
IN
G

E
N

IE
R

íA
Y

D

E

S

A

R

R

O

L

L

O

Applying aspect oriented
technology to relational

data bases: The replication case

Tecnología aplicada a aspectos en
base de datos relacionales:

El caso de replicación
	

Fernando Asteasuain*
Adeel Javed**

* Investigador - Docente - Becario Doctoral. Conicet de Univer-
sidad de Buenos Aires, FCE y N, departamento de computación.
Licenciado en Ciencias de la Computación, Universidad de
Bahía Blanca. Investigador - Docente - Becario Doctoral Conicet
de UBA-FCEyN, Dpto de Computación. fasteasuain@dc.uba.ar

Correspondencia: Oficina 12, Departamento de Computación
- Facultad de Ciencias Exactas y Naturales. Universidad de
Buenos Aires, Pabellón I - Ciudad Universitaria (C1428EGA) -
Buenos Aires (Argentina).

** M.Sc. Student, University of Central Punjab (Lahores,
Pakistan), Senior Software Engineer - Technical Lead | BPM
Practice, Techlogix Pakistan , MS Computer Sciences (Pvt) Ltd.
adeeljaved@techlogix.comNúmero 25

Enero-Junio, 2009
ISSN: 0122-3461

219Ingeniería & Desarrollo. Universidad del Norte. 25: 218-234, 2009

applying aspect oriented technology to relational data bases: the replication case

Abstract

Due to aspect-oriented mechanisms explosion, their concepts arrive to distributed
systems tackling concepts as security, persistence, or synchronization, especially
in middleware approaches. Regarding distributed databases, the research has
been focused mainly on object-oriented databases. Based on the great impact of
these works, we introduce an aspect-oriented framework for relational data bases,
incorporating a fundamental concept as replication as an aspect, achieving a
truly independent replication layer. A conceptual model for replication is defined,
which guided the implementation of our framework called Sigma.
Key words: Aspects, data bases, replication.

Resumen

Debido a la explosión de los mecanismos orientados a aspectos, sus
conceptos han llegado a los sistemas distribuidos, atacando conceptos
como seguridad, persistencia, o sincronización, especialmente en
frameworks orientados a middleware. En este contexto, la investigación
en base de datos distribuidas está enfocada principalmente en base
de datos orientadas a objetos. Basándonos en el alto impacto de estos
trabajos, introducimos en este trabajo un framework orientado a aspectos
para base de datos relacionales, incorporando un concepto fundamental
como lo es el concepto de replicación, obteniendo una verdadera capa
independiente de replicación. Se presenta un modelo conceptual, el cual
guió la implementación del framework propuesto de Sigma.
Palabras claves: Aspectos, base de datos, replicación.

1. Introduction

In the beginning, Aspect-oriented technology was applied only at the
implementation stage, but with the advent of new languages and more
powerful modularity capabilities that correctly abstracts crosscutting
concerns, this initial situation changed very quickly, and aspect-oriented
concepts were translated to other development stages like requirement
engineering and design [1], verification and formal approaches [2], [3] as
well as new platforms and tools arises [4]. This aspect-oriented explosion
also reaches middleware frameworks used for large distributed systems
[5], [6], [7], where aspects are used to abstract inherent concerns such as
persistence, transactional communication, security, quality of service, or
synchronization. Another interesting application involving large distributed
systems is database management, so it is natural to conclude that aspect-
oriented technology could provide great help in their development too. In

Fe
ch

a
de

 re
ce

pc
ió

n:
 4

 d
e d

ic
iem

br
e d

e 2
00

8
Fe

ch
a

de
 a

ce
pt

ac
ió

n:
 1

4
de

 fe
br

er
o

de
 2

00
9

220 Ingeniería & Desarrollo. Universidad del Norte. 25: 218-234, 2009

Fernando Asteasuain, Adeel Javed

this context, Rashid et al. investigated this issue ([8], [9], [10], [11], [12], [13])
and successfully applied aspect-oriented mechanisms in order to achieve
separations of concerns in database systems while focusing on object-
oriented databases and modeling persistence as an aspect. In this work,
we build on top of these proposals introducing a Java framework called
Sigma for Relational DataBases where a core requirement as replication
is encapsulated within an aspect allowing database designers to build a
database independent replication layer.

With the introduction of new technologies in the database community,
distributed databases became a reality. In particular, database replication,
which is defined as the process of copying and maintenance of data on multiple
servers, gained transcendence. Every major database vendor now supplies a
replication solution in one way or the other. Due to replication’s crosscutting
nature, implementing its functionality in an independent, customizable and
separate fashion will certainly make database development and evolution
much easier. To our best knowledge, replication, although mentioned as a
candidate requirement to be implemented as an aspect, remains unexplored
in a database context.

The rest of the paper is structured as follows: The next section introduces
replication as a database concept, and analyzes two different models for
handling replication. Section 2.2 presents a conceptual model, where
replication is considered as a main architectural component. Section three
presents our framework which implements the conceptual model, and the
remaining sections conclude our work.

2. Replication Models

Replication is a key process for achieving databases’ successful behavior, since
its functionality helps to guarantee data consistency, and allows the database
engine to keep working in case of network failures. In case of distributed
databases, data distributed among different nodes in the network must be
correctly synchronized to ensure data consistency. This involves copying
and maintaining every data manipulation from one location (the node
where the data manipulation took place) to the other nodes in the network
that are to be updated. This means that network configuration and node
communication greatly impacts on replication performance, as expected.

221Ingeniería & Desarrollo. Universidad del Norte. 25: 218-234, 2009

applying aspect oriented technology to relational data bases: the replication case

Replication techniques can be modeled either on top of a database engine,
on a separate layer, or can be provided internally, as a fixed mechanism.
Although our work is focused on the first option, in this section we briefly
discuss two internal models mainly for comparison reasons in order to
achieve a more complete analysis.

2.1. Internal models

In the next subsections, two internal models are described, using object
oriented patterns and the master worker architecture.

OO patterns

Probably the most widely adopted way of decoupling collaboration among
objects is through the object oriented patterns philosophy [14]. Perhaps the
pattern that best adapts to replication features is the publish-subscribe design
pattern (figure 1), commonly used in object-oriented software systems. This
pattern behaves as follows: various subscriber objects can register with
a publisher object to receive asynchronous notification callbacks when
information is published via the publisher object.

In a replication context, every data manipulation is published, and every
node that was subscribed to that event, receives the replicated data. In this
model, the database manager must define the data to be replicated, the
node that will be in charge of publishing events, the nodes subscribed to
each event, the distribution mechanism and how long after an event was
published the subscribers receives the notification. This last item is relevant
to performance issues. This publish-subscribe metaphor is used in Microsoft
SQL server 6.5, among others. Although the configuration seems relatively
easy, the database is not always robust enough to manage complex and
frequent modifications [15]:

222 Ingeniería & Desarrollo. Universidad del Norte. 25: 218-234, 2009

Fernando Asteasuain, Adeel Javed

Figure 1: A UML scheme describing the Publish Subscribe Pattern

Master/Worker Paradigm

The master/worker paradigm (figure 2) is a typical architecture within
distributed systems. Under this centralized scheme, a distinguished node
is designated as a master, and the rest play workers role. The master makes
all the decisions, and distributes information among the workers, who
process it and eventually return the processed information to the master.
Next, the master gathers all the information from workers and produces
the final result. This situation can include several iterations until the final
result is obtained.

Figure 2: A Scheme for the Master Worker Architecture.

Subscriber
Publisher

0..1

+notify()
+register()
+unregister()
+notifySubscribers()

notifySubscribers():
for subscriber in Subscriber Collection
call subscriber.notify()

-Subscriber Collection

Concrete Subscriber 2Concrete Subscriber 1

223Ingeniería & Desarrollo. Universidad del Norte. 25: 218-234, 2009

applying aspect oriented technology to relational data bases: the replication case

Applied to databases, a master node controls every replication decision, and
distributes replicated data to the workers, so that every node manages the
same data. This architecture follows a one-way, asynchronous replication,
and currently is being used in MySQL.

The master/worker architecture is rather simple to configure, but it suffers
the inherent disadvantages of centralized schemes. Every worker receives
and sends data to the master, which causes a communication bottleneck.

Discussion

Two models for replication have been briefly presented. For a more complete
and detailed comparison the reader is referred to [16].

In many cases these default replication techniques are more than enough
for database systems, where the replication requirement is not so crucial,
or the system dimensions fit under some replication default model, but
these solutions are not an answer to all problems. Both models discussed
earlier suffer from scalability problems, or communication bottlenecks, but
the main disadvantage is that replication is not considered as a first class
citizen in the system. As a result, its features are fixed, and the designer is
forced to fit data and databases structures under the replication model.

If replication is to be handled as a first class entity, it must be modeled on
top of a database engine, which is covered in the next subsection.

2.2. Replication as a first class citizen

Under this vision, an independent replication layer is introduced, providing
much more flexibility. Even if replication constrains changes, to apply these
new requirements to the database framework is easier, since replication is
modeled in an independent and separate way.

The replication’s status upgrade requires incorporating replication as a main
architectural component, interacting and communicating with the database
engine in a bidirectional flow. This is illustrated in figure 3.

224 Ingeniería & Desarrollo. Universidad del Norte. 25: 218-234, 2009

Fernando Asteasuain, Adeel Javed

Figure 3: A simplified DataBase Engine architectural description with
replication as a first class citizen

The configuration for the replication component includes knowing which
nodes represent servers, connections to the database, and the data structure
and the operations to be replicated. Each of these responsibilities are further
described in the next section.

Model responsibilities

The three main responsibilities for the replication component are described
next.

Connection

Connecting and disconnecting from the database is a basic feature for a
replication component. The fact that the replication component is modeled
as a separate component, on top of the database engine, helps to ensure
reusability requirements with respect to specific issues such as location of
the database or drivers used since these items can be described at a high
level, and then become instantiated at the concrete system (similar to abstract
and concrete classes or methods in OO world).

Front-End Applications

Database Engine

Recovery
Manager

Replication
Manager

Lock
Manager

Transaction
Manager

Parser

DB

225Ingeniería & Desarrollo. Universidad del Norte. 25: 218-234, 2009

applying aspect oriented technology to relational data bases: the replication case

Servers

The distributed database consists of multiple nodes connected according
to some configuration. One or multiple nodes will play the server role. In
general, there is a main server, against which database operations data are
performed, and one or more secondary servers, which maintain replicated
data. The replication component must "capture" somehow operations
performed against the main server, and replicate them in secondary
servers. When this situation is not possible (for example, a server is down)
the operation is performed against any server (primary or secondary) and
then logged (all pending queries are maintained in a log) so that it can be
replicated later on.

The server’s configuration is suitable to many changes (such as adding/
removing servers), so it is important to take this fact into account while
considering the database system evolution. This results in keeping the server’s
configuration apart from the database system, in a totally transparent way.
Another benefit obtained through this indirection is that the replication
component can elaborate the best routing algorithm for the replicated
information, alleviating the database engine from extra work.

Data and operations to be replicated

Not every data is to be replicated, and the same happens with database
operations. Having the entire database replicated is ideal, but not possible
even for small or medium databases. A good replication strategy implies
selecting appropriated data and operations to be replicated. Statistics,
history of the data base, catalog information, and others are main inputs
for the process of selecting data and operations that are to be replicated.
Once defined, the replication component ìmonitorsî database execution,
and applies replication features according to the configurations.

Highlights

As it can be seen, the information needed in the three cases is configurable
externally so that the database system remains unaware of replication
behavior, achieving flexibility and reusability requirements besides easing
system evolution.

226 Ingeniería & Desarrollo. Universidad del Norte. 25: 218-234, 2009

Fernando Asteasuain, Adeel Javed

3. Proof-of-Concept Implementation

In this section we describe our implementation for the replication model
presented before, introducing our framework called Sigma. We present in
fact two implementations.

The first one has been developed using object-oriented technology in the
Java programming language and the second one using aspect-oriented
technology, in AspectJ, a Java extension to AOP mechanisms, and one of the
most popular and widely known aspect-oriented programming language.
Sigma is focused on relational databases using the MySQL Connector/J 3.1
JDBC driver.

After both implementations are introduced, we conclude the section
analyzing which implementation satisfies better the responsibilities
presented in the conceptual model.

3.1. Sigma object-oriented implementation

The object-oriented implementation consists of the following components:

-	 an interface IDAO, describing the methods to be implemented to interact
with database, representing the Data Access Layer.

-	 a DBManager class, implementing key features involving connection to
database, servers configuration and logs for replication.

-	 a main class UserDAO, which implements the IDAO interface, and access
to the database through a private field manager of type DBManager.

Figure 4 shows the interaction between these components.

227Ingeniería & Desarrollo. Universidad del Norte. 25: 218-234, 2009

applying aspect oriented technology to relational data bases: the replication case

Figure 4: Scheme for the object-oriented implementation.

Due to its crosscutting nature, replication code is present all over the system.
For example, after an operation is performed, it is necessary to include extra
code to replicate the new information obtained. This code is repeated in each
of these operations, insert, remove, modify, etc. This extra code represents
an ìalienî code since it is not related to operation itself but to replication.
Listing 1 shows this situation within the insert method.

1:public void insert(Object object) throws Exception
2:{
3:	 UserObject user = (UserObject) object;
4: query = “INSERT INTO Users(name,phone,email,country) VALUES(‘” +

user.getName() + “’,’”
5:	 + user.getPhone() + “’,’” + user.getEmail() + “’,’” + user.getCountry()

+ “’)”;
6:	 try
7:	 {
8:	 //get available connection from DBManager	
9:	 Statement stmt = manager.getConnection().createStatement();
10:	 //request DBManager to execute all the pending queries (if any) using

this connection
11:	 manager.executePendingQueries();
12:	 //execute the insert query
13:	 stmt.executeUpdate(query);
14:	 }
15:	 catch(Exception ex)
16:	 {

DBMS 1

DBMS 2

DBMS 3

(Data Access Layer)

DAO + Replication Code
DAO + Replication Code
DAO + Replication Code
DAO + Replication Code
DAO + Replication Code

DB Manager

228 Ingeniería & Desarrollo. Universidad del Norte. 25: 218-234, 2009

Fernando Asteasuain, Adeel Javed

17:		 //exception handling code goes here
18:	 }
19:	 finally
20:	 {
21:		 //request DBManager to replicate this query on the other servers too
22:		 manager.replicateQuery(query);
23:	 }
24:}

Listing 1: Replication as a crosscutting concern.

Besides the code for the insert method, code for replication is also present:
line 11 shows the invocation to the method executePendingQueries from the
DBManager class, which executes all the pending queries (if any) using this
connection. In the finally block (lines 19-23) the method replicateQuery from
the DBManager class is invoked. This method will replicate the operation
just performed before in all the others servers. In case where replication is
not possible, an entry is added in the pending query log.

Although implemented on top of a database engine, replication itself does not
constitute an independent replication layer. Changes in server configuration,
database connection or in the replication policy imply checking all over the
system for possible modifications. This problem is known as the ìtyranny
of the dominant decomposition” [17]: the system behavior is ruled by a
dominant factor, causing structural problems for the remaining factors of the
system. In this case, replication code is widespread through all the system.
Taking this into account, we conclude that the object-oriented version did
not behave as specified in the conceptual model.

3.2. Sigma aspect-oriented implementation

This version was implemented using Eclipse 3.2, and the AJDT 1.4 plug-in
for the AspectJ language. Modeling replication as an aspect allows defining
an independent replication layer, achieving all the objectives required in
the conceptual model. The implementation is described next.

229Ingeniería & Desarrollo. Universidad del Norte. 25: 218-234, 2009

applying aspect oriented technology to relational data bases: the replication case

Replication as an Aspect

Since replication is implemented as an aspect, it is implemented in a separate
and independent way. First of all, a pointcut captures all the operations and
information that will be replicated. An abstract pointcut can be defined, and
then implemented in concrete pointcuts, obtaining the possibility of reusing
the replication aspect in other environments. Given this pointcut, a before
advice is introduced, specifying that before every operation is performed
pending queries are executed, thus synchronizing all the information on
the servers. Similarly, an after advice is also introduced, which replicates
the operation in all the other servers or log the queries if secondary servers
are down. The aspect skeleton is illustrated in listing 2.

pointcut replicatedOperations() : execution <enumerate all replicable operations>;

before() replicated Operations() {
<establish connection to database>
<Execute pending queries and synchronize servers>
}

after() replicated Operations() {
<replicate query in secondarys servers>
}

Listing 2: Replication Aspect Skeleton

Connectivity to the database is also included within the aspect, in an aspect
method createConnections. Up to now, the replication component modeled as
an aspect includes the first and the third responsibilities, namely connection
and data and operations to be replicated. Regarding servers configuration,
it is modeled also within the aspect through private fields1, completing all
the responsibilities required in the conceptual model.

1 In future versions of Sigma, these configurations will be implemented in xml files.

230 Ingeniería & Desarrollo. Universidad del Norte. 25: 218-234, 2009

Fernando Asteasuain, Adeel Javed

Interaction

Aspect interaction with the other components is shown in figure 5. The
DBManager class is no longer required, since all its behavior is now
encapsulated within the replication aspect, including database connection
and server configuration.

Figure 5: Scheme for the aspect-oriented implementation.

The replication code is no longer distributed through the system. We can
now revisit the code for insert method, shown in listing 3. The code involves
only actions regarding an insert event.

public void insert(Object object) throws Exception
{
	 UserObject user = (UserObject) object;
	 query = “INSERT INTO Users(name,phone,email,country) VALUES(‘” + user.
getName() + “’,’”
 + user.getPhone() + “’,’” + user.getEmail() + “’,’” + user.getCountry() + “’)”;
	 Statement stmt = connection.createStatement();
	 stmt.executeUpdate(query);

}

DBMS 1

DBMS 2

DBMS 3

(Data Access Layer)

DAO
DAO
DAO
DAO
DAO

.

.

Replication Aspect

231Ingeniería & Desarrollo. Universidad del Norte. 25: 218-234, 2009

applying aspect oriented technology to relational data bases: the replication case

Listing 3: The insert method revisited.

Besides modularity advantages, the aspect-oriented implementation allows
introducing a separate replication layer. Reusability can be managed
specifying abstract pointcuts, and evolution becomes easier, since replication
code is isolated. Connection to database, server configuration, and data
and operations to be replicated can be specified at a higher level, totally
independent from the rest of the application. Due to all the reasons exposed
previously, we can conclude that the aspect-oriented version clearly satisfied
the conceptual model presented.

Fragility and oblivious discussion

Despite the use of abstract pointcuts, the replication aspect cannot be
completely unaware of base code evolution. Because AspectJ mechanisms
rely on the code syntax’s, it suffers from the pointcut fragility problem [18]:
when base code evolves, aspects must evolve too. However, this fragility
is inherent to AspectJ, and not to our replication model. Our conceptual
model could be implemented instead under other mechanisms tackling
fragility problem as SetPoint [19], [20], [21], CAESAR [22], Aspectual Views
[23], among others. AspectJ was chosen due to its wide acceptance, besides
being one of the most popular aspect-oriented programming languages.

Regarding obliviousness [24], the base code does not have to be prepared
in anyway, since execution points that the replication aspect is interested
in are very reachable, which greatly facilitates inserting aspect behavior.

4. Related & Future Work

As said before, aspect-oriented technology has been applied successfully
in databases [8-13], specially considering object-oriented databases and
modeling persistence as an aspect. In this work, we build on the top of
these proposals introducing a Java framework called Sigma for Relational
DataBases where a core feature as replication is implemented over a database
independent replication layer.

Replication has been implemented as an aspect in other distributed contexts,
as component-based programming [25] and dynamic flow control [26]. To our

232 Ingeniería & Desarrollo. Universidad del Norte. 25: 218-234, 2009

Fernando Asteasuain, Adeel Javed

best knowledge, replication, although mentioned as candidate requirement
to be implemented as an aspect, was unexplored in a database context.

We will continue improving our framework, incorporating configurations
details into xml files, and adding more functionality, such as incorporating a
transaction manager as an aspect. We also would like to analyze performance
issues and compare our framework with other successful frameworks like
Spring [27].

5. Conclusion

In distributed databases, replication is a key concept in order to maintain
data consistence, and a secure mechanism in cases of servers’ failure.
Internal models for replication provided in most engines lack flexibility
and suffer from other problems as bottleneck communications. Taking this
into account, we propose a conceptual model where replication is considered
as a main architectural component, built on the top of databases engines
which allows introducing a separate and independent replication layer. Two
implementations are presented, an object oriented one and an aspect oriented
one. Whereas the object oriented versions suffers from the consequences of
not managing correctly crosscutting concerns, the aspect-oriented version
adapted perfectly to the conceptual model.

References

[1] 	 R. Chitchyan, A. Rashid, P. Sawyer, A. Garcia, M. Pinto Alarcon, et al.,
“Survey of aspect-oriented analysis and design approaches”. Technical Report
AOSD-Europe-ULANC-9, AOSD-Europe, May 2005.

[2]	 S. Katz, “A Survey of Verification and Static Analysis for Aspects”. Technical
Report AOSD-Europe. July 2005.

[3]	 R. Douence and D. Le Botlan, “Towards a Taxonomy of AOP Semantics”.
Technical Report AOSD-Europe. July 2005.

[4]	 J. Brichau and M. Haupt, “Survey of aspect-oriented languages and execution
models”. Technical Report AOSD-Europe- VUB-01, AOSD-Europe, May 2005.

[5]	 Neil Loughran et al. “Survey of aspect-oriented middleware”. Technical
Report AOSD-Europe- ULANC-10, AOSD-Europe, June 2005.

[6]	 A. Colyer, G. Blair, and A. Rashid, “Managing complexity in middleware.”
Workshop on Aspects, Components and Patterns for Infrastructure Software (held
with AOSD 2003), Boston, USA.

233Ingeniería & Desarrollo. Universidad del Norte. 25: 218-234, 2009

applying aspect oriented technology to relational data bases: the replication case

[7]	 A. Colyer and A. Clement, “Largescale AOSD for middleware”. Proceedings
of the 3rd international conference on Aspect-oriented software development, pp
56-65, 2004.

[8]	 R. Green and A. Rashid, “An Aspect-Oriented Framework for Scheme
Evolution in Object-Oriented Databases”, 1st Workshop on Aspects, Components,
and Patterns for Infrastructure Software (held with AOSD 2002).

[9]	 A. Rashid, and R. Chitchyan. “Persistence as an Aspect”, 2nd International
Conference on Aspect-Oriented Software Development. ACM, pp 120-129, 2003.

[10]	 A. Rashid, A. and P. Sawyer, “Object Database Evolution using Separation
of Concerns”, ACM SIGMOD Record, vol 29, no 4, pp 26-33, 2000.

[11]	 A. Rashid, “Aspect-Oriented Scheme Evolution in Object Databases: A
Comparative Case Study”, Workshop on Unanticipated Software Evolution
(held in conjunction with European Conference on Object-Oriented Programming
ECOOP 2002.

[12]	 A. Rashid and E. Pulvermueller. “From Object-Oriented to Aspect-Oriented
Databases”. 11th International Conference on Database and Expert Systems
Applications (DEXA). Springer-Verlag Lecture Notes in Computer Science, vol
1873, pp 125-134, 2000.

[13]	 A. Rashid and N. Leidenfrost, “Supporting Flexible Object Database
Evolution with Aspects”, International Conference on Generative Programming
and Component Engineering (GPCE 2004).

[14]	 E. Gamma et al.,“Design Patterns Elements of Reusable Object-Oriented
Software”, Addison-Wesley, 1994.

[15]	 C.Thompson, “Comparing Three Leading DBMS vendor’s approaches to
Replication”. Available: http://www.dbmsmag.com/9705d15.html

[16]	 International Business Machines (IBM), “OGSA-DAI replication”. Available:
http://www.aiai.ed.ac.uk/~ychen/ibm_ogsadai/replication-technologies.
html

[17]	 P. Tarr et al., “N degrees of separation: Multi-dimensional separation of
concerns”, In Proc. 21st Int’l Conf. Software Engineering (ICSE’1999), pp 107
– 119, IEEE Computer Society Press, May 1999.

[18]	 C.Koppen and M.Stoerzer. “Pcdiff: Attacking the fragile pointcut problem”,
EIWAS 2004.

[19]	 R.Altman, A.Cyment and N.Kicillof. “On the need for SetPoints”, EIWAS
2005.

[20]	 A. Cyment et al.,“Improving AOP systems’ evolvability by decoupling
advices from base code”, 3rd ECOOP’2006 Workshop on Reflection, AOP and
Meta-Data for Software Evolution (RAM-SE), 2006.

[21]	 A. Cyment, N. Kicillof and F. Asteasuain, “Enhancing model-based AOP
with behavior representation”, 2nd ECOOP’2006 Workshop on Models and
Aspects (MDD&AOSD), 2006.

234 Ingeniería & Desarrollo. Universidad del Norte. 25: 218-234, 2009

Fernando Asteasuain, Adeel Javed

[22]	 M. Mezini and K. Ostermann, “Untangling crosscutting models with CAESAR.
In Aspect-Oriented Software Development”, Addison-Wesley, Boston, 2005,
pages 165–199.

[23]	 A.Kellens et al., “Managing the Evolution of Aspect-Oriented Software with
Model-based Pointcuts”, ECOOP 2006.

[24]	 R.Filman and D.Friedman, “ Aspect-oriented programming is quantification
and obliviousness”, Advanced Separation of Concerns. OOPSLA 2000.

[25]	 Sara Bouchenak et al., “Can Aspects Be Injected? Experience with Replication
and Protection”, International Symposium on Distributed Objects and Applications
(DOA 2003), Catania, Italy, November 2003.

[26]	 J. Fabry, “Replication as an Aspect”, ECOOP Workshops, 1998.
[27]	 Spring Official Site: http://www.springframework.org/

