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Abstract

Context: Forensic geotechnical engineering aims to determine the most likely causes leading to geo-
technical failures. Standard practice tests a set of credible hypotheses against the collected evidence using
backward analysis and complex but deterministic geotechnical models. Geotechnical models involving
uncertainty are not usually employed to analyze the causes of failure, even though soil parameters are
uncertain, and evidence is often incomplete.

Method: This paper introduces a probabilistic model approach based on Bayesian Networks to test
hypotheses in light of collected evidence. Bayesian networks simulate patterns of human reasoning under
uncertainty through a bidirectional inference process known as “explaining away.” In this study, Bayesian
Networks are used to test several credible hypotheses about the causes of levee failures. Probability
queries and the K-Most Prob- able Explanation algorithm (K-MPE) are used to assess the hypotheses.

Results: This approach was applied to the analysis of a well-known levee failure in Breitenhagen,
Germany, where previous forensic studies found a multiplicity of competing explanations for the causes
of failure. The approach allows concluding that the failure was most likely caused by a combination of
high phreatic levels, a conductive layer, and weak soils, thus allowing to discard a significant number of
competing explanations.

Conclusions: The proposed approach is expected to improve the accuracy and transparency of conclu-
sions about the causes of failure in levee structures.
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Evaluación de las causas de falla de un dique usando redes bayesianas
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Resumen

Contexto: La ingeniería geotécnica forense tiene como objetivo determinar las causas más probables
que conducen a fallas de tipo geotécnico. La práctica habitual pone a prueba un conjunto de hipótesis
a la luz de la evidencia, utilizando análisis retrospectivos y modelos geotécnicos complejos pero deter-
ministas. Los modelos geotécnicos que involucran incertidumbre no suelen emplearse para analizar las
causas de falla, a pesar de que los parámetros del suelo son inciertos y la evidencia suele ser incompleta.
Método: Este artículo presenta un enfoque de modelo probabilístico basado en redes bayesianas para
evaluar hipótesis con base en la evidencia recolectada. Las redes bayesianas simulan patrones de razo-
namiento humano bajo incertidumbre a través de un proceso de inferencia bidireccional conocido como
explaining away [explicación]. En este estudio, las redes bayesianas se utilizan para probar hipótesis creí-
bles sobre las causas de falla de un dique. Para evaluar las hipótesis se utilizan consultas de probabilidad
y el algoritmo de explicación más probable (K-MPE).
Resultados: El enfoque se empleó en el análisis de un dique en Breitenhagen, Alemania, donde varios
estudios forenses anteriores encontraron multiplicidad de explicaciones contrapuestas acerca de las cau-
sas de falla. El enfoque permite concluir que la causa más probable de falla fue una combinación de altos
niveles freáticos, una capa de suelo de alta permeabilidad y suelos de baja resistencia, lo que permitió
descartar un número significativo de explicaciones contrapuestas.
Conclusiones: Se espera que el enfoque probabilístico propuesto mejore la precisión y la transparencia
de las conclusiones sobre las causas de falla en estructuras tipo dique.
Palabras clave: ingeniería geotécnica forense, redes bayesianas, falla de diques
Idioma: Inglés

1. Introduction

Drawing conclusions about the causes of geotechnical failures can be strongly affected by pa-
rameters and model uncertainties. Therefore, conclusions derived from forensic assessments often
seem to be arbitrary and controversial. Although forensic analyses follow a rigorous process, the
lack of a probability-based framework can lead to costly and inefficient engineering solutions, as
well as to the wrong legal decisions.

Graphical probabilistic methods such as Bayesian Networks (BNs) can improve the practice of
forensic geotechnical engineering. Their ability to model competing hypotheses about the causes
of failure makes them a suitable tool for forensic assessments. BNs have been mainly used in me-
dicine, legal, and forensic science, mostly to support decisions in circumstances where uncertainty
or imprecision prevails [1]–[5]. Forensic engineering has partially used BNs for drawing reasona-
ble conclusions about the causes of failures. Several studies, such as those presented in [6]–[9],
demonstrate their applicability. Despite the benefits of BNs in forensic engineering, they have not
been widely adopted in forensic geotechnical studies [10].

This paper presents a Bayesian Network approach to support decisions in forensic geotechnical
assessments. The approach relies on the generic forensic engineering process for failure assessment
but incorporates a probabilistic framework to consider parameters and model uncertainties. The
Breitenhagen levee failure that occurred in Germany in 2013 is used to validate the proposed BN
approach. Data, studies, and some assumptions associated with the Breitenhagen levee failure,
which are presented in [11], [12], and [13], are used as a starting point for this study.
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The results show that the proposed BN approach can support the forensic geotechnical process.
Moreover, the interpretability and traceability of BNs ensure a rational decision based on a proba-
bilistic framework. Therefore, legal decisions and engineering solutions can be supported by more
objective conclusions.

2. Forensic geotechnical engineering

Forensic geotechnical engineering deals with investigating and communicating the causes of fai-
lures attributed to geological/geotechnical aspects [14], [15]. It involves the analysis of cause-effect
relationships using the scientific method and some complementary techniques. Most forensic en-
gineering methodologies focus on structural failures [16]. However, very few procedures and gui-
delines have been adapted to fulfil forensic geotechnical requirements. Among them, there is a
methodology for levee failures [12], a conceptual framework proposed in [23], and a modified ver-
sion of the observational method [24].

From a broader perspective, this process includes four stages [16], [17]: (1) collecting eviden-
ce, (2) developing failure hypotheses, (3) testing hypotheses against evidence, and (4) finding the
most likely cause of failure. In the first stage, forensic engineers collect all available information
to understand the circumstances that led to the failure. Sources of information may include field
observations and investigation, traditional and drone photography, working drawings, contract do-
cuments, eyewitness interviews, and construction records [16].

The second stage aims to develop credible hypotheses of failure based on the collected evidence.
Brady [17] and Bell [25] suggest that conventional design methods used in engineering practices
are not suitable for developing credible hypotheses. These methods apply synthesis techniques ba-
sed on forwarding reasoning. Synthesis could lead to wrong conclusions about the causes of failure
because the collected evidence is forced to match biased hypotheses. [20] recommends deductive
analysis to investigate the causes of failures, where the collected evidence guides the development
of credible hypotheses.

In the third stage, hypotheses about the causes of failure are tested against the collected evidence.
Back analysis has been commonly used to accept or reject hypotheses. However, selecting analy-
tical tools and interpreting results from back analysis requires experienced engineers [26], mainly
when the failure is represented by complex soil constitutive models and demanding analytical tools.

The fourth stage is the goal of any forensic assessment. A credible cause of failure is reached
when all alternative hypotheses are eliminated and only one (or some) match the evidence. Se-
lecting the most likely cause (or causes) of failure is quite a challenging task. Occasionally, the
selected cause of failure seems arbitrary or subjective due to large uncertainties in both parameters
and models [12], [25] and [20] suggest using the scientific method to overcome subjectivity. The
scientific method tests hypotheses against the collected evidence in order to approve or disapprove
its validity. In other words, the method reexamines the collected evidence to determine if a hypot-
hesis can explain it.
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In forensic geotechnical engineering, [23] and [27] propose some guidelines based on the scien-
tific method. [20] goes further and argues that reliable scientific interpretations about causes of
failure should come from statistic and probabilistic analysis. To date, very few forensic engineering
assessments use probabilistic tools [13], [28]. Furthermore, [29] recognize the scarcity of previous
literature about this topic.

3. Bayesian Networks
This section introduces some important concepts regarding Bayesian Networks (BNs). Several

standard textbooks, such as [30] and [31], are recommended for an extended introduction. A BN is
a probabilistic model that combines probability and graph theories [32]. BNs are used for inference
and reasoning under uncertainty due to their ability to simulate human reasoning processes [33].
Forward and backward inference is recognized as a crucial characteristic in BNs. These attributes,
along with a rigorous probabilistic background, have led BNs to successful applications [1], [2],
[5], [6]. In the technical literature, BNs are also known as Bayesian expert systems, probabilistic
graphic networks, belief networks, or Bayes nets.

3.1. Basic definitions
A problem involving reasoning under uncertainty and decision-making can be represented th-

rough a causal graph G (see Fig. 1). G is a structure consisting of nodes and edges1. Nodes re-
present events or variables, and edges embody causal relationships between nodes [31]. A pair of
nodes Xi and Xj , belonging to a set of nodes X = {X1, . . . , Xn}, can be connected by a directed
edge Xi → Xj . When the edges in G do not form a cycle, G is known as a directed acyclic graph
(DAG). Nodes encode random variables, propositions, or sample spaces. A node can have any num-
ber of states in a discrete set or in a continuous set. For example, node Xi in Fig. 1 has two states
Xi = {X0

i , X
1
i }, whereas the sample space of node Xj is described by a Gaussian distribution

Xj ∼ N(µXj
, σXj

).

Figure 1. A simple causal graph G

Causal relationships between nodes X are graphically represented by edges E. In the context of
BNs, causality denotes dependencies between variables or the direct influence of node Xi on node
Xj . Usually, this influence is not entirely deterministic. Therefore, E expresses the probabilistic

1Graphs are usually denoted as G = (V,E), where V = {v1, v2, v3, . . .} represents the set of vertices and
E = {e1, e2, e3, . . .} represents the set of edges. However, given that, in probabilistic graphical models, each node
is associated with a random variable Xi, the graphs are directly denoted G = (X,E) with X = {X1, X2, X3, . . .} and
Xi representing nodes and random variables simultaneously.
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influence of Xi on Xj . For discrete variables, the influence is represented by a conditional proba-
bility table (CPT). In the case of continuous variables, conditional probability distributions (CPD)
are employed. A CPT specifies a probability distribution over the states of Xj given each possible
state of Xi. In more general terms, a CPT encodes P (Xi|pa(Xi)), where pa(Xi) represents the set
of nodes in X with edges pointing to Xi. The term pa(Xi) is read as parents of Xi.

A causal graph is defined as a Bayesian Network when all the following conditions are met [30]:

1. Each node has a finite set of mutually exclusive states.

2. The edges do not form a cycle between nodes (i.e., it is a DAG).

3. The strength of the causal relationship between variables is expressed by conditional proba-
bilities tables or distributions (CPTs or CPDs).

3.2. Structure of a Bayesian Network
The structure of a BN refers to the type of relationships (connections) between nodes. There are

three basic connections in a BN: serial, converging, and diverging. Each type of connection deter-
mines which nodes are updated when some evidence is entered in the BN.

A serial connection between three nodes is shown in Fig. 2a. In this structure, node A influences
B, which in turn influences C. If the state ofA is known (i.e.,A is instantiated), it will influence the
state of C through node B. Similarly, if the state of C is known, the state of A will change through
B. On the contrary, if the state of node B is known, the flow of information between A and C is
blocked. In this case, A and C are d-separated given B.

Fig. 2b presents a diverging connection between three nodes. If some evidence is included in B,
information is transmitted to A and C. However, any additional evidence included in A when B is
instantiated will not be transferred to C. In this case, A and C are d-separated given B, or A and
C are conditionally independent given B.

In a converging connection (Fig. 2c), any evidence entered in A and C will change the state of
node B. Likewise, any evidence included in B will change the state of A and C. Hence, A and
C can transmit information between them when B is instantiated. In other words, A and C are
d-connected given B. In any other case, A and C are d-separated.

The power of BNs resides on combining Bayes’s rule and the chain rule. These characteristics
give BNs the ability for decision-making and abductive reasoning. Bayes’s rule states that prior be-
lief about a hypothesis can be modified if some evidence is available. Let us say that H represents
a hypothesis and E some evidence related to H . The updated belief about H given E can be calcu-
lated through Bayes’s rule (Eq. 1). In Eq. 1, P (H|E) represents the posterior (updated) probability
of H given E,P (E|H) the likelihood of the evidence given the hypothesis H , and P (H) the prior
probability of H . The term in the denominator is the marginal likelihood, which normalizes the
posterior probability.

P (H|E) = p(E|H)p(H)∑
H p(E|H)p(H)

(1)

INGENIERÍA • VOL. 27 • NO. 2 • ISSN 0121-750X • E-ISSN 2344-8393 • UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS 5 de 21



Evaluación de las causas de falla de un dique usando redes bayesianas

Figure 2. Basic connections in BNs: (a) serial connection, (b) diverging connection, (c) converging connection. Grey
nodes indicate instantiation

The chain rule reflects the properties of a BN. Let X ′ = {A,B,C,D,E} be the universe of
variables that describe a problem. If GBN defines a Bayesian network over X ′ (Fig. 3), then Eq.
(2) represents the conditional probability of GBN , where A and B are parent nodes and C,D, and
E are children nodes. Eq. (2) can be rewritten in the compact form of Eq. (3). Although a GBN is
sufficient for updating probabilities, BNs with many nodes have a high computational cost. Some
efficient algorithms such as junction three and stochastic simulation considerably reduce this cost.

P (X ′) = P (A)P (B)P (C|A,B)P (D|A,B)P (E|A,B) (2)

P (X ′) =
N∏
i=1

P (Xi|pa(Xi)) (3)

3.3. Abductive reasoning in Bayesian Networks

BNs play a significant role in the field of abductive reasoning methods. Abduction refers to gene-
rating plausible explanations (hypotheses) for a set of observations (evidence) related to a pheno-
menon. Fig. 4 presents the abductive process described in [34] adapted to the geotechnical context.
Based on the collected evidence and observed behavior, several credible hypotheses are generated.
These hypotheses constitute a set of possible explanations for a geotechnical failure (i.e., causes of
failure). A BN, along with a metric-based criterion, is used to select the most probable hypothesis
(i.e., the best explanation).

Let xo be a set of collected evidence for the observed nodesXO in a BN (Fig. 3). An explanation is
an arrangement of states for the unobserved nodes XU = xU that is consistent with xo. Abductive
reasoning aims to find the best explanation (Most Probable Explanation, MPE) among a set of
possible explanations [35]. Eq. (4) defines the MPE in which x∗U is a single arrangement of states
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Figure 3. Example of a BN with five nodes: two parents and three children. Dash lines indicate sets of observed and
unobserved nodes.

Figure 4. Abductive process [34] adapted to the geotechnical context.

for XU . Although the MPE is a useful metric, abductive reasoning is also interested in the K-
Most Probable Explanations (K-MPE) [36]. The K-MPE identifies and organizes the most probable
states of XU according to their joint probabilities.

x∗U = argmaxxU
P (xU |x0) (4)

4. Bayesian Network approach for forensic assessment of a le-
vee failure

Assessing evidence and evaluating competing hypotheses are regarded as challenging tasks [15],
[18]. Abductive and probabilistic reasoning can support these tasks through the rigorous mathema-
tical frame-work of BNs. The five-step approach proposed in this paper is described in the following
subsections. In general, the approach defines a set of competing hypotheses about the causes of a
levee failure and builds a BN to test them. The collected evidence is included in the BN to assess the
hypotheses via an abductive process. The approach identifies the most probable causes of failure
(explanations) using the K-MPE metric over the set of credible hypotheses.
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4.1. The five-step approach
The first step consists of identifying credible hypotheses about the causes of failure. In geotechni-

cal engineering, common failure hypotheses are related to pore water pressures, loading magnitu-
des, and subsoil conditions [13]. Each credible hypothesis is translated into the BN through a node.
Subsequently, several states are assigned to each node according to its characteristics.

The second step defines evidence nodes to the observed or behavioral variables. These nodes can
include, among others, stability condition, deformation magnitude, water level elevation, runout
distance, and slip geometry. In some cases, mediating variables could be required to connect hy-
potheses and evidence nodes. For example, the Factor of Safety (FoS) can be defined as a mediating
variable to link a hypothesis node related to the soil strength and an evidence node associated with
the stability condition.

Given the set of hypotheses and observed nodes, the next step identifies causal relationships
between nodes. Causality is easily identifiable when a physical model of the phenomenon is availa-
ble. Otherwise, the BN structure can be supported on semantic and syntax substructures known as
idioms [37]. It is easily identifiable by expressions such as ‘attributable to, due to, as a consequence
of, impact, caused by, resulting in’, among others.

Once the causal graph has been defined (i.e., nodes and edges), the fourth step aims to elicit the
conditional probability tables (CPT). This quantitative information can be obtained from mathe-
matical models (e.g., computer simulations) or databases. Expert knowledge can also be used to
determine the CPD values. However, analyses with multiple nodes could limit the use of expert
knowledge.

The final step involves entering the collected evidence into the BN, updating the nodes, and
evaluating the competing hypotheses. In this step, the BN is used to answer questions in the form
of conditional probability queries, in other words, to find the probabilities of unobserved nodes
given specific states in observed nodes [38]. The K-MPE is a particular type of query that aims to
identify the K most likely states of the nodes given some evidence. Its results can be used to draw
conclusions about the causes of failure. In this study, hypotheses describing the causes of failure
from a forensic perspective are statistically compared by evaluating their likelihoods.

5. Application example: the Breitenhagen levee failure
The proposed five-step BN approach was applied to the Breitenhagen levee failure. [12] presented

a comprehensive forensic study of this case based on a sensitivity analysis. The failure scenarios
and geotechnical models presented in [12] are used to validate the proposed BN approach.

5.1. General description
The Breitenhagen levee failure occurred in June 2013 during the Sale River floods in Saxony-

Anhalt, Germany. According to [11], the failure was a slope instability due to sustained high water
levels in both the Elbe and Saale rivers. The levee at the failure location was 3,5 m high with a
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3,0 m wide crest. The slope at the waterside was 1V:3,1H, whereas the slope at the landside was
1V:2,1H.

Fig. 5 presents a cross-section of the levee and a simplified stratigraphy inferred from borings
reported in [11]. The levee consists mainly of two soil layers. The upper soil is a homogeneous
cohesive material, underlain by a sandy soil at about 5,5 m below the levee’s crest.

Figure 5. The Breitenhagen levee at the failure location, cross-section, and simplified stratigraphy. NHN (Normal-
höhennull) corresponds to the vertical datum used in Germany

Some authors conducted forensic assessments to determine the causes of the Breitenhagen levee
failure. For example, [11] concluded that the most likely cause of failure was the existence of a
conductive layer inside the levee. [12] used a series of photographs taken at the moment of failure
to infer a circular slip surface. These authors also identified a pond by the waterside, indicating a
possible connection between the aquifer (sand layer) and the landside. A later study, [13], deter-
mined that the failure was likely caused by locally weak soils and high water pore pressures in the
aquifer. The proposed BN approach is applied and explained in detail in the following sections.

5.2. Step 1. Identification of hypothesis nodes
Hypotheses about possible causes of failure are defined using the evidence collected from pre-

vious studies [11], [12]. Two sets of hypotheses are identified. The first set includes three hypothe-
ses related to the following pore pressure conditions (Fig. 6):

• phreatic level elevation,

• existence of a conductive layer, and

• existence of high pore pressures inside the levee due to a pond connection.

The second set consists of hypotheses associated with the parameters of two soil models: Mohr-
Coulomb for drained conditions and SHANSEP for undrained behavior. The Mohr-Coulomb model
includes the parameters φ′(effective angle of shear resistance) and c’ (effective cohesion intercept).
The SHANSEP model contains the parameters S (normally consolidated stress ratio), m (strength
increase exponent), and POP (pre-overburden pressure).
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A unique node is assigned to each pore pressure condition and each soil parameter. For the sake
of simplicity, discrete values are used to describe the set of possible states of each node.

Fig. 6 and Table I summarize the hypothesis nodes used in this study and their corresponding
discrete states.

Figure 6. Levee models for hypotheses related to pore pressure conditions: (a) basic model, (b) phreatic level eleva-
tions, (c) existence of a conductive layer, (d) existence of high pore pressures inside the levee due to a pond connection

Table I. Definition of hypothesis nodes and their corresponding states
Node Definition Distribution States
PL Phreatic line elevation Discrete uniform High, Medium, Low

CL
High pore pressures inside the levee
due to a conductive layer

Discrete uniform Yes, No

PC
High pore pressures inside the levee
due to a pond connection (PC) to the aquifer

Discrete uniform Yes, No

c’
Effective cohesion intercept (Mohr-
Coulomb constitutive model) in kPa

Discrete uniform [0, 1, 2, . . . , 15]

φ‘ Angle of shear resistance in degrees Discrete uniform [15, 16, . . . , 33, 34]
S Normally consolidated stress ratio Discrete uniform [0.23, 0.25, 0.27, . . . , 0.49]
m Strength increase exponent Discrete uniform [0.50, 0.54, 0.58, . . . , 0.98]
POP Pre-Overburden Pressure Discrete uniform [0, 10, 20, . . . , 150]
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5.3. Step 2. Definition of evidence nodes
Two evidence nodes are defined to account for observed or behavioral variables. The first node

corresponds to the levee’s stability condition. This node includes two states: stable and unstable.
The stability condition is usually evident and only requires visual inspection. However, some cases
require the evaluation of experienced engineers. For the Breitenhagen failure, the unstable condi-
tion was inferred from photographs taken during the event [11]. The consequences of the failure
(e.g., floods) may also be used to define the levee’s stability condition.

The second evidence node refers to the slip surface geometry. Identifying and measuring slip sur-
faces is a challenging task. Slip surfaces usually disappear after failure or cannot be fully observed.
In some cases, the start and end locations of slip surfaces are identifiable. For the Breitenhagen
failure, six start and six end locations were defined. Each location represents a possible interval
within which start and end points can be observed.

Fig. 7 presents an example of two entry and exit intervals, as well as two potential circular slip
surfaces. A total of 36 start-end point combinations are defined. Table II presents the evidence
nodes used in the analysis and their corresponding states.

Figure 7. Example of potential slip surfaces with entry and exit intervals. Start and end points of slip failures can be
observed within these intervals

Table II. Definition of evidence nodes and their corresponding states
Node Definition Distribution States
SC Stability condition Discrete Stable, Unstable

SG Slip surface geometry Discrete

36 geometries: SG 1 to SG 36
(Locations defined based on
levee geometry and circular
failure mechanisms)
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5.4. Step 3. Causal connections

The causal relationships between hypothesis nodes and evidence nodes are defined using mathe-
matical models and semantic substructures. Bishop’s limit equilibrium equations are used to infer
causal connections between nodes representing soil parameters and evidence nodes. On the other
hand, causal connections between hypothesis nodes related to pore pressure conditions and eviden-
ce nodes are deduced from semantic substructures. For instance, [12, p. 70] describes the causes
of levee failure in the following terms: “the levee breach is likely caused by unexpected high pore
pressures [. . . ] and unexpected saturation of the levee”. [11, p. 35] (translated from German) des-
cribes the causes of failure as follows: “the primary cause of damage is a combination of several
partial causes such as [. . . ] horizontal water seepage due to a root zone on the waterside”. The
causal graphs for both Mohr-Coulomb and SHANSEP models are presented in Fig. 8.

Figure 8. Causal graphs for the Breitenhagen failure analysis: (a) Mohr-Coulomb (drained) constitutive model, (b)
SHANSEP (undrained) soil model

5.5. Step 4. Elicitation of conditional probability distributions

The elicitation of conditional probability tables (CPTs) consists of two phases. The first phase in-
cludes the definition of prior probabilities for hypothesis nodes. In the case of Breitenhagen failure,
no prior knowledge about the causes of failure is available. Therefore, states for each hypothesis
node are equally probable and described by discrete uniform distributions.

The second phase involves eliciting the CPTs for evidence nodes. A numerical experiment consis-
ting of 200.000 Monte Carlo simulations is used to infer these CPTs. In the experiment, a random
sequence of states is generated based on the prior probabilities of hypothesis nodes. Each sample
from the sequence is tested via a slope stability analysis using D-Stability [39] and a Python script.
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Bishop’s equations are implemented in the slope stability calculations.

The set of results from the calculations (i.e., stability condition and slope geometry) are used to
elicit the CPTs of evidence nodes and described by discrete distributions using the states presented
in Table II.

Fig. 9 and Fig. 10 depict the BNs for the Breitenhagen failure along with their prior distributions
(i.e., no evidence) for both hypotheses and evidence nodes.

Figure 9. BN for the drained constitutive model (Mohr-Coulomb) before observing any evidence

5.6. Step 5. Entering evidence and evaluating competing hypotheses
The set of competing hypotheses is evaluated by entering the available evidence into the BN. The

evaluation begins by defining the set of hypotheses. Each competing hypothesis represents a com-
bination of states in the hypothesis nodes. For example, hypothesis H1, defined as a saturated levee,
proposes a high phreatic level (PL=High) as the cause of failure. For H1, there is no existence of a
conductive layer (CL=No) nor a pond connection (PC=No). Moreover, the soil parameters assume
intermediate values. Four additional competing hypotheses similar to H1 are presented in Table III.

INGENIERÍA • VOL. 27 • NO. 2 • ISSN 0121-750X • E-ISSN 2344-8393 • UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS 13 de 21



Evaluación de las causas de falla de un dique usando redes bayesianas

Table III. Five competing hypotheses about the causes of the Breitenhagen levee failure

Hypothesis Name
Pore pressure scenarios Drained behavior Undrained behavior

ST CL PC φ’ (circ) c’ (kN/m2) S m POP
H1 Saturated levee High No No 22-28 4-10 0,31-0,41 0,62-0,86 20-100
H2 Conductive layer Medium Yes No 22-28 4-10 0,31-0,41 0,62-0,86 20-100
H3 Pond connection Medium No Yes 22-28 4-10 0,31-0,41 0,62-0,86 20-100

H4
Saturated levee

+weak soil
High No No < 21 ≤ 3 ≤ 0, 29 ≤ 0, 62 ≤ 20

H5
Conductive layer

+ weak soil
Medium Yes No ≤ 21 < 3 ≤ 0, 29 ≤ 0, 62 ≤ 20

Figure 10. BN for the SHANSEP soil model before observing any evidence

Once the competing hypotheses are defined, a set of probability queries are constructed using the
available evidence. Two types of probability queries are identifiable depending on their structure:
predictive and abductive. Predictive queries ask about the probability of observing the available
evidence, provided that a hypothesis is met. For instance, Eq. (5) represents the probability of
observing an unstable condition with the slip geometry SG12, provided that hypothesis H1 is met.

P (SC = Unstable, SG|SG12|ST = High, CL = No, PC = No) (5)

On the other hand, abduction queries use the BN to answer questions about the probability of
observing a hypothesis given the available evidence. Eq. (6) represents the abduction query for the
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probability of observing hypothesis H1, given that the slope is unstable, and the slip failure has a
geometry represented by SG12.

P (ST = High, CL = No, PC = No|SC = Unstable, SG = SG12) (6)

The competing hypotheses from Table III. are just five out of thousands of available credible hy-
potheses resulting from combining the states of the hypothesis node.

Given this large number of hypotheses, the K-MPE algorithm is implemented. In this study, the
K-MPE algorithm is used to find the best three explanations for the Breitenhagen levee failure.

6. Results
Table IV shows the results for the probability queries performed on hypotheses H1 to H5. When

the BN is used as a predictive tool, hypothesis H4 better predicts the available evidence than the
rest of the hypotheses. In other words, a saturated levee, along with weak soils, is more likely to
lead to an unstable condition with the slip geometry SG12. Fig. 11 depicts the instantiations for the
predictive query associated with H4 in drained condition.

When the BN is used for abductive reasoning, the available evidence (SC = Unstable, SG = SG12)
is better explained by hypothesis H4 than H1, H2, and H3. However, the probability of hypothesis
H5 does not show a significant difference in comparison to H4. Therefore, H5 is also a reasonable
explanation for the Breitenhagen levee failure.

Table IV. Results for predictive and abductive queries performed on hypotheses H1 to H5

Hypothesis Name
Predictive queries

P(SC = unstable, SG= SG12 Hi)
Abductive queries

P(Hi SC = unstable, SG= SG12)
Drained Undrained Drained Undrained

H1 Saturated levee 6,1E-02 1,0E-02 1,3E-02 3,8E-03
H2 Conductive layer 4,2E-02 2,0E-03 7,7E-03 9,0E-04
H3 Pond connection 0,0E-00 0,0E-00 0,0E-00 0,0E-00
H4 Saturated levee + weak soil 7,5E-01 9,4E-01 8,3E-02 4,0E-02
H5 Conductive layer + weak soil 5,0E-01 6,3E-01 6,3E-02 2,7E-02

The K-MPE algorithm was implemented to find the most probable explanations. Table V lists the
K = 3MPE for the drained soil constitutive model, along with the instantiations of the hypothe-
sis nodes. For the drained condition, the best explanation for the levee failure is the existence of a
conductive layer and low values of soil strength parameters. Interestingly, the second and third best
explanations are also related to low values of c’ and φ’. None of the K = 3 MPE includes the
pond connection as an explanation for the levee failure.

Table VI lists the K = 3 MPE for the undrained soil constitutive model. In this case, the best
explanation is the simultaneous existence of a high phreatic level, a conductive layer, and low POP
values. As with the drained condition, a pond connection does not explain the levee failure.
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Figure 11. Updated nodes for a predictive query associated with H4 (drained condition)

Table V. K=3 MPE for the drained soil constitutive model
K PL CL PC c fi P
1 Medium Yes No 4 17 4,92E-03
2 High No No 1 24 4,79E-03
3 Medium Yes No 3 18 4,76E-03

Table VI. K=3 MPE for the undrained soil constitutive model
K PL CL PC S m POP P
1 High Yes No 0,33 0,74 20 1,49E-03
2 High No No 0,27 0,54 20 1,46E-03
3 High Yes No 0,39 0,54 0 1,44E-03

7. Discussion

The Bayesian Network approach presented in this study proposes a substantial advance for objec-
tively determining the causes of levee failures. The five steps of the approach quantitatively account
for credible hypotheses as causes of failure. Moreover, the collected evidence is transparently in-
cluded in the process in order to draw conclusions based on probabilistic and abductive reasoning.
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To date, little research has been published on the role of Bayesian Networks in investigating cau-
ses of geotechnical failures. For example, [13] propose a Bayesian-based method to update prior
probabilities of failure scenarios by including collected evidence. However, said approach does not
account for multiple or simultaneous causes due to assumptions related to mutual exclusivity in
probabilistic analysis. The BN approach overcomes this limitation by assigning a node to each cre-
dible hypothesis without restricting the simultaneous occurrence of two or more events.

Other approaches, such as the ones proposed in [10], use BNs to diagnose the causes of failures
based entirely on data. The probability relationships (i.e., CPTs) are learned from data without re-
sorting to physical-based models. Although this approach could reach reasonable conclusions, data
from failures is scarce and is not always available. The BN approach overcomes these shortcomings
by building probability relationships via mathematical models broadly accepted by the geotechni-
cal community.

In this work, the BN approach was applied to the Breitenhagen levee. The results demonstrate the
capabilities of BN to draw conclusions about the causes of failure. The most probable explanation
seems to be the simultaneous existence of a high phreatic level, a conductive layer, and low soil re-
sistance values. Not surprisingly, this conclusion appears to agree well with previous studies based
on sensitivity analysis [12] and traditional forensic analysis [11]. However, the results contradict
the findings of [13], which associate the failure with high pore pressures due to a pond connection
to an aquifer.

The levee failure assessment using the BN approach is based on several assumptions. For ins-
tance, independence between hypothesis nodes is assumed, even though it is known that some soil
parameters are correlated. Furthermore, some hypothesis nodes associated with pore water pressu-
res could not be independent in the sense that, for example, a pond connection to an aquifer could
lead to a reduction in the phreatic level. In that case, an edge between the two hypothesis nodes
should be included. The results obtained from step 4 were used to confirm the independence of
the hypothesis nodes. In this case, several BN structures were built using only data obtained from
simulations. The best-rated BN structures did not show a correlation between the hypothesis nodes.

Another assumption is that the hypothesis nodes are collectively exhaustive. In other words, the
BN encompasses the entire range of possible causes leading to failure, and at least one of them must
occur to explain the failure. Other possible causes could be disregarded if they are not included in
the BN. Hence, credible hypotheses should be proposed using engineering expertise.

The steady-state condition assumed for pore water pressures is a significant limitation that could
lead to erroneous conclusions about the causes of failure [13]. For the Breitenhagen levee failure,
the pond connection seems to be irrelevant due to the high impact of the phreatic line position.
The three most probable explanations derived from the K-MPE metric corroborate this assumption
when comparing their probabilities of occurrence. However, unsteady conditions for piezometric
pressures could be relevant. Further research studies could evaluate the influence of transient flow
and assess the statistical significance between different failure scenarios using metric criteria such
as the Bayes factor or the log likelihood function.
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Data from slope stability simulations are used to elicit the CPTs. In this study, the limit equi-
librium method and drained/undrained constitutive models (Mohr-Coulomb and SHANSEP) are
used. Although finite element methods and unsaturated soil constitutive models could better repre-
sent the actual condition of the levee, the computational cost is considerably higher. Consequently,
analysis methods and constitutive soil models should be selected based on accuracy requirements,
the engineers’ experience, and available evidence.

The proposed BN approach can be generalized to any type of forensic geotechnical assessment,
including but not restricted to failures in dams, slopes, foundations, and excavations. The results
from this study demonstrate its capability for drawing objective conclusions about the causes of
geotechnical failures.

8. Conclusions
A straightforward Bayesian Network approach to support decisions in forensic geotechnical en-

gineering is presented. The approach follows a five-step sequence that reflects the generic forensic
engineering process for failure assessment. Furthermore, it includes the mathematical consistency
of Bayesian Networks. BNs can significantly improve the accuracy and transparency of forensic
conclusions by supporting their findings on probability and abductive reasoning.

Unlike traditional forensic approaches, competing hypotheses about the causes of failure can be
probabilistically compared. Besides, BNs can simultaneously deal with multiple hypotheses and
find the most probable explanation to geotechnical failures.

The BN approach is applied to investigate the causes of the Breitenhagen levee failure. Three
failure scenarios related to pore water conditions and two soil constitutive models with their corres-
ponding parameters are used as hypotheses about causes of failure. Causal connections between
hypothesis nodes and evidence nodes are defined through a mathematical model and common geo-
technical idioms. In the case under study, the CPTs were estimated from thousands of slope stability
simulations using the states of hypothesis nodes. Evidence collected from failure was used to up-
date the BN through predictive and abductive queries.

The three most probable explanations for the levee failure were estimated using the K-MPE al-
gorithm. A high phreatic level combined with a conductive layer and low soil strength parameters
seems to be the most probable cause of failure.

The BN approach can be applied in any forensic geotechnical assessments where several com-
peting hypotheses need to be evaluated. However, the computational effort and time required for
calculation could limit its use. Future work should prioritize: 1) building efficient BN structures
for describing forensic assessments and 2) extending the BNs approach to analyzing geotechnical
failures in foundations, excavations, slopes, and dams.
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