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Resumen
En la actualidad, la degradación progresiva del recurso hídrico, ge-
nerada por actividades antrópicas como la minería y la agricultura, 
constituye uno de los principales problemas ambientales que enfrenta 
la humanidad. El propósito de este estudio fue evaluar la eficiencia del 
proceso de fotocatálisis heterogénea con dióxido de titanio (TiO2) y pro-
movido por luz ultravioleta (UV) artificial, en la remoción de mercurio 
(Hg) presente en efluentes mineros (EM). Para la optimización de las 
condiciones del proceso de fotocatálisis, se utilizó la metodología de 
superficie de respuesta. Se valoraron los efectos del pH y concentración 
de TiO2 sobre la eficiencia de remoción de mercurio. El modelo encon-
trado y expresado a través de una ecuación de segundo orden explica 
en un 77,87% la variabilidad de los resultados. La máxima eficiencia de 
remoción (98,53%) predicha por el modelo, se obtuvo para un pH de 
6,98 y una concentración de TiO2 de 0,51 g/L. La cinética de reacción 
bajo las condiciones óptimas de operación fue de pseudo segundo 
orden, siguiendo el modelo cinético de Langmuir-Hinshelwood (L-H). 

Palabras clave: cinética de remoción, fotocatálisis heterogénea, 
mercurio, superficie de respuesta, tratamiento efluentes mineros.

Abstract
Progressive degradation of water resources, generated by human 
activities such as mining and agriculture, represents one of the main 
environmental issues that humanity faces. The goal of this study was 
to evaluate the efficiency of the heterogeneous photocatalysis process, 
TiO2-catalyzed under artificial UV irradiation, in the mercury removal 
from mining effluents. To optimize photocatalytic process conditions, 
the response surface methodology was used, effects of pH and TiO2 
concentration over mercury removal efficiency were evaluated. The 
model found and expressed through a second-order equation explains 
in a 77,87% variability of results. The prediction of the model showed a 
maximum removal efficiency of 98,53% obtained for a pH of 6,98 and 
a concentration of TiO2 of 0,51 g/L. Langmuir-Hinshelwood pseudo 
second order kinetic model was achieved under the optimal conditions. 

Keywords: heterogeneous photocatalysis, removal kinetics, mercury, 
response surface methodology, mining effluent treatment.
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I. INTRODUCCIÓN

La explotación de minas suele orientarse a la extracción de metales y minerales 
mediante procesos que están asociados al uso de sustancias químicas con 
liberación de sus residuos al ambiente. Uno de los elementos químicos más 
ampliamente relacionado con las actividades mineras es el mercurio, cuya 
presencia resulta nociva y altamente tóxica cuando supera límites permi-
sibles, generando efectos en los diferentes compartimentos ambientales así 
como a la salud humana. La falta de control en las actividades productivas 
que generan estas sustancias puede ocasionar un grave deterioro ambiental 
[1]-[3]. Entre las distintas especies químicas del mercurio, la forma Hg2+ se 
considera un contaminante prioritario a controlar debido a su toxicidad 
neurológica, volatilización, persistencia y bioacumulación a través de la 
cadena trófica que le convierte en un problema de salud humana y de 
seguridad alimentaria [4]. 

Uno de los compartimentos ambientales más afectados en áreas de pro-
ducción minera es el agua, especialmente cuando las fuentes hídricas son 
utilizadas para el consumo humano, por lo cual se plantea una necesidad 
por técnicas efectivas, accesibles y amigables con el ambiente, que reúnan 
requisitos como la simplicidad, la eficacia, el bajo costo y que sean so-
cialmente aceptables, para la desinfección, degradación y/o remoción de 
contaminantes [5]-[8]. 

Se han probado diferentes técnicas para la remoción de Hg(II) en solución 
acuosa: 1) la adsorción del metal en la superficie de un adsorbente como el 
carbón activado; 2) empleando otro tipo de bioabsorbentes como hongos 
y residuos vegetales; o 3) la adsorción en la superficie de catalizadores 
después de un proceso de fotoreducción [9]. La fotocatálisis heterogénea es 
una de las tecnologías más relevantes para la eliminación de contaminantes 
tóxicos presentes en aguas contaminadas y consiste en la absorción directa 
o indirecta por un sólido semiconductor de fotones de luz, visible o UV, que 
al ser activado por la absorción de la luz, acelera el proceso e interacciona 
con la sustancia contaminante y genera reacciones de óxido-reducción, que 
provocan su degradación y mineralización [10]-[12]. En el proceso fotocata-
lítico variables como el pH, la cantidad de catalizador [13], las características 
del catalizador, la temperatura, la intensidad de la radiación, el diseño del 
reactor, el uso de aditivos y la naturaleza y concentración del contaminante 
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pueden afectar la eficiencia [14]. Para optimizar estas condiciones de ope-
ración se pueden emplear herramientas estadísticas como la metodología 
de superficie de respuesta (MSR) [15], [16]. El objetivo de este trabajo fue 
evaluar la remoción de mercurio mediante fotocatálisis heterogénea en 
efluentes mineros a diferentes condiciones de pH y concentración de TiO2, y 
optimizar las condiciones de máxima eficiencia de remoción aplicando MSR.

II. METODOLOGÍA

A. Recolección de muestras

Las muestras de agua residuales, objeto de este estudio, se tomaron del 
efluente de una explotación aurífera en el departamento de Córdoba, 
noroeste de Colombia, en cantidades suficientes para todas las corridas 
experimentales. El muestreo se realizó según los métodos estándar para 
aguas residuales [17], en recipientes plásticos previamente acondicionados, 
y refrigerados, para su transporte hasta el laboratorio. 

B. Diseño experimental

El diseño experimental constó de dos factores, concentración de TiO2 y pH, 
con tres niveles cada uno (pH: 5,0, EM y 8,0; TiO2: 0,2, 0,4 y 0,6 g/L), y tres 
réplicas, para un total de 9 combinaciones y 27 respuestas, lo que originó 
un diseño completamente al azar con estructura factorial 32. La variable de 
respuesta fue el porcentaje de remoción de Hg, evaluado de acuerdo con la 
ecuación 1. El pH del efluente minero (EM) en promedio fue 6,9 (6,89-6,91).

           
     

  
                  (1)

Donde:

Cf = concentración final de Hg 

Ci = Concentración inicial de Hg
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C. Optimización del proceso fotocatalítico

El efecto del pH y la concentración TiO2 se analizó de acuerdo con el diseño 
completamente al azar con estructura factorial 32, determinándose los efec-
tos simples y combinados de las variables de operación sobre la eficiencia 
de remoción de mercurio. Al aplicar el analisis estadístico de superficie de 
respuesta, los datos experimentales se ajustaron a un modelo de regresión 
de segundo orden de acuerdo con la ecuación 2.

                                              (2)

Donde:	

y es variable de respuesta de la eficiencia de remoción

b0 es una constante

b1 y b2 son los coeficientes de regresión de los efectos lineales

b11 y b22 son los coeficientes de segundo grado

b12 es el coeficiente de interacción

D. Sistema fotocatalítico

La Fig. 1 muestra el reactor fotocatalítico empleado para el tratamiento del 
efluente minero. El sistema constó de dos tubos de borosilicato de 74 cm 
de largo y 3 cm de diámetro, interconectados con uniones PVC (volumen 
sistema: 1,2L); abastecido por un recipiente de 20L de capacidad, provisto 
con una bomba sumergible para la recirculación (19,2 L/s). Tres lámparas 
de radiación UV (20W) marca opalux YZ20 RR25 fueron ubicadas en la parte 
superior de una celda de geometría rectangular de 75x20x25 cm (largo, an-
cho y alto), provista con una película interna de aluminio que actúa como 
superficie reflectante permitiendo que la radiación sea reflejada en todos 
los sentidos del fotoreactor tubular. 
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Figura 1. Esquema del sistema fotocatalítico de 
recirculación iluminado con lámparas UV.

El volumen de trabajo fue de 20 L. La concentración de mercurio total (HgT) 
en el efluente minero fue 0,11 ± 0,03 mg/L. Sin embargo, con la finalidad 
de simular diferentes escenarios de contaminación en Colombia [18], el 
contenido de mercurio se ajustó a 3,0 mg/L. Con el fin de alcanzar un 
equilibrio de adsorción en la superficie de la matriz, la mezcla (catalizador 
más efluente minero) se agitó durante 15 minutos bajo oscuridad antes de 
iniciar el proceso fotocatalítico. El pH de la solución se ajustó con hidróxido 
de sodio o ácido acético, según lo requerido por el diseño experimental. 
Una vez acondicionada la mezcla, se inició el proceso de fotocatálisis con 
una duración de 180 minutos. 

E. Cinética de reacción 

Para evaluar el efecto de la velocidad de reacción, se tomaron muestras 
a los 0, 15, 30, 60, 120 y 180 minutos. Se empleó el modelo de Langmuir-
Hinshelwood (L-H) mediante la ecuación 3 para describir la cinética del 
proceso fotocatalítico. Esta ecuación modela originalmente un mecanismo 
de reacción en el que participan un pre-equilibrio de adsorción y una re-
acción superficial lenta.

     
  
     

         
        

 
        (3)
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Donde:

Kl representa la constante de equilibrio de adsorción del sustrato en la 
superficie del catalizador.

qm es la constante cinética de la reacción para las condiciones experimentales.

Ce la concentración de Hg. 

La ecuación 3 se puede escribir de la forma y= mx + b, como en la ecua-
ción 4, para poder ajustar los datos experimentales y hallar las respectivas 
constantes a partir de la gráfica – vsdc 1

dt C.  .

F. Análisis de mercurio total (HgT)

Una vez tomada la muestra, esta se dejó decantar por 30 minutos y se de-
terminó la concentración de HgT en el decantado mediante espectroscopía 
de absorción atómica de vapor frío (CVAAS), utilizando un espectrómetro 
Thermo Scientific iCE 3000-Series, después de una digestión previa con 
solución de KMnO4-K2S2O8 por 2 horas a 95°C y reducción a Hg0 con una 
solución de SnCl2, según el método EPA 245.1 [19]. El control de calidad del 
método fue evaluado por análisis por triplicado de material de referencia 
certificado “Natural water-Mercury” (NIST-1641d, T-Hg 1,557 ± 0,020 µg/
mL), con lo cual se obtuvo un porcentaje de recuperación del 97%. El lími-
te de detección del método para HgT fue de 0,14 µg/L, calculado como la 
media más tres veces la desviación estándar [20].

G. Análisis estadístico

Los resultados de los análisis son presentados como la media (X) ± la desvia-
ción estándar (S) de las determinaciones por triplicado. Se realizó análisis de 
superficie de respuesta y ANOVA en base al diseño experimental, y se estimó 
el error experimental y la prueba de ajuste del modelo. Se aplicó prueba de 
rangos múltiples de Tukey para los diferentes porcentajes de recuperación 
calculados. El criterio de significancia establecido fue p<0.05 para todos los 
análisis estadísticos. El tratamiento de los resultados fue realizado mediante 
el paquete estadístico Statgraphics Centurion XV.II Software.
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III. RESULTADOS Y DISCUSIÓN

En la tabla 1 se indican los valores de los coeficientes de regresión estimados 
para la ecuación 2, los cuales permiten identificar las variables significativas 
y aislar los efectos de aquellas variables interferentes. Al aplicar la MSR, se 
generó un modelo de regresión de segundo orden en función de los factores 
pH y concentración de TiO2.

Tabla 1. Coeficientes de regresión estimados

Variable Coeficiente Estimado

Constante b0 -11,1523

A:pH b1 24,5015

B:TiO2 b2 95,1687

AA b11 -2,06389

AB b1b2 8,53095

BB b22 -152,569

El factor lineal (b2) y factor cuadrático (b22) resultaron ser significativos 
(p<0.05, tabla 2). La concentración de TiO2 y su factor cuadrático son los 
factores influyentes en el proceso de fotocatálisis heterogénea. El análisis 
de los factores en función del diagrama de pareto se muestra en la Fig. 2, 
donde el factor que más influye corresponde a la concentración de TiO2, 
ya que esta resulta ser directamente proporcional, a diferencia del factor 
cuadrático TiO2-TiO2 que es inversamente proporcional. Lo anterior se debe 
–posiblemente– a que una proporción mayor de TiO2 representa mayor 
superficie de contacto entre el catalizador y el Hg, lo cual permitirá una 
adecuada adsorción, generando así la cantidad requerida de pares electrón-
hueco necesarios para que se presenten los procesos de óxido-reducción a 
una velocidad de reacción razonable. Sin embargo, se debe tener en cuenta 
que a concentraciones muy altas se aumenta la turbidez, debido a la pre-
sencia de mayor cantidad de partículas del catalizador, lo que dificulta la 
difusión de la radiación ultravioleta [14], [21], [22].
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Figura 2. Diagrama de pareto estandarizado para remoción de HgT. (+) 
indica proporcionalidad directa con la variable de respuesta; (-) indica 
proporcionalidad inversa con la variable de respuesta. Los valores que 

sobrepasan la línea vertical son considerados significativos.

Tabla 2. Análisis de varianza para eficiencia de remoción de Hg. R2 = 0,7787

Fuente Suma de Cuadrados Gl Cuadrado Medio Razón-F Valor-P

A:pH 47,5312 1 47,5312 1,66 0,2141
B:TiO2 577,155 1 577,155 20,14 <0,0003

AA 98,5802 1 98,5802 3,44 0,0801
AB 81,5104 1 81,5104 2,84 0,1089
BB 223,463 1 223,463 7,8 <0,0120

Falta de ajuste 134,412 3 44,804 1,56 0,2328
Error puro 515,76 18 28,6533    

Total (corregido) 1.780,9 26      

Se recomienda por literatura que el coeficiente de determinación (R2) sea de 
al menos 75% para considerar la posibilidad de continuar la metodología 
[23], [24]. Se encontró una correlación altamente significativa (R2=0,7787, 
n=27) para el modelo de regresión de segundo orden, a partir de los datos 
experimentales, indicando que el 77,87% de las variaciones de eficiencia 
de remoción de Hg se explican por las variables independientes y que el 
22,13% de la variación no se logra explicar por el modelo. Una representación 
gráfica de los resultados experimentales para la remoción de Hg versus las 
remociones predichas por el modelo empleado, se pueden ver en la Fig. 3. 
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Figura 3. Porcentaje de remoción de mercurio, experimental y esperado, de 
acuerdo con el modelo regresión de segundo orden.

El modelo genera los valores óptimos para la eficiencia máxima de remoción 
de Hg en función del pH y la concentración de TiO2 (Tabla 3). Al comparar un 
punto cercano al máximo de respuesta no se observa diferencia significativa 
(p<0.05), lo que confirma que la MSR puede ser utilizada para optimizar 
los parámetros del proceso.

Tabla 3. Valores óptimos para la máxima eficiencia de remoción de Hg

Factor Valor óptimo Valor experimental

Remoción Hg (%) 98,53 97,64

pH 6,98 7,0

TiO2 (g/L) 0,51 0,51

La Fig. 4a muestra un gráfico tridimensional de superficie de respuesta 
que permite visualizar cómo se relaciona el porcentaje de remoción de Hg 
con las variables evaluadas, pH y concentración de TiO2. Se observa que a 
medida que aumenta la concentración de TiO2 se maximiza el porcentaje 
de remoción para pH cercanos a 7,0, obteniéndose registros entre el 95% y 
99%. Estos resultados son consistentes con los reportados por Botta et al. 
[22] para experimentos realizados con diferentes sales de Hg2+ en donde la 
remoción de sal de cloruro se ve favorecida a un pH de 7 mientras que para 
las de nitrato y perclorato ocurre a un pH de 11. Sin embargo, contrastan con 
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los reportados por López-Muñoz et al. [25] quienes encuentran las mejores 
condiciones de remoción para un pH de 11 usando metanol como aditivo de 
sacrificio en ausencia de oxígeno. Las diferencias entre ambas conclusiones 
pueden deberse a los distintos tipos de reactores y de variables empleadas 
por los investigadores. La Fig. 4b muestra el gráfico de contorno en el cual 
se pueden observar varias franjas de colores, cada una correspondiente a las 
combinaciones de las variables de estudio, para las cuales la remoción media 
esperada se encuentra en un determinado rango. Se observa que la franja 
indicada con la letra R contiene las combinaciones de las variables de interés 
que pueden estimar remociones superiores a 97%. Cada gráfica fue realizada 
de acuerdo con la ecuación 2, la cual permitió visualizar el comportamiento 
de la variable de respuesta y señalar claramente la combinación de niveles 
de los factores estudiados que conllevan a un máximo de remoción. 

(a)

(b)

Figura 4. a) Superficie de respuesta del modelo; b) gráficos de contorno.
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A. Cinética de reacción

Para el efecto de la cinética de reacción se tuvieron en cuenta las condiciones 
óptimas de operación mostradas en la Tabla 3. El porcentaje de remoción 
de Hg con respecto al tiempo mostró un comportamiento exponencial (Fig. 
5a) con un R2 de 0,6737, lo cual demuestra un buen ajuste al modelo de 
pseudo segundo orden. Los datos obtenidos experimentalmente exponen 
una correlación alta, con un valor de 0,9972 (Fig. 5b), lo cual indica que 
este modelo asegura confiabilidad en las constantes de velocidad y adsor-
ción. El valor de K obtenido a partir del modelo fue de 1,4579x10-4 mg/L y 
de 1,622x10-2 mg/g para qm respectivamente. Se infiere que a medida que 
transcurre el tiempo de operación, los sitios disponibles del catalizador van 
disminuyendo, lo que convierte las buenas características de adsorción en 
una desventaja en términos de velocidad y porcentaje de remoción final, 
debido a que este fenómeno es el que controla el proceso.
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Figura 5. a) Variación de la concentración de Hg en el tiempo; b) modelo 
Langmuir-Hinshelwood para fotocatálisis heterogénea.

IV. CONCLUSIONES

El proceso de fotocatálisis heterogénea utilizando TiO2 como catalizador y 
radiación UV artificial es una alternativa técnicamente viable para el trata-
miento de aguas contaminadas con mercurio. La MSR permitió establecer 
condiciones óptimas de operación para encontrar una máxima respuesta 
en función del porcentaje de remoción de mercurio (98,53%) y las variables 
de estudio (pH = 6,98 y TiO2 = 0,51). La cinética de remoción para el proce-
so fotocatalítico siguió un modelo cinético de pseudo segundo orden y se 
ajustó satisfactoriamente al modelo L-H. Esto fue reflejado por una excelente 
correlación obtenida de 0,9972. 
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