
35

J O U R N A L

R E V I S T A

INNOVAR

Analyzing solvency with extreme 
value theory: an application to  

the Spanish motor liability  
insurance market

María José Pérez-Fructuoso
Professor of Mathematics, UDIMA, Madrid Open University

E-mail: mariajose.perez@udima.es; 

Almudena García Pérez
Associate Professor of Financial Mathematics, University of Alcalá de Henares 

E-mail: almu.garcia@uah.es

ABSTRACT: An accurate estimation of extreme claims is fundamental to assess solvency capital 

requirements (SCR) established by Solvency II. Basing on the Extreme Value Theory (EVT), this paper 

performs a parametric estimation to fit the motor liability insurance historical datasets of two sig-

nificant and representative companies operating within the Spanish market to a Generalized Pareto 

Distribution. We illustrate how EVT improves classical adjustments, as it considers outliers apart 

from mass risks, what leads to optimize the pricing decision-making and fix a risk transfer position.
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1. INTRODUCTION 

Solvency II, the new global framework of European insurance supervision 
(IAIS, 2003 and 2005; IAA, 2004), includes the behavior of extreme events 
 !"#$%&'(%)#*+,(,*-%".(, //%0)# #1) /%2"*)&)"#%2 , !(&(,*3%45%1"#&, *&%6)&'%

Solvency I, which did not consider the whole variety of risks (IAIS, 2005, 
and IAA, 2004). 

With extremes being low-frequency, high-severity, heavy-tail-distributed oc-
currences (Këllezi and Gilli, 2000), the classical risk theory is not entirely 
explicative. Extremes fluctuate even more than the risks of volatility and 
uncertainty and this hinders the assessment of loss amounts and capital 
sums necessary to their coverage. 

Management of extreme events requires a special consideration over a 
sufficiently wide period to accurately gauge their impact and whole effects 
(Coles, 2001). While up to now the Pareto distribution was commonly em-
ployed to modeling the tails of loss severities, adjustments with Extreme Va-
lue Theory (EVT)-based distributions significantly improve tail distribution 
inference and analysis. 

EVT provides insurers with a useful tool to manage risks (Embrechts et al., 
1997) , for it allows a statistical-based inference of extreme values in either 
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a population or a stochastic process, and hence a more ac-

curate probability estimation of more extreme events than 

the historical ones. By modeling extremes aside the glo-

bal sample data, EVT captures high values at the tail (out-

liers) and situations exceeding the records, not needing to 

turn to the global distribution of the data observed. Con-

*(7+(#&/53%&'(%*&+85%"0%(9&,(!(%,)*:%2,(*(,.(*%)#*+,(,*-%*& -

bility and solvency when facing the occurrence of extreme 

losses. The application of statistical models helps to more 

precisely measuring risks and optimally deciding on capi-

tal requirements, reserving, pricing and reinsurance layers.

Similarly to McNeil and Saladin (1997), McNeil (1997), Em-

brechts et al. (1999), Cebrián et al. (2003), or Watts et al. 

(2006), we illustrate the possibilities of EVT by means of 

an empirical study on the loss claims databases of two re-

presentative insurers operating within the Spanish motor 

liability insurance market.

We underline the importance of analyzing largest losses, 

not only for the reinsurer, but also for the direct insurer, 

to accurately infer the occurrence of extreme events upon 

historical information. Since uncertainty of major events 

may be lowered with a limit distribution of extreme claims 

ascertaining both their probabilities and return periods, 

extreme-modeling-based inference becomes an additional, 

valuable input to the information system supporting each 

)#*+,(,-*%*"/.(#15%8(1)*)"#;! :)#$%2,"1(**%<)=(=3%6)&')#%&'(%

Solvency II framework).

The remainder of the paper is organized as follows. Section 

2 summarizes those EVT results underlying our modeling. 

Section 3 describes the sample databases of two Spanish 

motor-liability insurers and presents some preliminary re-

sults on the historical losses of each company. Section 4 

models the extreme events analyzed. Section 5 applies our 

!"8(/)#$%&"% 22,"9)! &(%&'(%,()#*+, #1(-*%,)*:%2,(!)+!% *%

well as two significant solvency-linked risk measures: the 

VaR and the TVaR. Section 6 applies EVT as a manage-

ment tool. Finally, Section 7 concludes. 

2. THEORETICAL BACKGROUND: THE 
GENERALIZED PARETO DISTRIBUTION 
AND THE PICKANDS–BALKEMA-DE HAAN 
THEOREM 

Among EVT results, the Generalized Pareto Distribution is 

a powerful tool to model the behavior of claims over a 

high threshold, and in particular, to establish how extreme 

they can be. In close connection, the Pickands-Balkema-De 

Haan theorem, another important result from EVT, states 

that the distribution function (df) of excesses over a high 

threshold may be approximated by the GPD (Beirlant et 

al., 1996; Kotz and Nadarajah, 2000; Reiss and Thomas, 

2001; Embrechts, Klüppelberg and Mikosch, 1997 ; and De 

Haan and Ferreira, 2006).

Let X
1,n

, X
2,n

, ..., X
n,n

 be a sequence of independent ran-

dom variables with a common continuous distribution, the 

peaks over a threshold method allows us to infer the dis-

tribution of the observed values once they become higher 

than a threshold u. 

Setting up a certain high threshold u, and being x
0
 the 

right endpoint of the distribution:
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Then, the function of excesses larger than u is defined as:
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where x represents the observed value (i.e. gross claim 

loss in our study) and y stands for the excess over the 

threshold u, i.e. y=x–u. 

With the value of the threshold being optimized, it is possi-

ble to fit F u(x) to a Generalized Pareto Distribution (GPD) 

when u reaches a sufficiently high value:

 

    
F

u
x !" P X  u ! y / X # u !"W# y ! for      0  y  x

0

The GPD is a two parameter distribution with df:
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where  !"!0 if #!"!0, and if #!$!0, with #!and % being the 

shape and scale parameters. When #!$!0, we have the 

usual Pareto distribution and the GPD is heavy-tailed, and 

the higher the parameter the longer the tail. If #!&!0, we 

have a type II Pareto distribution, whereas #!'!0 gives the 

exponential distribution. 

3. DATABASES AND MODELING HYPOTHESES 

Our analysis focuses on two representative Spanish insu-

 ! "#$%&'& $()*+)()',$-& '.&()&"$*(&/0$*$'!/$,!* 1-! )&23$45!$

first one counts on a long, renowned business trajectory. 

The second exhibits a more recent history, although signi-

ficantly improved over the last years of the interval. The 

diverse comparative situation of both companies raises 

the quality of the sample, since their relatively divergent 

situation allows a better study of extreme values in two 

quite differentiated, but at the same time representative, 

positions of a growing insurance industry like the Spanish. 

Data of each company have been distorted in order to 

maintain their respective corporate identities undisclosed.

Two different concepts are assumed as forming the loss 

amount:

6$ The cost of settled claims, summing all net payments 

already made out

6$ The cost of non settled claims, comprising all net pa-

yments already made out, and/or the reserves for the 

estimated and still pending future payments.

Data have been updated to 2006 values to avoid the 

effect of inflation.

4*+(!"$7$*/2$8$2)"-(*,9$&/$*/$*//:*($+*")"9$!*;5$;&%-*/,#"$

number of claims, together with their total and average in-

dividual costs in nominal currency units. 

Data in Tables 1 and 2 indicate that both insurers lacked 

of a stable average cost evolution, due mainly to three rea-

sons: the fact that the final cost is integrated by diverse 

covers, the different settlement periods, and the occurren-

ce of extreme events.

Other indicators are shown in Table 3 and 4 to describe the 

behavior of the claims. Dividing claims over policies we ob-

'*)/$*$%!*": !$&.$'5!$*//:*($;(*)%#"$. !<:!/;,3$

The insurer A (Table 3) shows a lower frequency, between 

14 and 16 percent, and a weighted average frequency of 

TABLE 1. Insurer A. Number of claims, Total Cost and Average Cost

YEAR NUMBER OF CLAIMS TOTAL COST ANNUAL VARIATION (%) AVERAGE COST ANNUAL VARIATION (%)

1 310,270 24,702.27 0.0796

2 352,993 30,702.49 24.290 0.0870 9.247

3 394,839 34,616.64 12.749 0.0877 0.799

4 433,610 40,367.71 16.614 0.0931 6.187

5 484,456 40,389.66 0.054 0.0834 -10.447

6 504,635 42,707.52 5.739 0.0846 1.511

7 561,777 48,359.70 13.235 0.0861 1.717

8 589,369 52,649.06 8.870 0.0893 3.773

9 595,896 57,097.80 8.450 0.0958 7.262

10 602,477 61,580.81 7.851 0.1022 6.673

Source: The authors.
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cy over the portfolio is decreasing as the number of poli-
cies in portfolio grows1. 

1   The decreasing trend in the claim frequency has several reasons: 
better underwriting rules, more restricted products and the portfo-
lio cleansing.

14.93 percent in the last 9 years. Its position within the 

Spanish market is solid and deviations from the average 

are not strong. The history of the insurer B (Table 4), on the 

other hand, is less consolidated, with a higher weighted 

average loss frequency (45.13 percent) only over the last 

four years of the interval. Nevertheless, the claims frequen-

TABLE 2. Insurer B. Number of claims, Total Cost and Average Cost

YEAR NUMBER OF CLAIMS TOTAL COST ANNUAL VARIATION (%) AVERAGE COST ANNUAL VARIATION (%)

1 2,099 65,487 31.20

2 5,697 182,745 179 32.08 2.84

3 9,400 284,724 56 30.29 -5.58

4 11,569 375,414 32 32.45 7.13

5 13,717 444,348 18 32.39 -0.17

6 16,397 585,843 32 35.73 10.29

7 20,923 831,326 42 39.73 11.21

8 28,039 1,177,518 42 42.00 5.69

9 34,415 1,408,682 20 40.93 -2.53

10 39,501 1,774,348 26 44.92 9.74

Source: The authors.

TABLE 3. Insurer A. Claims / Total policies

YEAR
NUMBER  

OF CLAIMS

ANNUAL VARIATION 

(%)

NUMBER  

OF POLICIES

ANNUAL VARIATION 

(%)

CLAIMS/POLICIES  

RATIO (%)

1 310,270

2 352,993 13.770 2,602,900 13.562

3 394,839 11.855 2,886,100 10.880 13.681

4 433,610 9.819 3,042,000 5.404 14.254

5 484,456 11.726 3,172,400 4.287 15.271

6 504,635 4.165 3,291,900 3.766 15.330

7 561,777 11.323 3,488,700 5.978 16.103

8 589,369 4.912 3,696,200 5.946 15.945

9 595,896 1.107 3,948,200 6.820 15.093

10 602,477 1.104 4,147,600 5.049 14.526

Source: The authors.

TABLE 4. Insurer B. Claims / Total policies

YEAR
NUMBER OF 

CLAIMS

ANNUAL VARIATION 

(%)

NUMBER OF 

POLICIES

ANNUAL VARIATION 

(%)

CLAIMS/POLICIES  

RATIO (%)

1 2,099 0

2 5,697 171.34 7,913 72.00

3 9,400 65.01 14,207 79.54 66.16

4 11,569 23.08 18,454 29.90 62.69

5 13,717 18.56 22,300 20.84 61.51

6 16,397 19.54 28,564 28.09 57.40

7 20,923 27.60 41,027 43.63 51.00

8 28,039 34.01 59,467 44.95 47.15

9 34,415 22.74 78,297 31.67 43.95

10 39,501 14.78 93,444 19.35 42.27

Source: The authors.
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These descriptions and the specific features of the samples 
gave us some clues for the modeling of the extremes in 
both companies. 

4. GPD ADJUSTMENT TO A SAMPLE OF 
EXTREME CLAIMS WITHIN THE SPANISH 
MOTOR LIABILITY INSURANCE MARKET 

We develop in this section the parametrical modeling of 
extremes for the insurers under study. These will be the 
main steps:

1. Choose the optimum threshold to fit the GPD, by means 
of the empirical mean excess function.

2. Estimate the model parameters according to the heavy-
tailedness of the distribution, with those estimators 
that minimize the Mean Squared Error (MSE).

3. Check the goodness-of-fit to the underlying distribu-
tion with the Quantile-Quantile plot (QQ plot) and 
some error measures.

4. Infer future extreme events under the estimated condi-
tional model. 

5. Calculate the marginal probabilities and determine the 
unconditional distribution.

Choice of the optimal threshold 

Assuming sample data are independent and stationary, 
the optimal threshold to fit the GPD results from the mean 
excess function,  

    
e u !" E X  u | X # u$ %, which is estima-

ted in practice with the empirical mean excess function,
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Xu  minus the selected threshold, and k is 

the ordinal position in the descendent ordered data.

As discussed in Beirlant et al. (1996), data over a certain 
value of u may reasonably be considered as heavy-tailed 
if the mean excess plot follows a growing trend. Since the 
plot is linear with positive gradient, there exists a solid tra-
ce that our sample data will fit to a GPD with positive pa-
rameter.  

At a sufficiently large sampling layer, say 25, the num-
ber of excesses of the insurer A is roughly 1,000, with the 
mean-excess function plotted in figure 1 (left plot).

Figure 1 shows that the function is horizontal between 20 
and 70, but straightens out at around 75, what implies 
that the value of 75 should be taken as the optimal thres-
hold (right plot) for the insurer A dataset, and hence that 
excesses beyond (as many as 125) might fit to a GPD.

The mean excess function of the 1,000 largest claims cove-
red by insurer B over the ten year period analyzed is sket-
ched in the graphic below:

Figure 2 shows the plot of the pairs   
  

    
X k  1; Ek ,n! " for k #1,...,n 1 

which have an increasing trend from a quite low priori-
ty until 30,000 where unexpectedly become plain or even 
decreasing for the highest thresholds. This means that va-
lues beyond 30,000 should not be chosen as the optimal 
threshold to fit the insurer B dataset to a GPD. At a lower 
threshold, for instance 10,000, the mean excess plot in Fi-
gure 3 exhibits a similar behavior to that observed in Figu-
re 2 (i.e., data describe an increasing trend right up to the 
highest values). 

However, the non growing-linearity of the function  for the 
upper observations, even when the priority is raised, calls 
into question the suitability of the GPD to fit the insurer B 

FIGURE 1. Insurer A. Mean Excess plot (Total, and Above 75)

Source: The authors.
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dataset. It is worth then asking whether the sample extre-
me claims are heavy-tailed or not. 

First of all, the QQ plot versus the exponential is useful to 
address this question, as it permits us to establish both 
the heavy-tailedness and the fit of the data to a medium-
sized distribution like the exponential distribution (McNeil, 
1997).

The QQ plot should be expected to form a straight line if 
the data fit to an exponential distribution. A concave cur-
vature will suggest a heavier-tailed distribution, whereas 
a convex deviation would indicate, conversely, a shorter-
tailed distribution.

For the insurer A, the exponential QQ plot of excesses over 
the optimum selected threshold (75) results to be:

FIGURE 4. Insurer A. Exponential QQ plot

Source: The authors.

This QQ plot represents the pairs   ! !pFX nnr
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,
;

 

, where 
empirical Quantiles or rth order statistic X
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Figure 4 shows that the sample data do not fit to the ex-
ponential distribution, since they describe a concave curve 
rather than a straight line. Concavity, as already stated in 
general terms, indicates in this specific context that the 
data distribution is heavier-tailed.

As far as the insurer B is concerned, the exponential QQ 
plot of the pairs   ! !n,rn X;pF

1  for the percentiles
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r
p   and 
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n

r
p   is plotted as follows:

FIGURE 5. Insurer B. Exponential QQ plot

Source: The authors.

The blue and red lines in Figure 5 represent the respective 
cloud of points for each percentile, whereas the black line 
contrasts whether regressions are linear or not.

The slight convex curvature of the adjusting lines with res-
pect to the bisector provides an evident indication that the 
extreme values of the insurer B cannot properly be captu-
red by the exponential distribution. But the fact that tho-

FIGURE 2. Insurer B. Total Mean Excess plot

Source: The authors.

FIGURE 3. Insurer B. Mean Excess plot above 10,000

Source: The authors.
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se lines are almost straight leads to think that the largest 

claims of the insurer B might not be as heavy as those of 

the insurer A. In such case, the GPD adjusting parameter, 

although positive, would adopt a value very close to zero.

The outcomes of the QQ plot have been further verified 

with the likelihood-ratio and the Hasofer-Wang tests, em-

ployed by the program XTREMES (Reiss et al., 2001) to 

measure the data goodness-of-fit to the exponential dis-

tribution. Accordingly, the hypothesis of exponential tail 

(null hypothesis) should be rejected if both tests yield va-

lues close to zero, whilst values near 1 shall determine the 

non-rejection of the null hypothesis, and therefore, the as-

sumption that the tail distribution decreases exponentially.

After the verification was done, p-values of the insurer A 

tests above the threshold 75 turned out to be 0.00000113 

with the likelihood-ratio test, and 0.00000167 with the 

Hasofer-Wang test. For the insurer B, p-values are 0.09 

with the likelihood-ratio test, and 0.145 with the Hasofer-

Wang test. 

Results of both companies lead to reject the null hypothe-

sis and consequently the exponential distribution as well. 

Nevertheless, for the insurer B, though p-values approach 

to zero for observations above 10,000, the tests do not 

result null, what requires deeper analysis when fitting the 

parametric distribution.

Parameters estimation  

Applying the program XTREMES to fit the insurers A and B 

sample claims to a GPD, and selecting the Drees-Pickands 

estimator for the insurer A, since it renders the lowest MSE, 

we find that the adjustment of its 125 excesses over the 

optimal threshold (75) yields  !"0.488146#"$"= 13.0959 

and"%"= 75.1893 as parameter estimates. 

The QQ plot reflects the goodness-of-fit between the empi-

rical Quantiles on the x-axis, and the theoretical Quantiles,

 
 ! !  ! ! pXpppW "  #"  #"
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on the y-axis, in such a way that the closer the theoretical 

value (blue line) approximates to the datasample (bisec-

tor), the more optimum the adjustment. 

The QQ plot indicates an almost complete equivalence 

between the empirical Quantiles and the GPD theoreti-

cal Quantiles. The coefficient of determination (R-square), 

0.9845, corroborates that the fitted distribution captu-

res 98.5 percent of all excesses beyond the threshold. The 

MSE value of 30.94 was the minimum compared to other 
GPD fittings, thus indicating that the empirical values do 
not significantly deviate from our theoretical projection. 
Finally, the Relative Deviations Average (RDA) is virtually 
null, reaching only 0.0168.

The linearity of the QQ plot, as well as the outcomes of the 
diagnostic measures, reveal that, in the case of the insurer 
A, the 125 most severe claims larger than 75 reliably fit to 
a GPD with parameters  !"0.488146#"$"= 13.0959 and 

%"= 75.1893. 

As to the insurer B, conversely, we applied the XTREMES 
algorithm to fix the optimal threshold, for although the 
empirical mean excess function proves to be insufficient, 
the QQ plot suggests that the extremes will likely fit to a 
heavy-tailed distribution. 

Maximum-likelihood was selected among a variety of esti-
mation methods since it minimizes both the MSE and the 
RDA. Accordingly, the graphic below displays the estima-
ted parameter for the extremes under discussion:

FIGURE 7. Insurer B.   ̂  versus number of extremes

Source: The authors.

FIGURE 6. Insurer A. GPD QQ plot 

Source: The authors.
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Figure 7 shows that a value around 0.4 is obtained for 500 
observation, whereas the parameter becomes negative by 
maximum-likelihood for less than 50 observations, what 
implies a short-tailed distribution tending to a right endpo-
int, in strict coherence with the shift downwards displayed 
by the mean excess plot, and leads to conclude that the 
largest observations of the insurer B do not fit to a GPD. 
And despite the fact that the dispersion of the major va-
lues reduces their goodness of fit, we apply the optimal fit 
rendered by the software XTREMES, i.e. the 159 extreme 
values over a threshold fixed at 11,908.

As the next graphic reflects, the tail index   estimated by 
maximum likelihood for those 159 observations remains 
quite steady at around 0.1.

FIGURE 8. Insurer B.   ̂  for the largest 159 observations

Source: The authors.

The mean excess plot of the insurer B at a threshold set at 
11,908 shown in figure 9, exhibits a growing trend until 
approximately 37,000, but stabilizes and even decreases 
beyond.

FIGURE 9. Insurer B. Mean Excess plot above 11,908

Source: The authors.

One may wonder if this non-increasing pattern at the tail is 
relevant enough to cast into doubt the adjustment of the 
estimated GPD to the claims of the insurer B over 11,908, 
whose parameters are  !" 0.137872#" $" = 8,454.29 and 

%"= 11,908.

It is necessary, then, to check the GPD QQ plot, with the 
estimated theoretical Quantiles resulting from:

 
 ! !  ! ! pxpppW "  #"  #"
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FIGURE 10. Insurer B. GPD QQ plot

Source: The authors.

For two similar series of claims (71,851 and 71,541; 54,792 
and 54,420, respectively), the mean excess plot decreases 
at the tail, what at the same time increases the goodness 
measures (up to MSE = 1,274.388 and RDA = 0.0171) 
and does not reduce effectiveness, for R2 is still of an ac-
curate 99.32 percent. Moreover, disregarding the last ob-
servations, R2 raises to 99.8 percent, while the goodness 
measures significantly decrease (MSE = 194,556 and 
RDA = 0.01469), as displayed in the next QQ plot.

FIGURE 11. Insurer B. GPD QQ-plot without the six 
last observations

Source: The authors.
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Considering the linearity of the QQ plot and the outcomes 
of both MSE and RDA, the goodness-of-fit of the estima-
ted GPD to the extremes of the insurer B seems entirely 
reliable.

Goodness-of-fit 

Based on the previous parameters estimation, the GPD 
function of the insurer A is given by
 

    

W ,! , " x !"1# 1#0.488146$
x #75.1893

13.0959

%$

&$
'$

($

)$
*$

#
1

0.488146

(3)

where W stands for the truncated distribution function of 
the exceedances over the threshold, while for the insurer B, 
the GPD function is, 
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x #11,908

8,454.29

%$

&$
'$

($

)$
*$

#
1

0.137872

(4)

Together with the previous test to check the GPD good-
ness-of-fit to the 125 adjusted values of the insurer A, we 
compare the estimated GPD distribution with the empirical 
distribution function represented by the pairs

  ! !cF̂,c n
, where

 
 !  ! ! !""

ni
cXn

i
n

cF̂ 1
1

.

FIGURE 12. Insurer A. GPD goodness-of-fit

Source: The authors.

The plot shows a virtual coincidence between both distri-
butions, what suggests an accurate capture of the claims 
exceeding the optimal threshold (75). Nevertheless, it 
seems that the theoretical distribution (black line) at the 
tail shows values slightly lower than those of the empirical 
ones (red line). Future claims will lead us to a more accu-
rate adjustment. 

With respect to the insurer B, the graph below reflects that 
claims larger than the optimal threshold (11,908) perfectly 
fit to the previously calculated GPD:

FIGURE 13. Insurer B. GPD goodness-of-fit

Source: The authors.

Conditional inference and prediction  

Some relevant solvency-based probabilities are calculated 
in this Section, on the basis of both the estimated GP df 
and the estimated GP survival function.

As far as the insurer A is concerned, we find that, say, 99 
out of the next 100 claims over the threshold will cost less 
than 350, whilst the other 1 will cost more:

TABLE 5. Insurer A. Some relevant probabilities

x u.m. W A (x) (%) 1– W A (x) (%)

100

150

250

350

73.8536

93.4693

98.3950

99.2967

26.1464

6.5307

1.6050

0.7033

Our finding for the insurer B is that, say, 970 out of the 
next 1,000 claims exceeding the layer fixed at 11,908 re-
main under 50,000.

TABLE 6. Insurer B. Some relevant probabilities

x  in c.u. W B (x) (%) 1– W B (x) (%)

25,000

50,000

100,000

150,000

200,000

75.428

96.994

99.843

99.981

99.996

24.572

3.006

0.157

0.019

0.004
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The inverse of the insurer A probability function generates 
the estimated theoretical Quantile function (equation (1)) 
that makes it possible to perform the following relevant 
calculations in terms of solvency,

TABLE 7. Insurer A. Return frequency and 
amortization levels

P (%)
RETURN FREQUENCY 

(1/1-P)

AMORTIZATION LEVEL 

(X
P
) 

90

95

99

99.9

10 claims

20 claims

100 claims

1,000 claims

130.914

164.153

302.387

830.032

resulting that, for instance, an excess of 75 with probabili-
ty 99 percent will not cost more than 302.387, while 1 out 
of 100 claims over the threshold will probably surpass the 
reference value of 302.387. 

Applying the equation (2) to the insurer B, we find that 
excesses over a threshold set at 11,908 will cost less than 
66,291, with a probability of 99 percent. This means that 
100 claims over the threshold will have to occur to find one 
larger than 66,291 c. u. 

TABLE 8. Insurer B. Return frequency and amortization 
levels

 P(%)
RETURN FREQUENCY 

(1/1-P)

AMORTIZATION 

LEVEL (X
P
)

90

95

99

99.9

10 claims

20 claims 

100 claims

1,000 claims

34,819

43,266

66,291

109,522

Solvency Unconditional inference and prediction 

By properly approximating the conditional probabilities 
and Quantiles as done before, insurers will be able to es-
timate the unconditional ones and take optimal decisions 
on free funds, solvency margins and reinsurance cession.

The probability p’ of an extreme over an amount (X) ha-
ppening results by multiplying the GPD-adjusted condi-
tional probability of claims over a certain threshold, but 
can also be obtained as the ratio between the number of 
events (insurer A: 125; insurer B: 159) over the threshold 
(insurer A: 75; insurer B: 11,908) and the total claims oc-
curred in the respective portfolios over the ten year period 
(insurer A: 48,304; insurer B: 181,757):

Insurer A:  p x  75! "#
125

48,304
# 0.002588  

Insurer B: p x  11,908! " #
159

181,757
# 0.0000875

At this stage, a key question to determine the capital re-
quirements lies in calculating the expected number of 
claims over a certain threshold over the next year. This is-
sue may be solved by extrapolating onto the next year ei-
ther the historical number of claims or the historical loss 
occurrence frequency per policies, or even by assuming a 
Poisson distribution.  

The claim frequency per policy was very stable in the case 
of the insurer A. It remained within a short range of bet-
ween 13 and 16 percent over the last nine years, (shown 
in y-axis right).

and has gradually decreased, in the case of the insurer B, 
due to the strong growth of its portfolio over the last four 
years, finally stabilized at levels around 40 percent (y-axis 
right):
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FIGURE 14. Insurer  A. Claim frequency per policy

Source: The authors.
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Past tendencies of the insurer B, however, will not probably 

be extrapolable to the close future and the recent behavior 

will more likely be explicative of the following years.

 !"#$"%&'$"%($"()*%+,)-&."-.&)/0*"12/3$,"+!"%($")1*2,$,"4"5)1-

surer B) to infer forthcoming frequencies, what was done 

by means of a linear adjustment with R2 = 95.93 percent                 

(R2 = 99.55 percent for the last five years), we find that:

Between 6,250 and 6,680 (45,765) claims are expected 

to occur as a global number and 16 or perhaps 17 (40) 

out of them are expected to exceed the threshold u set at 

75 (11,908). So, being  
e
n̂  the expected number of large 

claims higher than u: 

Insurer A: 
 

2,16250,6
304,48

125
ˆ    
A

e
n , 

 
3,17680,6

304,48

125
ˆ    
A

e
n

Insurer B: 
 

40765,45
757,181

159
ˆ    
B

e
n

Alternatively, if we extrapolate the portfolio and the claim 

frequency per policy (red line in figures 16 and 17) of the 

insurer A (insurer B), with linear adjustment R2 = 98.9 per-

cent (R2 = 99.67 percent, considering only the last five 

years), and apply it to the weighted mean claim frequency 

(“weighted” mean the loss frequency of the last five years), 

the expected total number of claims reaches as much as 

6,390 (51,071). 

This number remains, as regards the insurer A, within the 

interval previously established, even for the largest claims (
 5.16ˆ  
A

e
n ), whilst the estimation is slightly more pessimistic 

for the insurer B, since its expected claim frequency over 

the next year will probably be lower than the average of 

the last five years ( 45~7.44ˆ  
B

e
n ).

Finally, if the choice is to assume a Poisson distribution, 

its parameter turns out to be  5.12ˆ  
A

  for the insurer A. 

Selecting this value as the average number of claims is 

feasible, as the number of claims above the threshold 75 

remained stable over the time, and also due to the fact 

that the mean and variance of the distribution are similar. 

It would not be valid to assume, by contrast, 15.9 as the 

average number of claims for the insurer B, since its num-

ber of claims exceeding the threshold gradually increased 

over the years, and the variance of the distribution stands 

quite above the mean. 

TABLE 9. Insurers A and B. Number of claims over the 
threshold

INSURER A INSURER B

YEAR
NUMBER OF 

CLAIMS OVER 75
YEAR

NUMBER OF CLAIMS 

OVER 11,908

1 11 1 1

2 12 2 9

3 10 3 8

4 15 4 15

5 13 5 11

6 16 6 17

7 14 7 17

8 8 8 21

9 7 9 25

10 19 10 35

Total 125 Total 159

Mean 12.5 Mean 15.9

Variance 13.6 Variance 92.54

With respect to the insurer A, and assuming a Poisson dis-

tribution, one may expect as much as 18 claims excee-

ding the threshold (fixed at 75) over the next year, with a 

95 percent level of confidence P
12.5

(n=18) = 0.948. Such 

FIGURE 15.  Insurer B. Claim frequency per policy

Source: The authors.
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approximation renders a more slightly pessimistic projec-
tion. For this reason, and according to the principle of 
prudence, 18 will be assumed as the expected number of 
claims larger than 75.

Then, extremes larger than 75 expected to exceed a loss 
amount of, say, 350, over the next year can be quantified 
as follows:
 

    
ne

A

^

 p x  350 | x  75! "#18  0.007033# 0.1266 .

As far as the insurer B is concerned, a conservative appro-
ach suggests that the number of claims larger than 11,908 
fits to a Poisson distribution if, and only if,   ̂  is taken as 
the highest number of claims among those observed over 
the ten year interval (that is, 35). Under such assumption, 
the expected number of claims above 11,908 will equal 45, 
with a notable 95.75 percent level of confidence.

Since this approximation yields very similar results to those 
obtained by extrapolation based on the number of poli-
cies, the principle of prudence leads to assume the latter as 
the expected number of claims larger than 11,908. Subject 
to those conditions, extremes over 11,908 expected to ex-
ceed 50,000 over the next year will be 

 

    
ne

B

^

 p x  50,000 | x  11,908! "# 45  0.03006#1.35

Conversely, and assuming the hypothesis  18ˆ  
A

e
n  and 

 45ˆ  
B

e
n , it is possible to use equations (1) and (2) to calculate
the expected loss amount X, given a certain return period.

For the insurer A (insurer B), Table 10 indicates that the 
amount 1,509 (146,147) will not be exceeded with 0.5 
percent (1 percent) probability over the next year, and 
reflects a return period of 200 (100) years for such kind 
of claims. 

Thus, we find that the expected amount for the 100-year 
return period of the insurer A is 2.24 times the expected 
claim for the insurer B for its corresponding 100-year re-
turn period. These are the explanatory reasons:

 ! The threshold of the insurer A is almost twice as much 
as that of the insurer B.

 ! The tail index of the insurer A (and therefore its extre-
me claims-linked probabilities) is larger than the one 
fitted for the insurer B.

5. APPLICATION TO THE XL REINSURANCE: 
PARAMETRIC ESTIMATION OF THE NET 
REINSURANCE PREMIUM 

Excess of Loss reinsurance – XL covers a primary insurer 
against losses over a certain amount, referred to as layer 
(P). On the basis of its own risk portfolio, the reinsurer 
must know exactly both the kind of severe losses assumed 
and their best fitting model, since both factors will deter-
mine the reinsurance risk premium, RP

XL
= E

R
(S).

Whereas E
R
(S) has traditionally been estimated in a non 

parametric way upon the historical total loss, we propose 
in this Section the use of a parametric EVT model to more 
accurately perform such calculation. 

Under the classical risk theory hypotheses, the expec-
ted total loss over a period is given by E

R
(S) = E(N) × 

E
R
(X). An unbiased estimator of this average is (Reiss et 

al., 2001):

 

 

    
E

R
(S )  

S
R T !

T
 (5)

that is, the quotient between the total loss amount oc-
curred along T periods S

(T)
 and the number T of periods 

considered.

However the reinsurance risk premium can be estimated 
parametrically: 
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where the number of claims larger than the threshold can 
be estimated through a Poisson distribution, and the ex-
pected loss amount above the layer P, which is covered 
by the reinsurer, results from the adjusted GPD as follows:
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u

u

F
xxdFuXXEue )(|)(

with dF u (x) = w (x) being the density function of the ad-
justed GPD. 

TABLE 10. Insurers A and B. Return period and expected loss amount

INSURER A INSURER B

p’(%) RETURN PERIOD (1/P’) X P’ (%) RETURN PERIOD (1/P’) X

p’ = 5.0 20 years 523.08 p’ = 5.0 20 years 107,230 

p’ = 2.5 40 years 714.22 p’ = 2.5 40 years 122,938 

p’ = 1.0 100 years 1,089.8 p’ = 1.0 100 years 146,147 

p’ = 0.5 200 years 1,509.1 p’ = 0.5 200 years 165,757



J O U R N A L

R E V I S T A

INNOVAR

47REV.  INNOVAR VOL.  20,  NÚM. 36,  ENERO-ABRIL DE 2010

Nevertheless, since the reinsurance layer does not have to 
coincide with the threshold of the optimized GPD, e

F
  (u)  

can be estimated, under the necessary condition  !"!#, by
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It is well known that reinsurers only cover that part of the 
final cost corresponding to the expected excess over the 
layer, that is, E [(X | X > P)—P]. Assuming that both the 
occurrence moments and the loss amounts fulfill the con-
ditions of a compound Poisson process ($%!&), with $ de-
noting the average claims number over a period, and W 
the GPD df of excesses above the layer P, the risk premium 
appropriate to the subsequent period is

  

    
RP

XL(P )   !m W" ,# ,P! "
where m(W

'%(% 
) stands for the expected value of the GPD, 

with parameters ', (, and layer P, such that

 
 

    

RP
XL(P )  

^ n 
e

 (x ! P)w(x)  

P

"

# ^ n 
e

 E X | X ! P" #! P$ %  (6)

For instance, with layers PA=350 and PB=50,000 the esti-
mated number of exceeding claims over the next year are, 
respectively, 
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 ^  n e

A
! p x ! 350 | x ! 75" # ^  n e

A
! 1"W 350" #" # 18#0.007033 0.1266

and
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B
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B
! 1"W 50,000" #" # 45#0.03006 1.35

with the expected average cost higher than the layer being
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X | X  50,000! "#
xdF

11,908(x)

50.000

 

!

1"F
11,908(50,000)

#

xw 50.000! "dx

50,000

 

!

1"W 50.000! "
# 65,715

Consequently, the estimated risk premiums of each insurer 
result to be

 

    
RP

XL(P  350)
A  0.1266 636.22!350! " 36.235

and  
    
RP

XL(P  50,000)
B  1.35 65,715!50,000! " 21,257 

By contrast, a non parametric estimation of the risk pre-
mium to be paid by the insurer B (for instance, following 
the simple equation 7) renders as result 6,675.6, what im-
 !"#$%&'%(')#*#$+",&+"-'%-.%+/#%*#"'$(*#*0$%*"$1% *#,"(,2%

Even assuming the historical behavior as non significant 
(since six claims larger than 50,000 took place over the 

last four years), and applying the average cost times the 
number of expected excesses

 

    
Expected cost  

66,756

6
 11,126   RP

XL
 11,126!1.35 15,050

the net premium would be 29.2 percent lower than that 
estimated with parametric methods.

This leads to the logical conclusion that non-parametric 
methods should not be applied when the historical back-
ground available is insufficient, which is precisely the case 
of the insurer A, with only one historic claim larger than 
350. 

The adjustment of data on severe losses with EVT not only 
appears relevant for the reinsurer. Knowledge on its own 
extremes allows the direct insurer to optimally decide two 
key questions: (a) either reinsuring the risk of losses over a 
certain layer in exchange of a premium, or retaining a suffi-
cient financial capacity to accept claims over a certain loss 
layer, (b) choosing the suitable thresholds for both cession 
and retention.

6. EVT AS A MANAGEMENT TOOL 

In the light of the imminent implementation of Solvency II, 
insurers are developing growing efforts to determine their 
optimal capital level, considering that a higher cession to 
reinsurance (i.e. low priorities) involves a lower level of free 
funds (less remuneration of the net worth), but also a lar-
ger cost to cover severe risks, and vice versa.

Under Solvency II, capital requirements (Solvency Capital 
Requirement, SCR) will be statistically-based and suitable 
to be determined through measures relying on both cost 
distributions and risk percentiles (Dowd and Blake, 2006), 
such as VaR and TVaR, which can be approximated by the 
GPD distribution fitted as well.

These are the conditioned VaR and the TVaR with the ad-
justment of the GPD for a threshold optimized, respecti-
vely, at 75 (insurer A) and 11,908 (insurer B):

7. CONCLUDING REMARKS 

Insurers and reinsurers share a deep concern in accurately 
estimating the probability of claims over a certain thres-
hold. Expertise in handling extreme risks is decisive to 
determine that level of financial capacity required to assu-
ming or ceding extreme losses.

Our analysis of sample data from insurers operating within 
the Spanish motor liability insurance market illustrates that 
fitting a GPD to claims above a high threshold is a power-
ful tool to model the tail of severe losses. 
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Classical approaches are good at modeling mass risks, but 
not so much at capturing rare or extreme risks escaping 
from the domain of attraction of the traditional distribu-
tions. Conversely, EVT has nothing to do with mass risk, 
but renders a good performance when it comes to mode-
ling rare or extreme losses. 

Not intending to overestimate the predictive properties of 
EVT, but rather complement the traditional methods, we 
show that a sole cost distribution cannot suitably model a 
portfolio as a whole. Extreme losses require independent 
modeling with self-specific distributions, so that the ad-
justment of classical models to blunted losses is more effi-
cient and less biased, and the fitting of extreme values 
to the peaks refine the ultimate inference wished by any 
insurer.

Whereas the classical risk theory appropriately determines 
capital level for a certain probability of ruin, EVT does the 
same with regard to the volume of funds necessary to at-
tend peak claims. 

Being familiar with the behavior of extreme events allows 
the insurer to decide either assuming or ceding them and, 
as required by Solvency II, determine risk measures (such 
as VaR or TVaR). At the same time, it permits the reinsu-
rer to asses the expectation of losses over a certain layer, 
and hence the risk premium to perceive in exchange. As 
we have illustrated in this paper, insurers must choose the 
best option available in terms of cost of capital. That is, ei-
ther keeping a financial capacity to cover VaR

 
or TVaR, or 

paying an XL reinsurance premium.
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TABLE 11. Insurers A and B. Values of risk measures

INSURER A INSURER B
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90 130.91 208.65 90 34,819 48,273

95 164.15 274.57 95 43,266 58,056

99 302.39 543.90 99 66,291 84,.655

99.9 830.03 1561.7 99.9 109,522 133,830


