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Resumen

Elregistrodelaactividad eléctrica cerebralha permitidolacomprensién
de diferentes estados neurofisiol6gicos, posibilitando el diagnéstico de
algunos trastornos neuronales, de aqui, laimportancia dela caracteriza-
ciény el conocimiento delas diferentes morfologias que pueden presentar
las sefiales de electroencefalografia (EEG). El modelado matematico de
sefiales biomédicas facilita el desarrollo de simuladores que pueden
servir como herramienta de entrenamiento médico en computadores
o dispositivos moéviles. Este articulo presenta el modelado paramétrico
autorregresivo (AR) y lasimulacion de sefiales EEG en diferentes estados
fisiol6gicos, como: reposo con ojos abiertos y cerradosy crisis epilépticas,
ademas bajo la presencia de algunos de los artefactos mas comunes,
como son: parpadeo, actividad muscular, electrodo “pop” y ruido 60
Hz. Se valida el desempefio de los modelos en el dominio del tiempo a
través del porcentaje de ajuste FIT, el cual siempre estuvo por encima
del 70%, y en el dominio de la frecuencia a través de la energia en las
bandas de frecuencia caracteristicas del EEG. Se presenta la metodologia
de modelado, los gréficos de las sefiales simuladas y los valores de los
parametros evaluados. La amplia variedad de sefiales EEG modeladas
permitira el desarrollo de simuladores de sefiales cerebrales para el
entrenamiento del personal médico, e igualmente para el analisis y la
caracterizacién de las sefales de electroencefalografia.

Palabras clave: Electroencefalografia, modelado de sefiales, procesos
autorregresivos, simuladores médicos.

Abstract

The recording of brain electrical activity has led to a greater understan-
ding of different neurophysiological states, has even made possible the
diagnosis of some neuronal disorders, hence the importance of charac-
terization and understanding of the different morphologies that may
haveelectroencephalography signals (EEG). The mathematical modeling
of biomedical signals facilitates the development of simulators that can
be useful as medical training tools on computers or mobile devices. This
paper presents the autoregressive (AR) modeling and simulation of
EEG signals in different physiological states: seizures, resting with eyes
open and eyes closed, and also under the presence of some of the most
common artifacts: muscle, eye blinking, electrode “pop”, and 60-Hz.
The performance of the models has been validated in the time domain
using the percentage of fitting (FIT), which was always above 70%, and
in the frequency domain through energy of the characteristic frequency
bands of the EEG. The modeling methodology, figures of simulated
signals and the values of the parameters evaluated are presented. The
wide variety of EEG signals modeled allow the development of brain
signals simulators for training of medical personnel, and also for the
analysis and characterization of EEG signals.

Keywords: Autoregressive processes, electroencephalography,
medical simulators, signal modeling.
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I. INTRODUCCION

La interpretacién de las sefales cerebrales a partir de un analisis visual ha
permitido al personal médicoy alos investigadores un mejor entendimiento
de la fisiologia del sistema nervioso, logrando incluso el diagnéstico de
algunos trastornos cerebrales, asi mismo, como los registros de electroen-
cefalografia (EEG) siguen siendo una de las principales herramientas para
el desarrollo de la neurologia clinica y la neurociencia.

La electroencefalografia es el registro de la actividad eléctrica de un gran
nimero de neuronas a través de electrodos ubicados comtinmente en la
superficie del cuero cabelludo. Dicha actividad eléctrica es originada por
los potenciales post-sinapticos que ocurren de forma sincronizada en una
gran cantidad de neuronas piramidales. La diferencia de potencial debe
atravesar diferentes capas de tejido como el craneo, el liquido cerebroespinal
y el tejido subcutaneo, hasta alcanzar los electrodos metalicos que capturan
la sefial para su posterior procesamiento y visualizacion [1].

El trazado de EEG puede presentar variaciones en su frecuencia y amplitud
de un estado fisiolégico a otro, como por ejemplo en la vigilia, el suefio,
con la edad, en algunos trastornos neurolégicos, entre otros. La profunda
inspeccion visual de las sefiales EEG ha permitido la caracterizacion de las
ondas de acuerdo a su frecuencia, encontrandose cinco principales rangos
de frecuencia denominados ritmos cerebrales: delta (0-4 Hz), theta (4-8
Hz), alfa (8-13 Hz), beta (13-30 Hz) y gamma (> 30 Hz). En relacién con la
amplitud de las sefiales, es comiin que en registros llevados a cabo sobre el
cuero cabelludo se encuentre en rangos entre 10 uV y 100 pV [1].

El modelado paramétrico ha sido una técnica muy popular para el andlisis
de series de tiempo, en especial para sefiales de origen biol6gico como el
EEG [2]. La técnica de modelado paramétrico permite la caracterizacion de
las series de tiempo a pesar de no utilizar informacion de la naturaleza de
las mismas, por ejemplo, la fisiologia o el origen anatémico de las sefales.
Dentro del modelado paramétrico, los modelos autorregresivos (AR) des-
tacan por su relativa simpleza, en donde la sefial en un tiempo especifico
es descrita como una combinacién lineal de sus valores pasados.
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En este articulo se presenta el desarrollo de modelos para la simulacion
de diferentes tipos de sefiales EEG comtinmente encontradas en la practica
clinica, con miras al desarrollo de simuladores de sefales cerebrales que
permitan el entrenamiento y aprendizaje del personal médico, siendo el
desarrollo de simuladores un drea de investigacién muy activa, donde
incluso, se buscan implementar herramientas de simulacién que pueden
contribuir como ayudas diagnosticas [3].

En el presente articulo, primero se exponen los conceptos tedricos de las
diferentes condiciones de registro y artefactos en EEG que son modelados,
enseguida se discuten los métodos empleados para la obtencion de los mo-
delos autorregresivos y su posterior simulacién, y finalmente se presentan
y discuten algunos de los resultados alcanzados.

II. METODOLOGIA

Enestaseccion se describen las caracteristicas morfoldgicas méas importantes
de las senales EEG bajo diferentes condiciones de registro, y algunos de los
artefactos mas comunes que pueden estar presentes durante un registro
de EEG. También se presenta el proceso de identificacion con modelos au-
torregresivos, y finalmente la simulacion de las sefiales EEG a partir de los
coeficientes del modelo AR.

A. Condiciones de registros EEG simuladas

La actividad eléctrica del cerebro puede ser registrada en una gran variedad
de condicionesy bajo diferentes estimulos, y para cada caso se puede tener un
trazado de EEG con caracteristicas morfoldgicas distintivas. En unadulto, bajo
condiciones normales y en estado de vigilia, un trazado de EEG presentara
distintas morfologias de las ondas dependiendo de si este se realiza con los
ojos cerrados o con los ojos abiertos. Durante la condicién de ojos cerrados
es comdn encontrar una forma de onda altamente ritmica y sinusoidal con
frecuencia predominante enla banda alfa, con mayor amplitud en los canales
posterioresy occipitales, este comportamiento es conocido cominmente como
ritmo posterior. Por otra parte, la condicion de ojos abiertos se caracteriza por
su bajo voltaje, menor a20 1V, lafalta de un patrén en el trazado y lacompleta
ausencia del ritmo posterior [4]. Aqui se han modelado y simulado estos dos
estados caracteristicos que son ampliamente usados en la practica clinica.
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Existen muchas situaciones clinicas en las cuales es conveniente llevar a
cabo un registro de electroencefalografia, pero una de las razones mas
comunes para emplear esta técnica es su efectividad en el diagnédstico de
la epilepsia; se ha probado que la electroencefalografia es una herramienta
muy util para la clasificacion de diferentes tipos de crisis de epilepsia [5],
[6], [7]. La clasificacién més comun de las crisis epilépticas las agrupa en:
parciales y generalizadas. A su vez, cada una de estas categorias se divide
en otros subgrupos [5]. Se han simulado dos tipos de crisis epilépticas:
“Crisis epiléptica parcial compleja”, la cual estd confinada en una region
del cerebro y en el trazado de EEG solo puede ser apreciada en un grupo
de electrodos; los patrones de EEG asociados con crisis parciales suelen
consistir en una descarga ritmica y aguda sobre el area afectada, como un
tren de espigas, y se pueden presentar tanto a bajas como a altas frecuencias.
“Crisis generalizada de ausencia”, la cual distorsiona la actividad eléctrica
de la totalidad del cerebro y por lo tanto puede ser observada en todos los
canales empleados durante el registro. La caracteristica mas importante
en el trazado de EEG es la clasica descargar de 3 Hz como frecuencia do-
minante, encontrdndose su maximo voltaje comtinmente en los electrodos
frontales y con menor frecuencia en la zona occipital. La amplitud de la
descarga normalmente se encuentra por encima de los 100 uV. Aunque el
termino 3 Hz es consistente, a menudo se puede encontrar una frecuencia
ligeramente mayor o menor a los 3 Hz [5].

B. Artefactos en EEG simulados

Un artefacto es una onda en el trazado del EEG que no es de origen cerebral,
y puedenclasificarse en artefactos de origen fisiologico y artefactos de origen
no fisiolégico. Quiza uno de los desafios mas importantes en la lectura de
un EEG es la correcta identificacion de los artefactos, que conlleva el objetivo
de evitar relacionarlos con actividad cerebral real [4]. Los artefactos que se
han implementado en el presente trabajo son:

* Parpadeo

Este artefacto es producido por el fenémeno de Bell [4], el globo ocular
acttia como un dipolo: el polo positivo orientado anteriormente, en la
cornea, y el polonegativo orientado posteriormente, enlaretina. Cuando
unindividuo parpadea, el globo ocular rota hacia arriba, generando una
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corriente alternante de alta amplitud que es detectada por cualquier
electrodo ubicado cerca de los ojos, es decir en la regioén frontal.

Muscular

Los artefactos de origen muscular se presentan con mayor frecuencia
durante un registro llevado a cabo en estado de vigilia. Este artefacto es
registrado mas a menudo por los electrodos situados sobre los muscu-
los del cuero cabelludo (musculos frontales, temporales y occipitales).
Un artefacto muscular comtinmente presenta mayores frecuencias en
comparacion con el rango de frecuencias caracteristico de las sefiales de
EEG, y puede ser dificil de apreciar una morfologia enla onda generada,
a manera de una mezcla heterogénea de ondas con una alta amplitud.

Ruido 60 Hz

Esunartefacto debido alainterferencia eléctrica proveniente del propio
equipo de registro o de lineas eléctricas cercanas. El artefacto de 60 Hz
puede surgir cuando la impedancia de uno de los electrodos (un pobre
contacto del electrodo) es significativamente mayor a la de la tierra
eléctrica, y se puede evidenciar tanto en un electrodo aislado como en
un conjunto de electrodos.

Electrodo “Pop”

Este artefacto puede ocurrir debido a una acumulacion de carga estatica
enunelectrodoindividual seguido de unaliberaciénrapidadeesacarga,
como por ejemplo, un movimiento repentino del lugar de contacto del
electrodo. Normalmente la apariciéon de este artefacto es confinada a un
solo electrodo. La forma mds caracteristica del artefacto es una rapida
descarga de gran amplitud [4].

La Fig. 1 ilustra algunas de las diferentes sefiales EEG descritas con ante-
rioridad y que son empleadas en el proceso de modelado.
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Figura 1. Ejemplo de diferentes sefiales EEG utilizadas para el proceso de
modelado: a) sefal bajo la condicién de vigilia con ojos abiertos, b) sefial de
electrodo ubicado posteriormente durante la condicién de vigilia con ojos
cerrados, c) y d) crisis epilépticas, e) artefacto electrodo “pop”, la flecha indica la
aparicion del artefacto, f) artefacto muscular, g) artefacto ruido 60 Hz.

C. Registros de EEG

Parallevar a cabo el procedimiento de modelado paramétrico y simulacién
se han utilizado registros de EEG disponibles en bases de datos ptblicas [8]
para las condiciones en reposo con ojos abiertos y con ojos cerrados. Para el
analisis de EEG durante crisis epilépticas se han usado registros realizados
porel grupo de investigaciéon Gibic [9]; por tltimo, los artefactos en EEG fue-
ron adquiridos de forma controlada durante diferentes registros realizados
conunamplificador Neuroscan (Sistema Médico Neuroscan, Neurosoft Inc.
Sterling, VA, EE.UU), empleando el sistema 10-20 y un total de 21 canales.
En total fueron analizados ocho registros de EEG, correspondientes a cada
una de las condiciones descriptas con anterioridad. La Fig. 2 muestra la
disposicion de los electrodos utilizados, asi como los montajes que se han
implementado en el presente trabajo que corresponden a los mas utilizados
en la practica clinica: a) montaje monopolar, en el cual como referencia se
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ha seleccionado los 16bulos de las orejas, y b) montaje bipolar, que a su
vez pueden dividirse en longitudinales y transversales. En los montajes
bipolares longitudinales se registra la actividad por pares de electrodos
organizados en sentido anteroposterior, de adelante hacia atras; y en los
montajes bipolares transversales la actividad eléctrica es registrada por
pares de electrodos dispuestos de izquierda a derecha.

Figura 2. Nomenclatura y disposicion de los 21 electrodos empleados en el
sistema 10-20. Izquierda: Montaje transversal. Derecha: Montaje anteroposterior.

D. Modelado autorregresivo

Una serie de tiempo proveniente de un proceso estocastico puede ser anali-
zadaatravés de un modelo paramétrico autorregresivo. Tal modelo expone
que la muestra x, de una serie de tiempo en un momento dado, puede ser
expresada como una sumatoria lineal ponderada de p valores previos de
la serie temporal x, , Xyoree ey més una componente de incertidumbre
o error (Ecuacion 1). El valor p es conocido como el orden del modelo y
normalmente se selecciona mucho menor que la cantidad de datos de la

serie de tiempo [10].

14
X = Z aixXe—; + & 1)
i=1
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Donde x, es la serie de tiempo, a,, a,...., a, son los parametros del modelo
autorregresivo de orden p y el factor ¢, es conocido como el error de pre-
diccién del proceso, el cual es ruido blanco. Este tipo de modelado para-
métrico ha sido ampliamente descrito para el andlisis de sefales EEG, y su
uso se extiende en diferentes temas, como la clasificacion y segmentacion
de sefiales EEG, la identificacién y cancelacion de artefactos, la descripcion
de los diferentes ritmos cerebrales, la simulacion y generacion de sehales
EEG, entre otros [11].

Uno de los supuestos mas importantes que posee esta técnica de modelado
paramétrico y a la vez una limitacion, es la condicién de estacionariedad
del proceso estocastico, que desde el punto de vista estadistico corresponde
a cuando su primer y segundo momento, media y varianza respectiva-
mente, no varian con respecto al tiempo [10], [12]. En las senales EEG la
estacionariedad depende en gran de medida de la longitud de la sefial, y
se ha encontrado que las sefiales de EEG pueden ser asumidas localmente
estacionarias cuando se analizan en cortos intervalos de tiempo [13]. En
este trabajo, para cada registro EEG analizado, a excepcion de la condicién
de parpadeo, se ha estimado un modelo AR por cada canal en un segmento
de 2 segundos representativos de la sefal. La seleccién de los segmentos
de sefnal a modelar se realiz6 verificando visualmente que cumplieran
con las caracteristicas distintivas de la condicion de registro en especifico,
evitando incluir caracteristicas impropias. El artefacto ocular de parpadeo
se ha simulado mediante el ajuste de una ecuacién sinusoidal. Todas las
sefales han sido muestreadas a una frecuencia de 100 Hz. La identificacion
de los pardmetros del modelo autorregresivo se ha llevado a cabo mediante
el algoritmo de Burg [14], también conocido como el método de maxima
entropia; este algoritmo determinalos coeficientes de reflexion y utiliza estos
coeficientes para calcular los pardmetros del modelo AR de forma recursiva.

El ajuste de un modelo autorregresivo paramétrico a una sefial de EEG
conlleva bésicamente la selecciéon de un tnico parametro: el orden del
modelo, la eleccién de un orden muy alto puede producir un sobreajuste
del modelo e introducir informacién incorrecta como falsos picos en el
espectro. Por otra parte, un orden de modelo muy bajo puede conducir a
la pérdida de informacion, lo cual en el dominio de la frecuencia se aprecia
como un espectro suavizado [12].
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Para establecer el orden adecuado del modelo es comtin el uso de funciones
denominadas “criterios de informaciéon”. El orden mas apropiado para el
modelo es aquel que minimice el criterio de informacién cuando este es
evaluado sobre un rango de 6rdenes dados. Uno de estos criterios de infor-
macion es el criterio de Hannan-Quinn [15], denotado por HQ (p) (Ecuacién
2). Este criterio es definido como un estimador consistente, el cual converge
a su valor verdadero cuando el ntimero de datos tiende al infinito.

2plog(log(V)) (3
N

HQ(p) = log(V) +

Donde V es la varianza del ruido blanco de entrada, N es la cantidad de
muestras delasefial y p esel orden del modelo evaluado. La funcion anterior
se compone de dos términos, el primero busca minimizar la varianza del
proceso, y el segundo caracteriza el nimero de pardmetros a estimar en el
modelo. La interpretacién del criterio HQ consiste en que el orden adecuado
corresponde al menor valor de HQ cuando se evaltiaen unrango de 6rdenes.

Ademas, se ha estimado el indice de ajuste o porcentaje de la variaciéon de

la salida. Este indice provee una medida del ajuste del modelo a los datos
reales (Ecuacion 3).

I, — Zell

FIT = 100 * (1 - > [%] ()

llxe — mean(x,)|

Donde x, es la serie de tiempo y X, es la serie de tiempo simulada a partir
de los coeficientes del modelo AR. Valores del FIT cercanos al 100% indican
un buen ajuste del modelo, en tanto valores préximos al 0% denotan un
modelo inapropiado [16].

La estabilidad del modelo AR es evaluada a través de los coeficientes de
reflexién calculados por el método de Burg, y verifica que la magnitud de
dichos coeficientes sea menor o igual a la unidad [14], [17]. Finalmente, se
ha estimadola densidad espectral de potencia (PSD), empleando el periodo-
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grama de Welch [18], tanto para las sehales de EEG originales como para las
sefiales simuladas, lo anterior con el fin de comprobar que las caracteristicas
en el dominio de la frecuencia de las sefiales simuladas corresponden a las
de las senales originales. Para cada espectro se ha obtenido el valor de la
energia promedio en cada una de las bandas de frecuencia representativas
del EEG, descritas con anterioridad, ademads se han calculado dos parame-
tros que brindan informacién acerca del desplazamiento del espectro de
potencia de las sefiales. Dichos pardmetros son la frecuencia media (Fm):
correspondiente al valor medio de la frecuencia en la PSD, y la frecuencia
central (Fc): definida como la mediana de la PSD [19].

III. RESULTADOS Y DISCUSION

En esta seccion se presentan los resultados del proceso de modelado auto-
rregresivo de las sefiales EEG y su validacion en los dominios del tiempo
y la frecuencia.

La Fig. 3 muestra una tendencia representativa de lo encontrado con la
mayoria de canales de EEG registrados con ojos cerrados. En este caso se
trata de la sefial EEG del canal F3 de la condicién en reposo con ojos cerra-
dos, el comportamiento del criterio Hannan-Quinn al ser evaluado en un
amplio rango de 6rdenes, la tendencia de la curva es representativa de los
otros canales y de las demds condiciones, y también consistente con otros
estudios relacionados con el modelado autorregresivo de senales EEG [20].
A medida que se incrementa el orden, el valor de la funcion HQ decrece, de
la Fig. 3 se puede inferir que un orden del modelo igual a 13 es suficiente
para el ajuste del modelo.
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Figura 3. Criterio Hannan-Quinn (HQ) como una funcién del orden del modelo
para el canal F3 en condicién de ojos cerrados. La forma de la curva es similar
para todos los otros canales y en las demads condiciones de registro.

En la Tabla 1, para cada condicion de registro se presenta el valor prome-
dio y la desviacién estdandar del porcentaje de ajuste FIT y del orden del
modelo obtenido segtn el criterio HQ. El valor promedio de ajuste FIT en
todos los casos estuvo por encima de 70%, lo cual indica una buena simili-
tud entre las sefiales EEG reales y las simuladas a partir de los coeficientes
de los modelos. Por otro lado, se observa que entre ambas condiciones de
vigilia, ojos abiertos y cerrados, el valor del orden del modelo obtenido es
similar, asimismo sucede entre ambas condiciones con crisis epilépticas,
generalizada y parcial; sin embargo, se aprecia una gran diferencia en el
orden del modelo al comparar las condiciones de registro en vigilia con las
condiciones de crisis epilépticas. El valor mdximo y minimo encontrado
en el orden del modelo para la condicién de ojos abiertos fue 16 y 12 res-
pectivamente, en tanto que para la condicién de ojos cerrados fue 15y 10
respectivamente. En relacion con la condicién de “Crisis epiléptica parcial
compleja” se encontré un orden maximo igual a 7 y un orden minimo igual
a4, paralacondicién de “Crisis epiléptica generalizada” se obtuvo un valor
maximo del orden igual a 8 y un minimo igual a 3.
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Tabla 1. Resultados del orden del modelo y del porcentaje de ajuste
promedios en cada tipo de registro modelado

Registros EEG modelados Orden promedio FIT promedio (%)
Condicion reposo ojos cerrados 12,95+ 1,53 73,96 + 5,36
Condicion reposo ojos abiertos 14,47 1,77 71,14 +6,18
EEG Crisis epiléptica generalizada 6,14 +2,03 76,29 + 5,81
EEG Crisis epiléptica parcial compleja 512+0,83 70,35 +£7,12

Una vez estimados los coeficientes del modelo AR, segtn lo descrito en la
metodologia, se simularon las sefales EEG para cada una de las condicio-
nes estudiadas. La Fig. 4 muestra el resultado de la simulacién durante 6
segundos de los 21 canales bajo la condicion de ojos abiertos, y se evidencia
la baja amplitud de la sefial y la falta de un patrén caracteristico, lo cual
corresponde a esta condicion.

Segundos

Figura 4. Sefales EEG simuladas en condicion de reposo con ojos abiertos.

La Fig. 5 ilustra el resultado de la simulacién de un registro EEG durante
una “Crisis epiléptica parcial compleja”, surgiendo en la region temporal
izquierda y luego envolviendo por completo el hemisferio izquierdo del
cerebro. La forma de onda consiste en un alto voltaje y picos agudos con
una destacada baja frecuencia. Por otra parte, la Fig. 6 muestra la presen-
cia de la actividad muscular en la regién temporal de ambos hemisferios;
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este artefacto muscular aparece como una onda de alta frecuencia y alta
amplitud, sin ninguna morfologia especifica.

7 I NI
ot A RO AN

0 1 2 3 4 5 6
Segundos

Figura 5. Sefiales EEG simuladas en condicion de reposo con ojos abiertos
y crisis epiléptica parcial compleja.
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Figura 6. Sefiales EEG simuladas en condicion de reposo con ojos abiertos y
afectado por artefacto muscular, evidente en los electrodos ubicados en
la region temporal de cada hemisferio.
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Para las demas condiciones estudiadas se presentan segmentos de sefial
simulados que incluyen las caracteristicas més importantes de cada con-
dicién, como puede verse en la Fig. 7.

c)

Figura 7. Diferentes segmentos de sefiales EEG simuladas, a) Reposo ojos
cerrados, b) Crisis epiléptica, c) Reposo ojos abiertos con artefacto electrodo
“pop”, d) Artefacto ruido 60 Hz, e) Reposos ojos abiertos con artefacto parpadeo.

Finalmente, un ejemplo de la densidad espectral de potencia de una sefial
real y una sefial simulada es presentado en la Fig. 8, en donde resulta evi-
dente que el espectro de la sefial EEG simulada comparte gran similitud
con el espectro de la sefial EEG real, siendo este el trazado caracteristico en
sefales de EEG.
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Figura 8. Espectro de potencia de la sefal real y la sefial simulada.
Correspondiente al canal F3 de la condicién de ojos abiertos.

En la Tabla 2 se presenta para una sefial simulada y real de cada condicién
el valor promedio de la energia en cada una de las bandas de frecuencia
del EEG. Igualmente se ilustra el valor de la frecuencia central y la frecuen-
cia media, como parametros que caracterizan el espectro de potencia. Es
evidente que al comparar el valor de la energia promedio entre la sefial
simulada y real de una misma condicién, dichos valores son muy cercanos,
igualmente sucede con los valores de la frecuencia central y frecuencia
media; lo anterior indica una buena representacion de las caracteristicas en
frecuencia por parte de la sehal simulada a partir del modelo AR. Resulta-
dos similares a los anteriores fueron encontrados para las demaés sefiales
de los montajes analizados.
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Tabla 2. Energia promedio en cada banda de frecuencia
y valores de las frecuencias central y media

Energia promedio [uV2] Frec{::;ncia
Senal EEG
Delta Theta Alfa Beta Gamma Fc Fm
Real 0,342 2428 1504 0,212 0,025 8,984 10,518
Condicién reposo ojos cerrados ——
Simulada 0,323 2,475 1,608 0,199 0,019 8,984 10,588
o ) i Real 0,734 0,275 0,08 0,051 0,019 4296 9,428
Condicién reposo ojos abiertos -
Simulada 0,679 0,228 0,07 0,053 0,021 4296 8,201
o i Real 24,883 4,667 0924 0,195 0,051 3,125 3,925
Crisis epiléptica generalizada -
Simulada 24,196 4,196 0,983 0,184 0,046 3,851 4,012
Crisis ep||épt|ca parcia| Real 14,244 4,681 2,238 4,632 0,855 20,703 18,368
compleja Simulada 13,988 4,391 2596 4,675 1,048 21,718 18,058

Eneltrabajoactual se ha desarrollado una metodologia parala caracterizacién
dediferentes tipologias de sefiales EEG empleando el modelado paramétrico
autorregresivo. Lo anterior, con el fin de desarrollar simuladores médicos
para la formacion y el entrenamiento del personal asistencial. En cuanto al
modelado autorregresivo como técnica para el analisis y caracterizacién de
sefales EEG, diferentes estudios [21], [22] han mostrado la superioridad de
este enfoque sobre las técnicas tradicionales no paramétricas, como lo es el
periodograma de Welch, resaltando que el modelado paramétrico es mejor
para el uso en areas clinicas y de investigaciéon, debido a que brinda un
espectro de frecuencia mas claro y de mayor resolucién, permitiendo una
mejor interpretacién de la informacion. Mas en especifico, se estima que los
modelos AR presentan un mejor desempefio para caracterizar las sefiales
EEG al compararlos con otros métodos paramétricos, como es el caso del
modelo Arma (modelo autorregresivo de media moévil) [23]. Aunque existe
una amplia variedad de algoritmos para la estimacién de los coeficientes
del modelo AR, es evidente que el método de Burg ha sido mayormente
empleado al obtener buenos resultados [14], [21], [22], [23]. En relacién a la
estimacion del orden del modelo, es importante resaltar que esta depende
en gran medida de la cantidad de datos de la sefal y de la frecuencia de
muestreo de esta, sin embargo, en la gran mayoria de estudios [21], [22],
[23] es comtn el uso de los criterios de informacion para la estimacién
idénea del orden del modelo.
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IV. CONCLUSIONES

En este trabajo se ha presentado una metodologia basada en la teoria mo-
delos autorregresivos con el fin de caracterizar diferentes tipos de sefiales
EEG vy realizar su posterior simulacion en el dominio del tiempo y de la
frecuencia. Dichos modelos lograron representar de manera adecuada las
caracteristicas en frecuencia y en tiempo de las sefiales EEG reales.

Los registros EEG modelados y simulados permitieron consolidar una
coleccién de sefiales EEG con diferentes patrones morfolégicos, segin
cada condicion de registro, que posteriormente pueden ser la base para
el desarrollo de simuladores orientados al aprendizaje y la interpretacién
de senales cerebrales por el personal médico. La estrategia de modelado
aqui presentada asume cada canal como una sefial aislada proveniente de
un proceso cerebral y esto constituye una debilidad de la técnica, pues las
sefales EEG en realidad se estudian en conjunto. Sin embargo, aun cuando
las sefiales se modelan por separado, se debe garantizar que los modelos
simulados correspondan al mismo instante de tiempo. No obstante, los
buenos resultados obtenidos permiten trazar una nueva investigacién
orientada a modelar las sefiales EEG como un conjunto a través de mode-
los paramétricos de multiples salidas en donde se modela el conjunto de
sefales simultaneamente.

El proceso de modelado aqui presentado tiene otras posibles aplicaciones
en clasificacion automatica de sefiales EEG, la identificacion automatica de
artefactos, el analisis cuantitativo y la prediccion de valores futuros en las
sefales EEG.

REFERENCIAS

[1] S.Sanei, J. Chambers, EEG Signal Processing. 1st ed. England: John Wiley &
Sons Ltd, 2007.

[2] E.Duque, A. Manera, D. Trujillo, D. Urrego, A. M. Hernandez, “System for
processing and simulation of brain signals”, IEEE Latin-American Conference
on Communications, LATINCOM ‘09 - Conference Proceedings, art. 5304853, 2009.
doi: 10.1109/LATINCOM.2009.5304853

[3] H.D. Vargas Cardona, M. A. Alvarez Lépez, A. Angel Orozco, “Estimacién
de la propagacion eléctrica cerebral generada por la DBS en pacientes con

354 Ingenierfa y Desarrollo. Universidad del Norte. Vol. 35 n.° 2: 337-356, 2017
ISSN: 0122-3461 (impreso)
2145-9371 (on line)



(5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

MODELADO AUTORREGRESIVO DE SENALES ELECTROENCEFALOGRAFICAS
PARA SIMULADORES MEDICOS

enfermedad de Parkinson de la regién sur-occidente de Colombia”, Revista
Cientifica Ingenieria y Desarrollo, vol 34, no. 2, pp. 116-138, 2016. doi: http://
dx.doi.org/10.14482/inde.34.1.7950

D. Schomer, F. da Silva, Niedermeyer’s Electroencephalography: Basic
Principles, Clinical Applications, and Related Fields. 6th ed. Philadelphia:
Lippincott Williams & Wilkins, 2011.

M. Libenson, Practical Approach to Electroencephalography. 1st ed. Philadelphia:
Saunders Elsevier, 2010.

F. Mormann, R. G. Andrzejak, C. E. Elger, K. Lehnertz, “Seizure prediction:
The long and winding road”, Brain, vol. 130, no. 2, pp. 314-333, 2007. doi:
10.1093/brain/awl241

N. Kannathal, M. L. Choo, U. R. Acharya, P. K. Sadasivan, “Entropies for
detection of epilepsy in EEG”, Computer Methods and Programs in Biomedicine,
vol. 80, no. 3, pp. 187-194, 2005. doi: 10.1016/j.cmpb.2005.06.012

The Neurophysiological Biomarker Toolbox (NBT), [En linea]. Disponible
en: http:/ /www.nbtwiki.net [Accedido: Abril 9, 2017]

Bioinstrumentation and Clinical Engineering Research Group (GIBIC), [En
linea]. Disponible en: http://www.gibicgroup.com [Accedido: Abril 9,
2017]

K. Blinowska, ]. Zygierewicz, Series in Medical Physics and Biomedical
Engineering. Practical Biomedical Signal Analysis Using MATLAB. 1st ed.
Florida: CRC Press. Taylor & Francis Group, 2012.

V. Lawhern, W. D. Hairston, K. McDowell, M. Westerfield, K. Robbins,
“Detection and classification of subject-generated artifacts in EEG signals

using autoregressive models”, Journal of Neuroscience Methods, vol. 208, no.
2, pp. 181-189, 2012. doi: 10.1016/j.jneumeth.2012.05.017

J. Muthuswamy, N. Thakor, “Spectral analysis methods for neurological
signals”, Journal of Neuroscience Methods, vol. 83, no. 1, pp. 1-14, 1998. doi:
10.1016/50165-0270(98)00065-X

L. Sornmo, P. Laguna, Bioelectrical Signal Processing in Cardiac and Neurological
Applications. 1st ed. California: ElSevier Academic press, 2005.

J. Pardey, S. Roberts, L. Tarassenko, “A review of parametric modelling
techniques for EEG analysis”, Medical Engineering and Physics, vol. 18, no. 1,
pp- 2-11, 1996. doi: 10.1016/1350-4533(95)00024-0

E. Hannan, B. Quinn, “The determination of the order of an autoregression”,
Journal of the Royal Statistical Society, vol. 41, no. 2, pp. 190-195, 1979.

Ingenierfa y Desarrollo. Universidad del Norte. Vol. 35 n.° 2: 337-356, 2017 355
ISSN: 0122-3461 (impreso)
2145-9371 (on line)



[20]

356

Frank Sanchez, Alher Mauricio Hernandez

S. Privara, Z. Vana, E. Zacekova, J. Cigler, “Building modeling;: Selection of
the most appropriate model for predictive control”, Energy and Buildings,
vol. 55, no. 1, pp. 341-350, 2012. doi: 10.1016/j.enbuild.2012.08.040

B. H. Jansen., J. R. Bourne, J. W. Ward, “Autoregressive estimation of
short segment spectra for computerized eeg analysis”, IEEE Transactions
on Biomedical Engineering, vol. 28, no. 9, pp. 630-638, 1981. doi: 10.1109/
TBME.1981.324753

J. Semmlow, B. Griffel, Biosignal and Medical Image Processing. 3rd ed. Florida:
CRC press. Taylor & Francis Group, 2014.

I. C. Muiioz, “Evaluacién de indices para el destete de la ventilacién mecanica
en pacientes postquirdrgicos de cirugia cardiovascular utilizando anélisis
de actividad muscular respiratoria y mecanica ventilatoria”, M.S. tesis,
Facultad de Ingenierfa, Universidad de Antioquia, Medellin, Colombia,
2014.

M. Ding, S. L. Bressler, W. Yang, H. Liang, “Short-window spectral
analysis of cortical event-related potentials by adaptive multivariate
autoregressive modeling: data preprocessing, model validation, and
variability assessment”, Biological Cybernetics, vol. 83, no. 1, pp. 35-45, 2000.
doi: 10.1007 /004229900137

M. Akin, M. K. Kiymik, “Application of periodogram and AR spectral
analysis to EEG signals”, Journal of Medical Systems, vol. 24, no. 4, pp. 247-
256, 2000. doi: 10.1023/ A:1005553931564

O. Faust, R. U. Acharya, A. R. Allen, C. M. Lin, “Analysis of EEG signals
during epileptic and alcoholic states using AR modeling techniques”, ITBM-
RBM, vol. 29, no. 1, pp. 44-52, 2008. doi: 10.1016/j.rbmret.2007.11.003

S.-Y. Tseng, R.-C. Chen, F.-C. Chong, T.-S. Kuo, “Evaluation of parametric
methods in EEG signal analysis”, Medical Engineering and Physics, vol. 17, no.
1, pp. 71-78, 1995. doi: 10.1016/1350-4533(95)90380-T

Ingenierfa y Desarrollo. Universidad del Norte. Vol. 35 n.° 2: 337-356, 2017
ISSN: 0122-3461 (impreso)
2145-9371 (on line)



