) method accepts the first 

exchange that results in an improvement in v, 

while in the Best Improvement (BI) method, all 

exchanges are considered, and the best exchange 

is accepted. Both versions end when no further 

improvements are found. 

First improvement (FI) 

Step 1.  Let 𝑦 =  1 and 𝑧 =  2. 

Step 2.  Let job 𝑎 = 𝑗𝑥[𝑦] and job 𝑏 = 𝑗𝑥[𝑧]. 

Step 3.  Exchange the positions of jobs 𝑎 and 

𝑏 and let 𝑣’ be the measure of 

performance of this sequence.  

Step 4. If 𝑣’ <  𝑣 then let 𝑣 =  𝑣’ and return 

to Step 1. 

Step 5. Exchange the positions of jobs 𝑎 and 

𝑏.  

Step 6. If 𝑧 <  𝑛 let 𝑧 =  𝑧 +  1 and return 

to Step 2. 

Step 7. If 𝑦 <  𝑛 –  1 then 𝑦 =  𝑦 +  1 and 

𝑧 =  𝑦 +  2 and return to Step 2. 

Best improvement (BI) 

Step 1.  Let 𝑦 =  1, 𝑧 =  2, and 𝑣𝑏𝑒𝑠𝑡 =  𝑣. 

Step 2.  Let job 𝑎 = 𝑗𝑥[𝑦] and job 𝑏 = 𝑗𝑥[𝑧]. 

Step 3.  Exchange the positions of jobs 𝑎 and 

𝑏 and let 𝑣’ be the measure of 

performance of this sequence.  

Step 4. If 𝑣’ <  𝑣𝑏𝑒𝑠𝑡,  then let 𝑣𝑏𝑒𝑠𝑡 =  𝑣′, 

𝑦𝑏𝑒𝑠𝑡 =  𝑦, 𝑧𝑏𝑒𝑠𝑡 =  𝑧. 

Step 5. Exchange the positions of jobs 𝑎 and 

𝑏.  

Step 6. If 𝑧 <  𝑛 let 𝑧 =  𝑧 +  1 and return 

to Step 2. 

Step 7. If 𝑦 <  𝑛 –  1 then 𝑦 =  𝑦 +  1 and 

𝑧 =  𝑦 +  2 and return to Step 2. 

Step 8.  If 𝑣𝑏𝑒𝑠𝑡 <  𝑣  then let job 𝑎 =

𝑗𝑥[𝑦𝑏𝑒𝑠𝑡] and job 𝑏 = 𝑗𝑥[𝑧𝑏𝑒𝑠𝑡], 

exchange the positions of jobs 𝑎 and 

𝑏, let 𝑣 be the measure of 

performance of this sequence and 

return to Step 1. 

2.2.4 Overall set of Heuristics 

A total of 11 heuristic approaches are proposed 

to generate an initial schedule (8 presented in 

section 2.2.1 and 3 presented in section 2.2.2), 

while two improvement heuristics are described 

in section 2.2.3. Therefore, a total of 22 

combination approaches (initial sequence 

followed by an improvement heuristic) can be 

generated. For the makespan criteria the initial 

sequence based on due date and slack are not 

relevant, therefore 18 applicable heuristic 

combinations remain. 

3. Results and Discussion 

Two sets of experiments are conducted to 

evaluate the performance of the heuristic for the 
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two criteria under consideration. The first set of 

experiments evaluate the heuristic performance 

versus the optimal solution for small sized 

problems (optimal benchmark experiments), 

while the second set of experiments evaluate 

relative heuristic performance for larger sized 

problems (relative benchmark experiments). To 

find the optimal solution for the first set of 

experiment, a full enumeration search is 

conducted where all the possible job sequences 

are examined, and the schedules are generated. 

All experiments were conducted on a personal 

computer with the following characteristics: 

12GB RAM, 2.9GHz CPU, Windows 10 OS. 

3.1 Experimental Framework 

Four experimental variables are considered: the 

number of jobs, the range of process times, the 

range of wear/deteriorations, and the congestion 

ratio. For the optimal benchmark experiments 𝑛 

is considered at two levels: 𝑛 = 6, 8, while for 

the relative benchmark experiments 𝑛 is 

considered at three levels: 𝑛 = 10, 15, 20. For 

the relative evaluation experiments, the value of 

𝑛 = 20 is selected as the largest level as higher 

values of 𝑛 are deemed unpractical. At larger 

values of 𝑛, the machine performance levels 

would be excessively low, and in such cases 

including maintenance events would be 

“required” (an area of future research). It is also 

noted that a problem with 𝑛 =  20 has 20! 

possible sequences, which is already quite a 

large number of combinations. 

The processing times for the jobs are randomly 

generated using a uniform distribution with 

range 𝑝𝑚𝑖𝑛,𝑘 to 𝑝𝑚𝑎𝑥,𝑘, and the 

wear/deteriorations are randomly generated 

using a uniform distribution with range 𝑤𝑚𝑖𝑛,𝑘 to 

𝑤𝑚𝑎𝑥,𝑘. These two experimental factors are 

considered at four levels as described in Table 2. 

For the processing times, and based on the 

expected values, the first level represents the 

case where both machines have high variability 

and have an equal average load; the second level 

represents the case where both machines have 

less variability and the same average load; the 

third level represents the case where there is 

more variability in the first machine and the 

second machine has a higher processing load, 

and the fourth level represents the case where the 

first machine has a higher average load and the 

second machine has more variability.  

For the wear/deterioration factor and also based 

on expected values, the first level represents the 

case where the jobs have a low effect in both 

machines, the second level represents the case 

where the jobs have a high wear/deterioration 

effect in both machines, the third level represents 

the case where the jobs deteriorate the first 

machine significantly less than the second 

machine, and the fourth level represents the case 

where the jobs deteriorate the first machine 

significantly more than the second machine.  

Table 2. Experimental levels for variables 𝑃𝑟𝑎𝑛𝑔𝑒  and 

𝑤𝑟𝑎𝑛𝑔𝑒 . 

𝒑𝒓𝒂𝒏𝒈𝒆 

level name 
𝒑𝒎𝒊𝒏,𝟏, 𝒑𝒎𝒂𝒙,𝟏 𝒑𝒎𝒊𝒏,𝟐, 𝒑𝒎𝒂𝒙,𝟐 

hv_hv 1, 100 1, 100 

hl_hl 50, 100 50, 100 

hv_hl 1, 100 50, 100 

hl_hv 50,100 1,100 

𝒘𝒓𝒂𝒏𝒈𝒆 

level name 

𝒘𝒎𝒊𝒏,𝟏, 

𝒑𝒎𝒂𝒙,𝟏(%) 

𝒘𝒎𝒊𝒏,𝟐, 

𝒑𝒎𝒂𝒙,𝟐(%) 

lw_lw 0, 5 0, 5 

hw_hw 5, 10 5, 10 

lw_hw 0, 5 5, 10 

hw_lw 5,10 0, 5 

The due date for a job 𝑗 is randomly generated 

using a uniform distribution with range 𝑑𝑚𝑖𝑛 to 

𝑑𝑚𝑎𝑥. The value of 𝑑𝑚𝑖𝑛 = 𝑝𝑗,1 + 𝑝𝑗,2, while 

𝑑𝑚𝑎𝑥 = (∑ 𝑝𝑔,1 + 𝑝𝑔2)/𝜃𝑔∈𝑁 , where 𝜃 is called 

the due date tightness ratio. The experimental 

factor 𝜃 is considered at three levels 1, 1.5 and 2, 

and as it increases the due dates decrease while 

the average tardiness is expected to increase. 
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One randomly selected job of every instance is 

assigned a 𝑑𝑗  =  0, thus for all instances  𝑡𝑎𝑣𝑒 ≥

0.  

For the optimal benchmark experiment set there 

are 2 × 4 × 4 experimental combinations when 

the makespan is considered (𝜃 is not relevant), 

and 2 × 4 × 4 × 3 for the average tardiness 

measure. For the relative benchmark experiment 

set there are 3 × 4 × 4 experimental 

combinations for the makespan measure, and 

3 × 4 × 4 × 3  for the average tardiness 

measure. For each experimental combination 10 

replications are generated. For the optimal 

benchmark problems, all possible sequences are 

generated to find the optimal sequence. For the 

relative benchmark experiments, the best 

solution found by the heuristics is considered the 

“optimal”, although the true optimal is unknown.  

3.2 Makespan Results 

Table 3 presents for each experimental level the 

mean makespan and the percentage of times that 

at least one of the heuristics found the optimal 

solution. At least one of the heuristics found the 

optimal solution in 98.1% (314 out of 320) of the 

instances and under the hv_hv and lw_lw levels 

of 𝑝𝑟𝑎𝑛𝑔𝑒  and 𝑤𝑟𝑎𝑛𝑔𝑒 respectively, the optimal 

makespan was found in 100% of those instances. 

As a set, the heuristics provide a very good 

approximation to the optimal within the analyzed 

structure, although as can be noted, as 𝑛 

increases the % of optimal solutions obtained 

decreases, and the condition of 𝑝𝑟𝑎𝑛𝑔𝑒 =  ℎ𝑣_ℎ𝑙 

and 𝑤𝑟𝑎𝑛𝑔𝑒 =  ℎ𝑤_𝑙𝑤 results in a lower 

percentage of optimal solutions found. 

Table 3. Mean makespan and percentage of optimal 

solutions found by at least one heuristic 

  𝒄𝒎𝒂𝒙 % 𝒐𝒑𝒕𝒊𝒎𝒂𝒍 

𝑛 6 514.0 98.8 

 8 700.3 97.5 

𝑝𝑟𝑎𝑛𝑔𝑒  hv_hv 460.1 100.0 

 hl_hl 719.6 98.8 

 hv_hl 620.8 96.3 

 hl_hv 628.4 97.5 

𝑤𝑟𝑎𝑛𝑔𝑒  lw_lw 557.2 100.0 

 hw_hw 650.2 98.8 

 lw_hw 606.7 98.8 

 hw_lw 614.7 95.0 

 Overall 607.2 98.1 

The discussion of the results focuses on the best 

performing subset of heuristics in order to 

emphasize the more relevant solution 

approaches. Table 4 presents the percentage of 

times each heuristic generated the optimal 

solution. The values in bold indicate the highest 

percentage for that experimental level. The best 

overall performer is MA-BI which found 83.8% 

of the optimal solutions, followed by JA-BI 

which generated 83.4% optimal solutions. These 

two heuristics dominated in five experimental 

levels; however, they do not dominate across all 

the experiments; five of the heuristics dominate 

in at least one level. A notable heuristic is w1-BI 

which outperforms all others at two experimental 

levels with a relatively high success rate, finding 

88.8% and 90% of the optimal values for 

𝑝𝑟𝑎𝑛𝑔𝑒 = ℎ𝑙_ℎ𝑣 and 𝑤𝑟𝑎𝑛𝑔𝑒 = 𝑙𝑤_ℎ𝑤 

respectively. It is noted that the BI improvement 

approach on average outperforms the FI 

approach.  

Table 4. Percentage of the optimal makespan 

solutions generated by the heuristic 
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𝑤𝑟𝑎𝑛𝑔𝑒 lw_lw 
77

.5 

82

.5 

77

.5 

82

.5 

77

.5 

83

.8 

75

.0 

81

.3 

 
hw_h

w 

75

.0 

83

.8 

76

.3 

82

.5 

73

.8 

82

.5 

77

.5 

77

.5 

 
lw_h

w 

85

.0 

85

.0 

85

.0 

85

.0 

86

.3 

86

.3 

77

.5 

90

.0 

 
hw_l

w 

80

.0 

82

.5 

78

.8 

85

.0 

76

.3 

80

.0 

72

.5 

72

.5 

 
Over

all 

79

.4 

83

.4 

79

.4 

83

.8 

78

.4 

83

.1 

75

.6 

80

.3 

Figure 3 illustrates the results per experimental 

factor.  For the overall set of heuristics, the 

average number of optimal solutions decreased 

slightly as n increased, with heuristics JA-BI and 

MA-BI being the exception, maintaining a 

similar performance level for both values of 𝑛. 

Heuristic performance changed notably at the 

different levels of the 𝑃𝑟𝑎𝑛𝑔𝑒 factor, where at 

ℎ𝑣_ℎ𝑙 and ℎ𝑙_ℎ𝑣 all heuristics perform relatively 

well (80-90% of the optimal solutions), at ℎ𝑣_ℎ𝑣 

two heuristics perform well (85%+) and the rest 

have average performances  80%, and at ℎ𝑙_ℎ𝑙 

where all the heuristic has lower performance 

levels ( 75%). It is observed that heuristic MA-

BI performs well across all levels of 𝑃𝑟𝑎𝑛𝑔𝑒, in 

particular for the ℎ𝑙_ℎ𝑙 condition where the 

process times on both machines is higher. Factor 

𝑊𝑟𝑎𝑛𝑔𝑒 also has an effect on overall performance 

and heuristic dominance, although heuristics p1-

BI, MA-BI, and JA-BI have relatively good 

performance across all levels. The graph also 

illustrates how experimental parameters have 

notable effects on the performance of individual 

heuristics; for example, heuristic w1-BI performs 

in the “middle of the pack” for levels 𝑙𝑤_𝑙𝑤 and 

ℎ𝑤_ℎ𝑤, outperforms all others at 𝑙𝑤_ℎ𝑤, and is 

the worst performer at ℎ𝑤_𝑙𝑤. 

The size of the error when the heuristic does not 

find the optimal solution is analyzed as a second 

assessment of overall heuristic performance. 

Table 5 provides the mean and maximum error 

versus the optimal for those instances where the 

heuristic did not find the optimal (𝑒𝑟𝑟𝑜𝑟% =

(1 – 𝑐𝑚𝑎𝑥[ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐]/𝑐𝑚𝑎𝑥[𝑜𝑝𝑡𝑖𝑚𝑎𝑙]) × 100). 

Heuristics MA-BI and JA-BI are the best 

performers; for 16.2% of the total instances that 

MA-BI does not find the optimal solution, the 

mean error is 0.45% and the worst error is 

2.14%. For the 16.6% of the total instances that 

JA-BI does not generate the optimal solution, the 

mean error is 0.46% and the worst error is 

1.73%. Therefore, even in the cases where the 

optimal solution is not found, the error is on 

average less than 0.5%. 

 
Figure 3. Percentage of optimal solutions per 

experimental factor for the makespan criteria 

Table 5. Mean and maximum error% for instances 

versus the optimal. 
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Table 6 presents the percentage of instances per 

experimental level where a heuristic generated 

the best makespan solution for the relative 

benchmark experiments. As in the optimal 

benchmark experiments, the best overall 

performer is MA-BI which found 63.1% of the 

best solutions.  

Table 6. Percentage of the “best” makespan solutions 

generated by a heuristic 
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However, in this set of experiments heuristic w1-

FI is the runner up performer, finding the best 

solution in 62.9% of the problems and 

dominating in five of the experimental levels. 

Six of the heuristics outperform the others in at 

least one experimental level, with w1-FI being 

the heuristic that outperforms the others in the 

most cases. As in the optimal benchmark 

experiment, none of the heuristic outperforms 

the others across all experimental levels and 

unlike the optimal benchmark experiments, the 

FI improvement heuristic outperforms the BI 

approach on some conditions.  

The results by experimental factor for the 

percent of “best” solutions found are shown in 

Figure 4. The results are relatively similar to 

those obtained for the optimal solution, for 

example, as 𝑛 increased, heuristic performance 

decreased. Relative heuristic performance also 

changed at the different levels of 𝑛, where at 

𝑛 =  10, heuristic MA-BI outperforms the rest, 

while at 𝑛 =  20, heuristc w1-F1 is the best 

performer. The 𝑃𝑟𝑎𝑛𝑔𝑒  experimental factor had a 

significant effect on the overall performance: 

poor at hv_hv and hl_hl and good at hv_hl and 

hl_hv. At the hv_hv and hl_hv levels, there was a 

noticeable differentiation in relative 

performance; for example, at hv_hv, heuristic 

w1-FI outperformed all others and heuristic p1-

BI performed relatively poorly, while at hl_hv, 

their relative performance “flips”, as p1-BI 

outperforms all others and w1-FI is one of the 

worst performers. 

The results related to experimental factor 𝑊𝑟𝑎𝑛𝑔𝑒 

are similar as heuristic performance depends on 

the specific level. The level hw_hw (where both 

machines deteriorate at the high level) is 

prominent given the highly notable difference in 

performance between the dominant heuristic 

(w1-FI) and the rest.   

Table 7 presents the error characteristics when 

the heuristic does not find the best solution 

(𝑒𝑟𝑟𝑜𝑟% = (1 – 𝑐𝑚𝑎𝑥[ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐]/

𝑐𝑚𝑎𝑥[𝑏𝑒𝑠𝑡 𝑓𝑜𝑢𝑛𝑑 𝑏𝑦 𝑎𝑙 ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑠]) × 100). 

Heuristic p1-BI, a heuristic that does not 

dominate under any of the experimental levels is 

the best performer in terms of the mean and the 

maximum error, although only surpassing the 

best performing MA-BI heuristic by a very small 

amount. In this case, the difference in 

performance among the heuristics is not as 

notable as in the optimal benchmark 

experiments. Based on the complete set of 
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experiments it is concluded that heuristic MA-BI 

is the best performer for the makespan criteria. 

 
Figure 4. Percentage of “best” solutions 

found by experimental factor for the makespan 

criteria 

Table 7. Mean and maximum error% for 
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3.3 Tardiness Results 

Table 8 presents for each experimental level the 

average tardiness and the percentage of times 

that at least one of the heuristics found the 

optimal solution. At least one of the heuristics 

found the optimal solution in all but one 

instance, a 99.9% success rate (959 out of 960). 

The heuristics provide an excellent 

approximation to the optimal within the analyzed 

experimental structure. 

Table 8. Mean average tardiness and % of optimal 

solutions found by at least one heuristic 

  𝑡𝑎𝑣𝑒 % 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 

𝜃 1 29.2 100 

 1.5 50.7 100 

 2 83.5 99.7 

𝑛 6 50.9 100. 

 8 58.1 99.8 

𝑝𝑟𝑎𝑛𝑔𝑒  hv_hv 43.4 100 

 hl_hl 56.8 99.6 

 hv_hl 53.6 100 

 hl_hv 64.3 100 

𝑤𝑟𝑎𝑛𝑔𝑒  lw_lw 41.6 99.6 

 hw_hw 66.8 100 

 lw_hw 55.9 100 

 hw_lw 53.6 100 

 Overall 54.5 99.9 

The set of heuristics included in the average 

tardiness analysis are different than in the 

makespan analysis based on the relative 

performance of the complete set of heuristics for 

this criterion, noting in this case there are 22 

relevant heuristics. Table 9 presents the 

percentage of times each heuristic generated the 

optimal solution. The best two overall 

performers are p1-FI and d-FI which generated 

88.9% and 88.2% of the optimal solutions, 

respectively. Heuristic p1-FI outperformed all 

others in 7 experimental levels, while d-FI 

outperformed all others in 3 experimental levels. 

Five of the heuristics dominate in at least one 

level. As it is the case in the makespan criteria 

for the optimal benchmark experiments, none of 

the initial job ordering heuristic dominates 

across the complete set, but for these 

experiments the FI improvement approach 

outperforms the BI approach.  
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Table 10 presents the mean and maximum error 

versus the optimal for those instances where the 

heuristic did not find the optimal solution. 

Heuristic d-FI provides the smallest average 

error at 4.6% and ties for the smallest maximum 

error with 40.3%. The second heuristic that 

considers the due date parameter in the ordering 

process, s-FI, ties with d-FI as the best overall 

performer for the maximum error. These results 

are notably different than those obtained for the 

makespan criteria where the mean error is 

smaller than 1.04 % and the maximum is less 

than 12.5%.  

Table 9. Percentage of the optimal average tardiness 

solutions generated by a heuristic 
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FI 
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BI 
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95
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.6 

 8 
83

.5 

85

.8 
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90
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88

.8 
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88

.3 
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90

.0 

90

.0 

90

.4 
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.0 

90

.8 
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90

.4 

90
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85

.4 
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.5 

87
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88
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87
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83

.4 

88
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Figure 5 shows heuristic performance per 

experimental factor for the percentage of optimal 

solutions found. The overall performance 

decreases as the number of jobs and the due date 

tightness ratio factors (𝑛 and 𝜃) increase. It is 

noted that heuristic p1-BI performs poorly for 

most of the levels for those two experimental 

factors. As in the makespan experiments, the 

relative performance of the heuristic changed 

notably at the different levels of the 𝑃𝑟𝑎𝑛𝑔𝑒 and 

𝑊𝑟𝑎𝑛𝑔𝑒 factors. It is noted that for 𝑃𝑟𝑎𝑛𝑔𝑒, 

heuristic p1-BI is the worst performer for three 

out of the four experimental levels, but for level 

hl_hv this heuristic is the best performer.  For the 

𝑊𝑟𝑎𝑛𝑔𝑒 parameter it is worth mentioning the 

relatively high-performance level of heuristics d-

FI and p2-F1 for experimental levels lw_lw and 

hw_hw respectively. 

Table 10. Mean and maximum error% versus 

optimal. 

Heuris

tic 

WA 

FI 

d 

FI 

d 

BI 

s 

FI 

p1 

FI 

p1 

BI 

p2 

FI 

w1 

FI 

Mean 7.6 4.6 6.0 5.7 6.0 
13.

1 
6.6 7.2 

Max 
124

.2 

40.

3 

59.

2 

40.

3 

71.

8 

182

.9 

124

.2 

120

.5 

 

Figure 5. Percentage of optimal solutions per 

experimental factor for the average tardiness criteria 

The percentage of instances per experimental 

level where a heuristic generated the best 

average tardiness solution for the relative 

benchmark experiments is presented in Table 11. 

For these experiments, s-FI is the best overall 

performer generating 62.6% of the best 

solutions. The two runner ups in terms of overall 

performance are p2-FI and w1-FI. As in the 

previous cases, multiple heuristics dominate at 

least one experimental level, thus no dominant 

heuristic can be determined. In line with the 
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previous results, the FI improvement heuristic 

does outperform the BI approach. The mean and 

maximum errors are presented in Table 12. As in 

the makespan case, a heuristic that does not 

dominate under any of the experimental levels is 

the best performer in terms of the mean and the 

maximum error, heuristic WA-FI. If having a 

small error and avoiding the maximum error is 

an important element of heuristic selection, 

heuristic WA-FI is the clear best overall 

performer.  

Table 11. Percentage of the “best” average tardiness 

solutions generated by a heuristic 
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.9 
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.9 
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.6 
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.8 
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.4 
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.0 
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.8 
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.7 
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.1 
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The tardiness results by experimental factor for 

the percent of “best” solutions found are 

illustrated in Figure 6. The effects are similar to 

those observed when evaluating heuristic 

performance versus the optimal solutions, 

although the effects more remarkable. For 

example, at 𝜃 =  1 𝑎𝑛𝑑 𝑛 =  10, the percent 

found by the heuristics was in the 65-85% range, 

while at  𝜃 =  2 𝑎𝑛𝑑 𝑛 =  20, the range is 35 to 

55%. It is noted that this does not indicate an 

error versus the optimal as this value is 

unknown, but rather the inability of the 

heuristics to match each other’s performance. As 

in previous experiments, heuristic performance 

is affected by both 𝑃𝑟𝑎𝑛𝑔𝑒  and 𝑊𝑟𝑎𝑛𝑔𝑒, and 

while no heuristic stands out as an excellent 

performer at particular levels of these factors, 

heuristic p1-BI stands out as one that is almost 

always outperformed. 

Table 12. Mean and maximum error% for instances 

versus the “best” average tardiness solution 

Heuris

tic 

W

A 

FI 

d 

FI 

d 

BI 

s 

FI 

p1 

FI 

p1 

BI 

p2 

FI 

w1 

FI 

Mean 
2.7

4 

2.8

5 

3.7

4 

3.2

2 
3.10 6.79 

2.9

1 

2.7

9 

Max 
37.

5 
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8 

65.

8 

77.

3 

103.

7 

201.

0 

50.

8 

50.

8 

 
Figure 6. Percentage of “best” solutions per 

experimental factor for the average tardiness criteria 

4. Conclusions 

This paper introduced a set of efficient heuristic 

approaches for solving the two-machine 

permutation flowshop problems while 

considering machine deterioration. The heuristic 

performance is assessed under two independent 

objectives: minimization of the makespan and 

minimization of the average tardiness. In the 

case of makespan minimization, eighteen 

heuristic approaches were developed based on 
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different job characteristics. Similarly, a total of 

twenty-two heuristic approaches were elaborated 

when considering average tardiness 

minimization. A comprehensive experimental 

design was carried out considering variation of 

different experimental factors such as the 

number of jobs, the range of process time, the 

range of wear/deterioration rate, and the 

congestion ratio.  

The experimental factor ‘number of jobs’ has a 

significant impact in the problem complexity. 

Hence, this factor was considered at two size 

levels. The first level determined the optimal 

benchmark experiments where the heuristic 

performance was evaluated versus the optimal 

solution. The relative benchmark experiments 

were defined by the second level. In this case, 

the heuristic performance was compared against 

the best-found solution. 

The results from the optimal benchmark 

experiments exhibited a 98.1% and 99.9% 

heuristics overall success rate when considering 

makespan and average tardiness minimization, 

respectively. As expected, the results show that 

the success factor decreases as the number of 

jobs increases. However, the success rate was 

nearly 100% when the process time and 

wear/deterioration rate presented similar levels 

of variation at both machines. The top overall 

performers for makespan minimization were 

MA-BI and JA-BI, which found 83.8% and 

83.4% of the optimal solutions respectively. 

Furthermore, MA-BI and JA-BI had a mean error 

of 0.45% and 0.46% respectively. In the case of 

average tardiness minimization, the best two 

overall performers were p1-FI and d-FI, which 

generated 88.9% and 88.2% of the optimal 

solutions, respectively. Heuristic d-FI provided 

the overall smallest average error at 4.6%; in 

contrast, p1-FI had an average error of 6%. 

The relative benchmark experiments were 

compared versus the best-found solution. In 

alignment with the previous results, the heuristic 

performance decreases as the number of jobs 

increases. The top overall performers for 

makespan minimization were MA-BI and w1-FI, 

which found 63.1% and 62.9% of the ‘best’ 

solutions, respectively. However, p1-BI had the 

smallest overall mean error at 0.48%. In the case 

of average tardiness minimization, the best three 

overall performers were s-FI, p2-FI, and w1-FI, 

which generated 62.6%, 61.9%, and 61.9% of 

the optimal solutions, respectively. Heuristic 

WA-FI provided the overall smallest average 

error at 2.74%; in contrast, s-FI had an average 

error of 3.22%. 

Results showed that there is no heuristic that has 

full dominance in any combination of 

experimental factors. Furthermore, the different 

experimental settings had a notable role in the 

heuristic performance suggesting that all of them 

should be utilized when solving real case 

instances. Immediate future research streams are 

as follows: 1) The consideration of maintenance 

events that could help to mitigate the undesirable 

effect of machine deterioration. 2) The extension 

of the presented approach to the ‘m’ machines 

flowshop problem. 3) The analysis of more 

complex interdependencies among the process 

time and wear/deterioration rate with different 

job sequences. For example, given materials and 

mechanical properties, a specific sequence of 

jobs could generate a different deterioration rate 

than if they are performed in another specific 

sequence. The implementation of the results 

learned in this research in applied production and 

industrial engineering settings could provide 

significant competitive advantages to the 

organizations by reducing the makespan, which 

is directly related to operational costs, and the 

average tardiness, which is directly related to 

customer service. 
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