ARTÍCULO ORIGINAL

Detection of *Mycoplasma capricolum subsp. capripneumoniae* and *Mannheimia haemolytica* as causative agents of pleuropneumonia in goats

Fatemeh Namazi1,2,*, Abdollah Derakhshandeh1,3, Sajedeh Sajadi Hezaveh4, Vida Eraghi1,5

1 Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
2 https://orcid.org/0000-0002-2523-2794
3 https://orcid.org/0000-0002-1878-1103
4 Graduated of School of Veterinary Medicine, Shiraz University, Shiraz, Iran. https://orcid.org/0000-0002-2116-0367
5 https://orcid.org/0000-0002-8849-2497
* Autor para correspondencia.
Department of Pathobiology, School of Veterinary Medicine, Shiraz University, P.O. Box 71441-69155, Shiraz, Iran.

Abstract
Objective: The aim of the study was detection of two major causative agents of pleuropneumonia, *Mycoplasma capricolum subsp. capripneumoniae* (Mccp) and *Mannheimia haemolytica*, in goats. To the best of our knowledge, this study is the first investigation of Mccp in Iran.

Methods: 50 grossly suspected lungs to pleuropneumonia and 10 healthy samples were collected from Shiraz abattoir.

Results: Histopathological evaluation of tissue samples showed various diagnosed pneumonias including 40% bronchointerstitial pneumonia (20 samples), 34% interstitial pneumonia (17 samples), 10% fibrinopurulent bronchopneumonia (5 samples), 12% purulent bronchopneumonia (6 samples) and 4% chronic pneumonia (2 samples). In molecular study, all 50 suspected samples and 10 healthy ones by PCR showed no Mccp positive sample, but the detection rate of *M. haemolytica* in suspected samples was 14% and in healthy lungs was zero.

Conclusions: It may be concluded that goats referred to Shiraz abattoir is free of Mccp. Further sampling and molecular testing at the level of suspected herds to CCPP can be useful.

Key words: Histopathology, Lungs, *Mycoplasma capricolum subsp. capripneumoniae*, *M. haemolytica*, Pleuropneumonia.

Introduction
Respiratory infections are significant causes of death in goats. *Mycoplasma capricolum subsp. capripneumoniae* (Mccp) is the causative agent of the classical form of contagious caprine pleuropneumonia (CCPP), one of the most serious diseases in goats with high morbidity and mortality, causing economic losses in the goat industry1. As the disease is readily contagious, a short period of contact is enough for successful transmission and no evidence of indirect contact has been shown. The typical signs of CCPP include pulmonary consolidation, pleurisy and pleuropneumonia2. The exact geographical distribution of this disease is unknown by OIE, but it is indicated that CCPP is widely distributed in...
Detection of Mycoplasma capricolum subsp. capripneumoniae and Mannheimia haemolytica as Causative Agents of Pleuropneumonia in Goats

Africa and Asia. Gathering information about the epidemiology of CCPP is useful for diagnosis, treatment and control strategies that have been used to improve knowledge about the distribution of CCPP.

Mannheimia haemolytica causes bronchopneumonia and affects sheep and goats. This opportunistic pathogen is found in the upper respiratory system of healthy goats, but stress induced by some situation like heat, overcrowding and transport make the bacteria cause pneumonia. It can cause high economic losses due to treatment costs, slowdown in weight gain and decrease of meat and milk production.

The present study was designed to detect two major causative agents of pleuropneumonia, Mccp and M. haemolytica, in grossly suspected goat’s lungs in Shiraz abattoir using the histopathological and molecular method.

Materials and Methods

Sample collection
50 samples of suspected lungs to pneumonia such as pulmonary consolidation and red discoloration and 10 healthy samples were collected during six months in Shiraz abattoir in southern Iran. The samples were immediately put in sterile plastic bags, placed in cooling boxes and were transported to the microbiology laboratory. Samples of both suspected and healthy lungs were considered for both tissue staining procedure and DNA extraction.

Histopathological examinations
All tissue samples were fixed in 10% neutral buffered formalin, embedded in paraffin, sectioned at 5 μm in thickness and stained with hematoxylin and eosin (H&E).

DNA extraction
Briefly, one gram of each sample was separately homogenized in 1 mL distilled water and centrifuged (13000 g, 30 sec). Supernatant was removed and 1.5 mL distilled water was added to the tissue pellet, resuspended and centrifuged (13,000 g, 30 sec). This step was repeated twice for washing the tissues. An amount of 500 μL of lysis buffer (Tris-HCL, EDTA, 0.2% Tween; Sinaclon, Tehran, Iran) and 50 μL protease K (Sinaclon) was added and incubated overnight at 37 °C. The enzyme digested samples were mixed with 500 μL of lysis buffer (Tris-HCL, EDTA, 0.2% Tween; Sinaclon, Tehran, Iran) and 50 μL proteinase K (Sinaclon, Tehran, Iran) and 50 μL proteinase K (Sinaclon, Tehran, Iran) was added and incubated overnight at 37 °C. The enzymatic mixture was digested at 50 °C for 2 min and final volume obtained by mixing 34 μL of distilled water, 0.5 μL of dNTP (each at 0.20 mM), 3 μL of MgCl₂ (1.5 mM), 0.5 μL of 10U Taq Buffer (Sinaclon, Iran), 1 μL of each primer (0.4 mM of Mccp-spe-F: 5′-GATTTTAATCCCTTCAAG-3′, 5′-TACAAGTATTTAAATTATATATGCA-3′), PCR was performed in a Mini-MJ Bio Rad system. The specific amplification was performed in a 50 μl -final volume obtained by mixing 34 μL of distilled water, 0.5 μL of dNTP (each at 0.20 mM), 3 μL of MgCl₂ (1.5 mM), 0.5 μL of 10U Taq Buffer (Sinaclon, Iran), 1 μL of each primer (0.4 mM of Mccp-spe-F: 5′-ATCATTTTAATCCCTTCAAG-3′ and Mccp-spe-R, 5′-TACAAGTATTTAAATTATATATGCA-3′ ), 0.5μl Taq DNA polymerase (5.00 U μL⁻¹) and 5 μL of the sample. PCR conditions consisted of an initial denaturation step of 2 min at 94 ºC, followed by 35 cycles of 30 s at 94 ºC, 15 s at 47 ºC and 15 s at 72 ºC and a final extension step of 5 min at 72 ºC. Negative and positive bacterial DNA controls were included for each PCR. The PCR products were subjected to electrophoresis in 1.5% agarose gel containing Gel Red (2µL per 50 gel) and the gel visualized under UV light.

Results

Gross and histopathological findings
Pulmonary consolidation in anterior and posterior lobes, red discoloration and occasionally pleural involvement, lung surfaces covered with a fibrin layer, were macroscopic lesions of suspected lungs. Histopathological evaluation revealed the most prevalent pneumonia was bronchointerstitial pneumonia, which observed in 40% (20 samples) of suspected samples with lesions including, peribronchiolitis, bronchiolitis, lymphocytic prevascular cuffing (PVC), interlobular septa and alveolar walls thickening due to infiltration of mononuclear cells and connective tissue and infiltration of neutrophils in broncholar and alveolar lumina (Figure 1a). Interstitial pneumonia was observed in 34% of suspected lungs with microscopic lesions including BALT, lymphocytic PVC, peribronchiolitis and thickening of alveolar walls because of infiltration of mononuclear cells (Figure 1b). The presence of mononuclear cells and eosinophils with Muellierus was observed in one sample. Two suspected lungs also showed type II pneumocyte hyperplasia. Histopathological findings of samples with fibrinopurulent bronchopneumonia (10%) contained fibrin and numerous neutrophils infiltration in the lumina and thickening of interlobular septa due to fibrin deposition (Figure 1c). In addition, fibrinous thrombi represented in the lymphatic vessels of septa in some cases. 12% of suspected lungs had purulent bronchopneumonia with major lesion of neutrophils infiltration in the alveolar spaces (Figure 1d). Chronic pneumonia in 4% of samples with severe infiltration of mononuclear cells and connective tissue, lymphocytic PVC, BALT, peribronchiolitis and abundant alveolar macrophages was observed. There were no microscopic lesions in healthy lung samples.
PCR results

Although, the expected band size PCR for Mccp was 316 bp, the PCR showed no Mccp positive sample in all samples, neither suspected CCPP lungs nor healthy ones (Figure 2). The M. haemolytica PCR with 206 bp band size was observed in 14% (7 samples) of suspected samples (Figure 3) and no band in healthy lungs. In the 7 positive samples with M. haemolytica, lesions consisted of fibrinopurulent bronchopneumonia (four cases), bronchointerstitial pneumonia (two cases) and interstitial pneumonia (one case).

Discussion

Based on the present findings, the most prevalent pneumonia was bronchointerstitial pneumonia and interstitial pneumonia with major lesions including thickening of interlobular septa and alveolar walls due to infiltration of mononuclear cells, peribronchiolitis and lymphocytic PVC. In addition to mentioned lesions, infiltration of neutrophils in the lumina was observed in bronchointerstitial pneumonia. Histopathological lesions of CCPP have been reported, including thickening of interlobular septa, thickening of alveolar walls and lymphocytic PVC. Mondal et al. reported the observation of interlobular septa thickening, lymphocytic PVC, fibrinous exudates, infiltration of neutrophils and vascular thrombosis, which are the same with observed lesions of fibrinopurulent pneumonia in this study. In an experimental study, Gutierrez et al. reported lesions more in the form of interstitial pneumonia.

Wesonga et al. experimentally inoculated 30 goats with Mccp and observed symptoms and lesions of CCPP, but no positive culture of bacteria was found. Even positive samples in immunohistochemistry were negative by molecular method that is in agreement with our findings.

In Ethiopia, Eshetu et al. reported 31% for the prevalence of CCPP by CFT. Also, they reported that gross and histopathological lesions of the lungs were indicative for pleuroneumonia caused by Mccp. El-Deeb et al. confirmed Mycoplasma capricolum subsp. capripneumoniae in 55 isolates by PCR, which had showed fibrinous pleuroneumonia. Awan et al. detected 17.65% positive samples for Mccp by PCR along with fibrinous pleuroneumonia and pleurisy in postmortem examination. Other study in Turkey revealed 37.5% (12/32) CCPP in lung samples taken from goats. In spite of some evidence of Mccp in mentioned countries, no positive case was detected in this abattoir study. Therefore, it may be needed to perform further studies through more samples and other techniques such as culture to confirm the lack of Mccp in our area.

In the present study, the most observed pneumonia in M. haemolytica positive samples by PCR was fibrinopurulent bronchopneumonia. This is relatively consistent with findings of previous studies. Yener et al. represented 15 out of 19 M. haemolytica immunopositive pneumonic lungs were fibrinous bronchopneumonia. Also, the study performed by Rawat et al. showed fibrinous bronchopneumonia in pneumonic pasteurellosis.

In conclusion, it seems that goats referring to Shiraz abattoir are free of Mccp and infected with M. haemolytica with the prevalence of 14%. As regards there is no epidemiological information on CCPP in our country, serological tests can be used to evaluate the overall distribution of the disease. In addition, sampling and molecular testing at the level of suspected herds to CCPP can be useful.
Detection of Mycoplasma capricolum subsp. capripneumoniae and Mannheimia haemolytica as Causative Agents of Pleuropneumonia in Goats

Electrophoretic analysis (1.5% agarose gel) of DNA amplified from M. haemolytica, Pasteurella multocida, M. haemolytica, and M. capricolum subsp. capripneumoniae respectively. Figure 3.

Figure 3. Electrophoretic analysis (1.5% agarose gel) of DNA amplified fragments for M. haemolytica. M: DNA marker 100 bp (Sinaclon). PC: positive control; NC: negative control; Lanes 1 and 3: negative samples; Lanes 2 and 4: positive samples.

Ethical disclosures

Protection of human and animal subjects. No experiments were performed in animal nor humans.

Confidentiality of data. Data were anonymized.

Competing interests. None declared.

Funding sources. None.

Ethical approval. This research was approved by the Ethics Committee of the University.

Conflict of interest. The authors have no conflicts of interest to declare.

Acknowledgements. The authors would like to thank the Research Council of Shiraz University and School of Veterinary Medicine, Shiraz University for financial (Grant number 94GC4M833832) and technical supports. Also, many thanks to Dr. Francois Thiaucourt and Dr. Mohammad Tabatabaei for sending Mccp DNA and M. haemolytica DNA as positive controls, respectively.

Conflict of interest. The authors declare no conflict of interest.

References


