

Desempeño innovador y tamaño de la firma: heterogeneidad y sesgo de publicación abordados desde un análisis de metarregresión

Federico Bachmann

M. Sc. en Economía y Desarrollo Industrial Becario de investigación. Universidad Nacional de Mar del Plata Mar del Plata, Argentina Grupo de Análisis Industrial Rol del autor: intelectual fbachmann@mdp.edu.ar https://orcid.org/0000-0002-3670-4902

Natacha Liseras

M. Sc. en Estadística Aplicada Profesora adjunta. Universidad Nacional de Mar del Plata Mar del Plata, Argentina Grupo de Análisis Industrial Rol de la autora: intelectual nliseras@mdp.edu.ar https://orcid.org/0000-0002-7011-579X

Fernando Manuel Graña

Ph. D. en Dirección de Empresas Profesor titular. Universidad Nacional de Mar del Plata Mar del Plata, Argentina Grupo de Análisis Industrial Rol del autor: intelectual fmgrana@mdp.edu.ar https://orcid.org/0000-0001-5518-7771

RESUMEN: El presente trabajo aborda la relación entre tamaño de la firma y desempeño innovador desde un análisis de metarregresión (AMR). La diversidad de coeficientes de regresión estimados reportados por la literatura empírica lleva a preguntarse si dicha disparidad se debe a la variabilidad muestral o si existen otros factores que moderan esta relación. El AMR es una metodología que permite responder esta pregunta y mediante la cual se pueden detectar sesgos en la publicación de resultados de investigaciones empíricas. A partir de una intensa revisión bibliográfica y de la conformación de una muestra de 125 artículos que reportan un total de 880 estimaciones econométricas de la citada relación, se analiza la presencia de heterogeneidad y de sesgo de publicación. Los resultados señalan indicios de sesgos de publicación; una vez descontado dicho sesgo, se observa la persistencia de un efecto positivo del tamaño de la firma sobre el desempeño innovador.

PALABRAS CLAVE: análisis de metarregresión, empresas industriales, innovación tecnológica, sesgo de publicación.

Introducción

La literatura económica en temas de innovación postula el tamaño de la empresa como un factor que incide en su desempeño innovador (DI), que no es neutral. Por un lado, parte de la teoría económica respalda la relación

INNOVATIVE PERFORMANCE AND FIRM SIZE: HETEROGENEITY AND DISCLOSURE BLASES VIA META-REGRESSION ANALYSIS

ABSTRACT: This work addresses the relationship between firm size and innovative performance from a meta-regression analysis (MARA). The diversity of estimated regression coefficients reported by the empirical literature poses the question of whether such disparity in results is due to sampling variability or if there are other factors affecting this relationship. MRA allows both answering this question and also identifying biases in the disclosure of empirical research results. Through the review of 125 articles that report a total of 880 econometric estimates of the aforementioned relationship, we examine the existence of heterogeneity and disclosure biases. The results show evidence of disclosure biases. Although once this situation is discounted, firm size shows a steady positive effect on companies' innovative performance.

KEYWORDS: Meta-regression analysis, industrial companies, technolog ical innovation, disclosure bias.

DESEMPENHO INOVADOR E TAMANHO DA EMPRESA: HETEROGENEIDADE E VIÉS DE PUBLICAÇÃO ABORDADOS SOB UMA ANÁLISE DE METARREGRESSÃO

RESUMO: neste trabalho, aborda-se a relação entre tamanho da empresa e desempenho inovador sob a análise de metarregressão. A diversidade de coeficientes de regressão estimados relatados pela literatura empírica leva à pergunta de que se essa disparidade se deve à variabilidade amostral ou se existem outros fatores que interferem nessa relação. A análise de metarregressão é uma metodologia que permite responder a essa pergunta e mediante a qual podem ser detectados vieses na publicação de resultados de pesquisas empíricas. A partir de uma intensa revisão bibliográfica e da conformação de uma amostra de 125 artigos que relatam um total de 880 estimativas econométricas dessa relação, é analisada a presença de heterogeneidade e de viés de publicação. Os resultados dão indícios de vieses de publicação. Após se descontar esse viés , é observada a persistência de um efeito positivo do tamanho da empresa sobre o desempenho inovador.

PALAVRAS-CHAVE: análise de metarregressão, empresas industriais, inovação tecnológica, viés de publicação.

PERFORMANCE INNOVANTE ET TAILLE DE L'ENTREPRISE: HÉTÉROGÉNÉITÉ ET BIAIS DE PUBLICATION ABORDÉS À PARTIR D'UNE ANALYSE DE MÉTA-RÉGRESSION

RÉSUMÉ: Ce travail aborde la relation entre la taille de l'entreprise et la performance innovante à partir d'une analyse de méta-régression (AMB). La diversité des coefficients de régression estimés rapportés par la littérature empirique soulève la question de savoir si cette disparité est due à la variabilité de l'échantillon ou s'il existe d'autres facteurs qui modèrent cette relation. L'AMR est une méthodologie qui permet de répondre à cette question et à travers laquelle on peut détecter des biais dans la publication des résultats de la recherche empirique. Sur la base d'une revue bibliographique intensive et de la conformation d'un échantillon de 125 articles qui rapportent un total de 880 estimations économétriques de la relation susmentionnée, on analyse la présence d'hétrogénérité et de biais de publication. Les résultats montrent des indices de biais de publication; une fois ce biais écarté, on observe la persistance d'un effet positif de la taille de l'entreprise sur la performance innovante.

 $\label{eq:motion} \textbf{MOTS-CLE}: analyse \ de \ m\'eta-r\'egression, entreprises industrielles, innovation technologique, biais \ de \ publication.$

CITACIÓN SUGERIDA: Bachmann, F., Liseras, N., Graña, F.M. (2021). Desempeño innovador y tamaño de la firma: heterogeneidad y sesgo de publicación abordados desde un análisis de metarregresión. *Innovar*, *31*(81), 75-100. https://doi.org/10.15446/innovar.v31n81.95575

CLASIFICACIÓN JEL: C19, D22, O30.

RECIBIDO: 27/12/2018. APROBADO: 4/5/2020. PUBLICACIÓN ANTICIPADA: 14/5/2021

Esta obra se publica bajo una licencia Creative Commons Atribución-No_Comercial-Sin_Derivadas 4.0 Internacional (CC BY-NC-ND 4.0)

directa entre ambas variables fundamentada, por ejemplo, en que las empresas grandes tienen ventajas como economías de escala y alcance o facilidades financieras a la hora de innovar; por otro lado, parte de la teoría justifica que la relación es inversa aduciendo, entre otros argumentos, el efecto negativo de la burocracia corporativa y la falta de incentivos o la flexibilidad de las pymes para hacer cambios en su operatoria. De lo anterior, surge la conclusión de que no hay una única relación entre estas variables¹, lo que motiva profundizar su estudio. Asimismo, los resultados empíricos también dan cuenta de esta disparidad y, aún controlando por variables sectoriales, las estimaciones econométricas ofrecen coeficientes muy heterogéneos y con signo tanto positivo como negativo. Ahora bien, ¿dicha heterogeneidad es producto de diferentes muestras o puede explicarse por otros factores tales como particularidades contextuales o las metodologías de análisis empleadas?

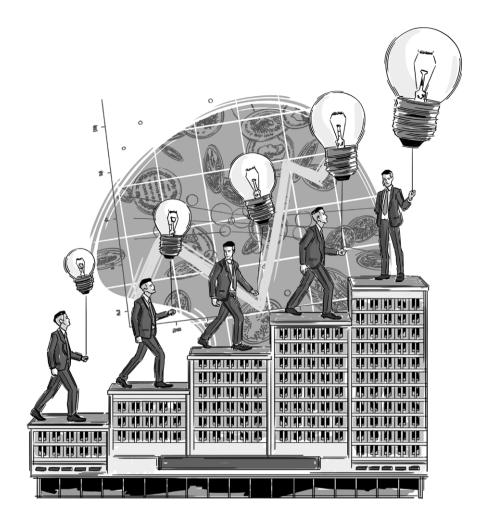
Este trabajo constituye una aplicación del análisis de metarregresión (AMR), que permite comparar la evidencia proporcionada por trabajos que estiman econométricamente la relación de interés -i. e., el efecto del tamaño de la empresa sobre el DI- y, a partir de las diferencias entre los estimadores puntuales, explicar la variabilidad observada en función de variables a nivel estudio. Asimismo, es posible evaluar si existe asociación entre los coeficientes de regresión estimados y su nivel de precisión. En el campo de la economía de la innovación, hay cierto consenso de una relación positiva entre tamaño de la firma y DI. En este sentido, cabe preguntarse si existe algún mecanismo −i. e., sesgo de publicación− que privilegie la divulgación de ciertos resultados consistentes con la teoría por sobre otros, a costa de perder precisión en las estimaciones. Y, de ser así, ¿cuál es el efecto que persiste una vez descontado dicho sesgo? Este tipo de análisis es relevante, en tanto permite evaluar la evidencia generada por la comunidad académica que luego se incorpora en el diseño de políticas públicas.

El primer paso del AMR consiste en una revisión de la literatura, con el fin de obtener una muestra de trabajos aplicados que estimen econométricamente la relación entre DI y tamaño, a nivel de la empresa. La muestra final se compone de 125 artículos que reportan 880 estimaciones de dicha relación, con características diversas que, potencialmente, pueden contribuir a entender la heterogeneidad en

A lo largo de este artículo, se denomina a la relación entre variables como el "efecto de tamaño", siguiendo la terminología del análisis de metarregresión. Este concepto no debe confundirse con la variable de tamaño de la empresa, cuya relación con el desempeño innovador se estudia en este trabajo.

las estimaciones: diferentes países, sectores, tipos de empresa y modelización econométrica empleada, entre otros². La presente investigación tiene por objetivo i) cuantificar el grado de heterogeneidad no atribuible a variabilidad muestral en los estimadores puntuales; ii) indagar sobre la existencia de sesgos de publicación en la literatura revisada, y iii) estimar el efecto de tamaño promedio o "genuino", es decir, corregido ante dicho sesgo.

Luego de esta introducción, el trabajo continúa con la síntesis de los principales aportes teóricos sobre la relación entre tamaño de la empresa e innovación y describe la metodología del metaanálisis en general y del AMR en particular; después, se detalla la forma en que se conformó la muestra para, posteriormente, hacer referencia al análisis descriptivo y presentar los resultados del AMR. Finalmente, se concluye con algunas reflexiones.


Marco conceptual

Motivación y antecedentes

La noción de que el tamaño de la empresa es un factor relevante para estudiar el cambio tecnológico tiene sus orígenes en los trabajos de Schumpeter (1935, 1942) y su interpretación del desarrollo capitalista, que es motorizado por la generación de nuevas combinaciones de factores productivos introducidas al mercado. Este mismo autor anticipa tanto una relación inversa como directa en su obra. En un primer momento, desarrolla el concepto de "destrucción creadora" a partir de emprendedores o nuevas empresas que irrumpen en el mercado mediante innovaciones y desplazan a las empresas grandes que dominan el mercado. En su obra de 1942, este modelo cambia y son las grandes corporaciones las que internalizan actividades de innovación y obtienen ventajas competitivas para dominar el mercado en una "acumulación creadora".

Estas dos dinámicas serán tomadas por Nelson y Winter (1982) para hablar de regímenes tecnológicos sectoriales, que permiten explicar el ritmo innovador en distintos sectores, cobrando relevancia los procesos internos de aprendizaje (Breschi et al., 2000; Leal-Rodríguez et al., 2015). Sin embargo, al interior de dichos sectores pueden encontrarse diferencias en el tamaño de las empresas, así como en su DI, sin que las investigaciones sean concluyentes acerca de la magnitud y la dirección de la relación entre ambas variables una vez que se controla por sector.

El análisis del efecto de las variables a nivel estudio no se aborda en este trabajo.

En la perspectiva de Cohen (2010), existe cierto consenso teórico acerca de un efecto positivo del tamaño de la empresa sobre su DI, que apoya el modelo de acumulación creadora. Esta relación positiva se explica comúnmente por las ventajas crediticias de las empresas grandes para financiar proyectos (de-Oliveira & Rodil-Marzábal, 2019), economías de escala y alcance de la actividad innovadora (Petruzzelli et al., 2018) y su complementariedad con actividades no operativas, como el marketing (Cohen, 2010). A estos argumentos se oponen aquellos que postulan a las pymes como organizaciones más flexibles y abiertas al cambio (Petruzzelli et al., 2018), sin las trabas burocráticas de las grandes empresas (Forés & Camisón, 2016), con el fin de explicar estimaciones de una relación inversa entre tamaño y desempeño innovador (Camisón et al., 2002). Un último argumento radica en la lógica subvacente al proceso innovador en las pymes: o bien los recursos disponibles limitan y definen los objetivos de innovación (Berends et al., 2014), o bien se pueden usufructuar recursos y capacidades externas para generar innovaciones en un proceso de innovación abierta (Teplov et al., 2019). Ambos ejemplos permiten entender la innovación sin hacer énfasis en los recursos internos disponibles, principal ventaja de las empresas grandes³.

En términos empíricos, hay una fuerte heterogeneidad entre los estimadores puntuales —i. e., coeficientes de regresión estimados— que surgen de la estimación econométrica de esta relación (Becheikh et al., 2006; Camisón et al., 2002). Revisiones recientes de la literatura (Cohen, 2010; Hall & Mairesse, 2006; Rosenbusch et al., 2011) señalan evidencia de una relación a veces directa, otras inversa, o aún no lineal entre el tamaño de la empresa y SU DI.

La persistencia de estas disparidades ha motivado varios trabajos en el campo de la innovación en general (Damanpour, 1991; Duran et al., 2016; Montoya-Weiss &

Estos argumentos ponen de manifiesto la importancia de las relaciones entre la empresa y el entorno, en un modelo interactivo (Buesa et al., 2002). Frente al modelo lineal tradicional, enfoques basados en estudios de caso permiten entender el rol de los accidentes históricos y los rendimientos crecientes en el desarrollo tecnológico (Arthur, 1990).

Calantone, 1994) y del problema de la relación del tamaño de la empresa con su DI en particular (Camisón et al., 2002; Damanpour, 1992, 2010) mediante técnicas de metaanálisis (tabla 1). El horizonte temporal de estos últimos dos antecedentes cubre hasta principios de la década del 2000, por lo que un primer aporte de la presente investigación es efectuar el análisis con publicaciones más recientes.

Tabla 1. Metaanálisis previos sobre innovación.

Metaanálisis	Problema a estudiar	Periodo	N.º de trabajos incluidos
Damanpour (1991)	Determinantes de la innovación organizacional	1960-1988	46
Montoya-Wiess y Calantone (1994)	Determinantes de la innovación de producto		47
Duran et al. (2016)	Innovación en empresas familiares	1981-2012	108
Damanpour (1992)	Innovación y tamaño	1967-1988	20
Camisón et al. (2002)	Innovación y tamaño	1970-2001	53
Damanpour (2010)	Innovación y tamaño	1983-2003	20

Fuente: elaboración propia.

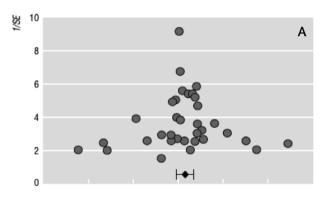
Las conclusiones de estos trabajos se enfocan en identificar aquellos factores que contribuyen a la variabilidad de resultados. Camisón et al. (2002) muestran que, si bien predomina una relación positiva, esta se ve influida por la forma de medir el tamaño de la firma, por las características sectoriales y por elementos internos como las estrategias adoptadas. En la misma dirección apuntan los resultados de Damanpour (1992), que añade la importancia del tamaño de la empresa en la fase de la implementación más que del inicio del proceso innovador. No obstante, cabe aclarar que ninguno de estos trabajos aplica AMR.

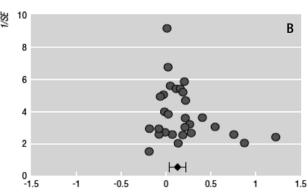
Finalmente, estas revisiones aportan dimensiones relevantes al estudio de la innovación, pero no incorporan dos cuestiones abordadas en el presente trabajo. En primer lugar, recuperan evidencia empírica para países desarrollados (como única excepción aparece China), lo que

excluye del análisis a las economías emergentes en general y a América Latina en particular. En segundo lugar, no abordan el problema del sesgo de publicación, que se introduce en la siguiente sección.

Fundamentos del análisis de metarregresión (AMR)

Se define el AMR como la aplicación de un conjunto de técnicas estadísticas convencionales con el objetivo de sintetizar los resultados empíricos obtenidos en determinadas áreas del conocimiento científico (Krassoi et al., 2009). El AMR constituye una secuencia de pasos que inician en la recolección de datos secundarios -e. q., coeficientes de regresión estimados, cocientes de chances, riesgos relativos y terminan en la estimación de un modelo econométrico que explica la heterogeneidad entre los resultados observados en los trabajos empíricos. El objetivo de esta metodología consiste en el estudio del conocimiento científico formalizado disponible en un determinado campo⁴ (Stanley, 2001; Stanley & Doucouliagos, 2012; Stroup et al., 2000). En consecuencia, se basa en la evidencia presentada en ámbitos científicos, ya sean publicaciones académicas -e. q., revistas especializadas o libros— o literatura "gris" —e. g., actas de congresos, working papers y trabajos no publicados— (Stanley, 2001; Stanley & Doucouliagos, 2012).


La población objetivo del AMR se compone de aquellos estudios académicos que presenten estimaciones de la relación entre las variables de interés, y que cumplan con los criterios de inclusión adoptados (Stanley & Doucouliagos, 2012). Una de las bondades del AMR es la posibilidad de su replicación, por ende, dichos criterios deben enunciarse explícitamente y contribuir a acotar la búsqueda y a minimizar los sesgos inherentes a esta (Stanley & Doucouliagos, 2012; Stroup et al., 2000). El tamaño de la población en algunos casos es tan grande que necesariamente hay que trabajarlo con una muestra representativa, como en este caso.


Una importante contribución del AMR al análisis de literatura cuantitativa consiste en estimar y controlar por sesgos de publicación para identificar los efectos de tamaño representativos (Dimos & Pugh, 2016). Según Card y Krueger (1995), el sesgo de publicación surge cuando los evaluadores o editores de una revista científica están más predispuestos a publicar trabajos consistentes con la visión tradicional, cuando los investigadores comparan sus resultados con los convencionalmente esperados a modo de contraste estadístico, o cuando cualquiera de ellos muestra predisposición a tratar los resultados estadísticamente

Algunas aplicaciones recientes de esta metodología en economía pueden encontrarse en Dimos y Pugh (2016), Galindo et al. (2015), Ugur et al. (2016), Ugur et al. (2015) y Sequeira y Neves (2020).

significativos más favorablemente. Stanley (2005) identifica dos tipos de sesgos en los resultados: o bien van en la dirección propuesta por la teoría, o bien son estadísticamente significativos e "interesantes". Como consecuencia se observa una sobrerrepresentación de estimaciones —de un signo o nivel de significación determinados— en la evidencia publicada, mientras que otros tipos de resultados permanecen ocultos.

En ausencia de sesgo de publicación, la distribución de los efectos de tamaño en función de su nivel de precisión asemejará un embudo invertido (figura 1). Tal como explican Sutton et al. (2000), la forma de embudo indica que los efectos menos precisos, que son los más numerosos, tienen un mayor rango de valores. Sin embargo, como los estudios con estimadores de cierto signo o significatividad tienen menores chances de ser publicados, darán lugar a una distribución asimétrica⁵. A modo de ejemplo, la figura 1.B presenta la distribución de efectos de tamaño truncada, en la que los efectos de tamaño negativos no aparecen publicados.

Figura 1. Distribuciones de efectos de tamaño sin (A) y con (B) sesgo de publicación. Fuente: Sutton et al. (2000).

Estos gráficos de embudo o *funnel plots* son diagramas de dispersión que muestran el valor del efecto de tamaño en función de su nivel de precisión (Stanley, 2005; Stanley & Doucouliagos, 2012; Sterne & Egger, 2001). La precisión del efecto, en términos prácticos, se refiere al error estándar, la varianza o el tamaño muestral relativos al coeficiente (Sterne & Egger, 2001; Sterne et al., 2011). En estos gráficos es posible identificar valores extremos y caracterizar la distribución de los efectos de tamaño y el grado de heterogeneidad entre ambos (Stanley & Doucouliagos, 2012). De existir un efecto de tamaño representativo de la relación estudiada, se espera que los efectos más precisos se concentren alrededor de dicho valor.

Metodología

Criterios de inclusión y de obtención de la muestra

La población objetivo de esta investigación corresponde a artículos académicos de carácter cuantitativo con datos a nivel de la empresa, que estiman el DI en función del tamaño de la firma, entre otras variables explicativas. El objetivo es obtener estimaciones econométricas de dicha relación, ya sea como relación principal del artículo o donde el tamaño resulte una de las variables de control.

La muestra surge de una primera búsqueda realizada entre julio y octubre del 2017 y una búsqueda complementaria durante los meses de junio y julio del 2018⁶. Previo a esta, se efectuó una prueba piloto a partir de las revisiones sobre la literatura de innovación de Becheikh et al. (2006) y Cohen (2010), que permitieron aclarar los criterios para buscar los artículos objetivo de este estudio (Stanley & Doucouliagos, 2012). En ambas revisiones se hace un análisis sobre los avances en este campo, en términos tanto empíricos como teóricos. Las referencias bibliográficas de estos dos trabajos sirvieron como punto de partida al tiempo que aportaron cerca del 27% de los artículos de la muestra.

Una vez garantizada la posibilidad de contar con información empírica comparable, se formalizaron los criterios de inclusión para completar la muestra, en la que se incluyen artículos con las siguientes características:

 Escritos entre los años 1993 y 2017. El análisis se basa en la literatura más reciente. El corte inicial en 1993 obedece a la publicación de la primera edición del Manual de Oslo (Organización para la Cooperación y el

En una publicación posterior, Sutton y Higgins (2008) mencionan que la asimetría en este gráfico puede también deberse a causas distintas al sesgo de publicación, dado que cualquier covariable influyente y relacionada con la precisión, o el tamaño muestral, podría dar lugar a dicho patrón a través del confunding.

El objetivo de esta segunda búsqueda fue validar la muestra obtenida previamente y recuperar estudios no publicados disponibles en repositorios institucionales.

Desarrollo Económicos [OECD], 1992), que constituye el primer intento en sistematizar la recolección de datos sobre temas de innovación a nivel de la firma.

- En español e inglés. No se incluyen otros idiomas debido a limitaciones de los autores. No obstante, la mayor parte de la literatura publicada en este campo es en inglés. En este caso, el idioma no debería generar sesgos en la muestra (Stanley & Doucouliagos, 2012).
- A nivel de la empresa. El objetivo es estudiar el fenómeno de la innovación en empresas, que por definición no pueden compararse con estudios sectoriales, a nivel de unidad de negocio o de sistemas nacionales de innovación.
- 4. *Orientados al sector manufacturero*. Se descartan publicaciones para sectores como servicios o actividades primarias, siempre que sea posible.
- 5. Econométricos. La naturaleza del análisis de metarregresión exige datos cuantitativos, lo que excluye narrativas o artículos teóricos. También se excluyeron aquellos artículos que no presentaran un mínimo de información estadística (errores estándar o número de observaciones, entre otros) y fuera imposible contactar a los autores.
- 6. Que tengan como variable dependiente la innovación. La relación innovación-tamaño puede plantearse al revés y ver el impacto de la innovación en el crecimiento de la empresa. Otra posibilidad es tomar la

- innovación como dato para explicar otro fenómeno. Este tipo de trabajos fue descartado.
- 7. *Se refieran a la innovación tecnológica*. En producto o proceso.
- 8. Cuya operacionalización del tamaño de la firma sea continua. Los artículos que usan variables dicotómicas o rangos de tamaño fueron excluidos por la multiplicidad de criterios de construcción de la variable entre países y estudios.
- 9. Publicados en revistas académicas o no. Con el objetivo de medir la magnitud de un posible sesgo de publicación, se complementó la búsqueda de revistas con trabajos de congresos, working papers o artículos difundidos en la web (Stanley & Doucouliagos, 2012). Se descartaron libros o capítulos de libros con excepción de publicaciones del Banco Interamericano de Desarrollo (BID) que recogen estudios empíricos recientes para América Latina y el Caribe.

Con los criterios antes expuestos, se procedió a buscar en las bases de datos de la American Economic Association (Econlit), Jstor, SSRN y SciELO. Se consultó además el archivo de la revista *Technovation*, por considerarse de referencia en el tema. Para garantizar la representatividad de la literatura de América Latina, se buscó específicamente en Scholar Google aquella literatura para los países de la región. Finalmente, para la evidencia en Argentina se revisaron los *Anales* de la Asociación Argentina de Economía Política, de la revista *PyMEs, Innovación*

Tabla 2.

Resumen de las fuentes de datos.

Fuente de datos	Palabras clave	Artículos candidatos	Artículos seleccionados	Porcentaje de artículos en cada fuente	Estimaciones de cada fuente
Becheikh et al. (2006)		101	24	19,20%	159
Cohen (2010)		157	10	8,00%	69
Econlit	Firm size R&D "firm level" innovation; innovation survey	310	51	40,80%	320
Jstor	Innovation "firm size"	93	3	2,40%	13
SciELO	Innovation "firm size"; innovación; tamaño empresa; firma	12	1	0,80%	1
SSRN	Innovation "firm size"; technological regimes	70	10	8,00%	75
Technovation	Innovation "firm size"; empirical	21	2	1,60%	19
Scholar Google + PID + AAEP	Innovación; tamaño de la empresa; firma; América Latina; Argentina	36	12	9,60%	125
Scopus + BASE + LA Referencia	"technological innovation"; econometric; América Latina; "innovación tecnológica"		12	9,60%	94
Total		800	125	100,00%	880

Fuente: elaboración propia

y Desarrollo y actas de congresos. En una segunda instancia, se consultaron las bases de Scopus y los repositorios institucionales Bielefeld Academic Search Engine (BASE) y LA Referencia⁷. A continuación, se resumen las principales características de la búsqueda. Una síntesis se presenta en la tabla 2.

Del total de 125 artículos, se extrajeron 880 coeficientes de regresión estimados, siendo la media de siete estimaciones por artículo, con un mínimo de una estimación y un máximo de 36 estimaciones en un mismo artículo⁸. Es importante subrayar el hecho de que la relación estudiada entre di y tamaño de la firma no es el objetivo del análisis econométrico de todos los artículos incluidos. Si bien el DI es la variable a explicar en todos los modelos, el tamaño de la empresa aparece frecuentemente como variable de control, dado que su importancia teórica es tal que se incluye en la estructura de medias de los modelos para evitar sesgos de variable omitida. En la metodología del AMR, la diferencia entre variable independiente y de control no es relevante, puesto que ambas aportan evidencia para explicar una misma variable dependiente (Stanley & Doucouliagos, 2012).

Cálculo del efecto de tamaño y AMR bivariado

Con el fin de comparar la evidencia empírica disponible referida a una determinada hipótesis, es necesario conocer el efecto de tamaño que constituye la "medida que cuantifica la asociación entre variables" (Stanley & Doucouliagos, 2012, p. 20). Existen múltiples medidas de efectos de tamaño: coeficientes de regresión, correlaciones de orden cero y elasticidades, entre otros (Stanley & Doucouliagos, 2012). Si bien todas estas medidas dan cuenta de la dirección e intensidad de la asociación entre variables, es importante distinguir entre efectos estadísticos y económicos: los primeros son medidas de asociación sin unidad de medida y, por ende, comparables entre sí; los últimos miden efectos generalmente ligados a efectos marginales, lo que implica tener en cuenta la unidad de medida de las variables de interés.

Para lograr efectos de tamaño en una misma escala, una alternativa es el uso de coeficientes de correlación parcial (ccp). Estos carecen de unidad de medida y muestran la magnitud y dirección de la asociación entre variables

(Dimos & Pugh, 2016; Stanley & Doucouliagos, 2012). Se define el ccp y su error estándar como:

$$CPP = \frac{t}{\sqrt{t^2 + gI}} \tag{1}$$

$$e.e.(CCP) = \sqrt{\frac{(1 - CCP)^2}{gI}}$$
 (2)

Donde t es el valor del estadístico de contraste de significación del coeficiente de regresión y gl los grados de libertad del modelo del que se extrae (Dimos & Pugh, 2016; Stanley & Doucouliagos, 2012). El ccp tiene un rango de valores acotado entre -1 y 1, por lo que se interpreta de forma similar al coeficiente de correlación de Pearson, con la diferencia de que la intensidad de la asociación estadística se pondera por los grados de libertad del modelo del que se extrae el estimador. Esta medida estandarizada tiene la ventaja de calcularse fácilmente, puesto que se construye a partir de información usualmente disponible, tal como errores estándar o los propios valores t de los estimadores.

Una primera formalización del grado de heterogeneidad es la prueba Q estándar (Stanley & Doucouliagos, 2014). Bajo una lógica idéntica a la de la prueba chi-cuadrado, esta consiste en medir las diferencias entre los efectos observados y su distribución esperada (Viechtbauer, 2007). La hipótesis nula de la prueba es la de homogeneidad y el estadístico Q ~ χ^2_{n-1} , siendo n la cantidad de observaciones. Si bien esta prueba es más objetiva que la inspección visual, lo cierto es que en aplicaciones económicas casi siempre se rechaza la hipótesis de homogeneidad (Stanley & Doucouliagos, 2012) y pierde potencia para muestras con menos de 40 casos (Viechtbauer, 2007).

A partir de la inspección visual de los datos y del contraste de heterogeneidad es que se procede a su análisis econométrico. Existen varios métodos para efectuar estas pruebas, y su objetivo radica fundamentalmente en determinar la existencia de un efecto de tamaño promedio o "genuino" y de sesgo de publicación (Stanley & Doucouliagos, 2012; Viechtbauer, 2010). Dichas pruebas constituyen la primera parte del AMR. El punto de partida es la regresión entre los efectos de tamaño y su error estándar:

$$CCP_i = \beta_0 + \beta_1 e.e.(CCP_i) + e_i$$
(3)

Esta regresión se conoce como "prueba de Egger" de asimetría (Egger et al., 1997), y permite medir tanto la asimetría de la distribución (prueba FAT⁹), como efectuar el análisis

Dado que el propósito de esta búsqueda fue complementar la base de datos construida, solo se incluyeron estudios con características que fueran compatibles con la muestra obtenida previamente.

⁸ La lista de estudios que componen el metaanálisis se presenta en el anexo 1.

Funnel asymmery test.

del "efecto genuino" (prueba PET¹º) a partir del nivel de significación de los coeficientes estimados. La ausencia de asimetría se postula bajo la hipótesis nula H_0) β_1 =0 y la ausencia de un efecto genuino bajo la hipótesis nula H_0) β_0 =0. Puesto que se espera que el error estándar de los efectos de tamaño no sea la misma para cada estudio, el término de error resulta heterocedástico. Por ende, debe estimarse vía mínimos cuadrados ponderados, utilizando como ponderador al error estándar la siguiente ecuación:

$$\frac{CCP_i}{e.e.(CCP_i)} = t_i = \beta_1 + \beta_0 \left(\frac{1}{e.e.(CCP_i)}\right) + v_i \tag{4}$$

Al sustituir en (3) el error estándar por la varianza del estimador, se construye la prueba PEESE¹¹, cuya hipótesis nula es la misma que la del análisis PET, pero permite corregir el valor del efecto promedio en la estimación (Stanley & Doucouliagos, 2012).

$$\frac{CCP_i}{e.e.(CCP_i)} = t_i = \beta_1 EEccp_i + \beta_0 \left(\frac{1}{e.e.(CCP_i)}\right) + v_i$$
 (5)

En síntesis, la estimación del modelo de regresión simple (3), corregido luego por heteroscedasticidad, tiene por objetivo identificar si existe un efecto de tamaño promedio distinto de cero en la relación estudiada y sesgos en la distribución de los efectos de tamaño¹².

Un aspecto importante en la modelación reside en el hecho de que un mismo estudio reporte más de un efecto de tamaño. En este caso, los ccp no pueden ser tomados como independientes entre sí, sino que es esperable que estén correlacionados al interior de cada estudio o *paper* (Nelson & Kennedy, 2009; Stanley & Doucouliagos, 2012; Viechtbauer, 2010). Los modelos de regresión que mejor reflejan esta situación permiten que los coeficientes varíen aleatoriamente entre clústeres. Si bien estos modelos admiten tanto interceptos como pendientes aleatorias, el uso más difundido se limita a estimar interceptos aleatorios (Nelson & Kennedy, 2009).

La estructura de datos usada en el metaanálisis es semejante a un panel desbalanceado (Stanley & Doucouliagos, 2017), en el que el componente estocástico es análogo al efecto inobservable de cada individuo. La prueba de especificación de Hausman es la que permite determinar si los efectos de *paper* son fijos o aleatorios. La derivación de esta prueba puede encontrarse en Wooldridge (2002).

Precision effect test.

Mediante la comparación de los coeficientes estimados por efectos fijos y aleatorios, la hipótesis nula de la prueba es que la especificación por efectos aleatorios es consistente y eficiente, por lo tanto, preferible.

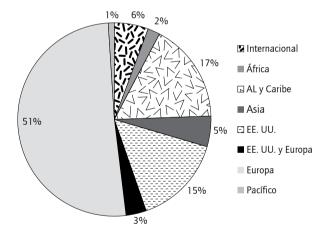
Resultados

Descripción de la muestra

Se presenta a continuación una caracterización de los aspectos más relevantes de la muestra, en términos de estimaciones (880). En primer lugar, se observa variabilidad tanto en la cantidad de estudios como en el número de estimaciones por año (tabla 3). El rango de estimaciones va de 4 a 201, con menor evidencia empírica para artículos publicados en los periodos 1996-1997 y 2004-2005, así como un máximo en el periodo 2015-2016, explicado por una publicación del Banco Interamericano de Desarrollo (BID) para América Latina y el Caribe (Crespi et al., 2017).

labla 3. Distribución de estudios y estimaciones por año.

Año	N.º de estimaciones	N.º de estudios	Estimaciones promedio por estudio
1993	21	2	10,5
1994	16	2	8
1995	7	1	7
1996	8	2	4
1997	4	2	2
1998	20	3	6,7
1999	44	8	5,5
2000	48	3	16
2001	34	8	4,3
2002	38	6	6,3
2003	41	7	5,9
2004	9	2	4,5
2005	8	2	4
2006	41	6	6,8
2007	46	7	6,6
2008	35	6	5,8
2009	16	3	5,3
2010	23	5	4,6
2011	41	7	5,9


Precision-effect estimate with estandar error.

La estimación se realiza en R con el paquete metafor (Viechtbauer, 2010).

Año	N.º de estimaciones	N.º de estudios	Estimaciones promedio por estudio
2012	22	5	4,4
2013	36	6	6
2014	48	5	9,6
2015	201	16	12,6
2016	73	11	6,6
Total	880	125	7

Fuente: elaboración propia.

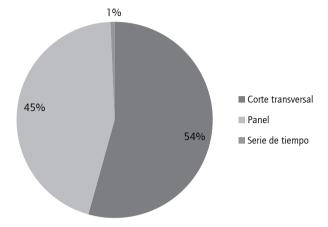

En cuanto al ámbito geográfico de los datos que utiliza cada estudio, puede verse en la figura 2 que más del 50% de estimaciones son para Europa, y el 70% corresponde a países desarrollados¹³. Del 30% restante, un 25% corresponde a países emergentes, dado que el 5% de estudios "internacionales" utilizan bases de datos que incluyen empresas en diferentes países, generalmente desarrollados. Esta discrepancia no sorprende, puesto que en países emergentes tanto el estudio de estos temas como el diseño de encuestas nacionales de innovación es posterior al de los países desarrollados¹⁴, al tiempo que la continuidad en el relevamiento de estas encuestas ha sido mucho mayor en estos últimos.

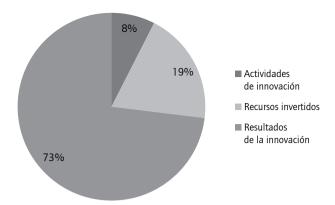
Figura 2. Distribución geográfica de los datos de la muestra. Fuente: elaboración propia.

La figura 2 muestra la estructura de los datos empleados para modelar. En primer lugar, se observa que solo un 1% de las estimaciones provienen de series temporales, repartiéndose la muestra en estimaciones con datos de corte transversal (54%) y datos de panel (45%). La continuidad de las encuestas de innovación europeas y el registro

de patentes, que permite asignar la innovación a la empresa, explican una gran parte de los datos de panel. La otra mitad de la muestra consiste mayoritariamente en encuestas construidas *ad hoc*, análisis de una onda puntual de una encuesta de innovación o bases de datos que indagan tangencialmente sobre temas de innovación y hacen foco en otros asuntos.

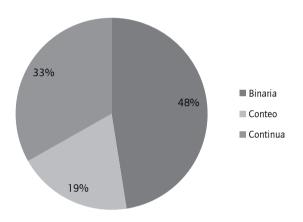
Figura 3. Estructuras de datos presentes en la muestra. Fuente: elaboración propia

Para describir las conceptualizaciones de la innovación halladas, resultan útiles las primeras dos etapas del modelo CDM (Crepon et al., 1998); inversión en actividades de innovación e intensidad de recursos invertidos (input), por un lado, y resultados del proceso innovador (output), por otro. A partir de esta clasificación se observa que existe cierto consenso en medir la innovación por resultados (figura 4): la empresa declara nuevos productos o procesos, tiene mayores ventas o genera patentes (73%). La poco frecuente medición a través de inputs (27%) es coherente con la lógica de que la innovación es la aplicación comercial de nuevas combinaciones de factores productivos (Schumpeter, 1935)¹⁵. Los recursos invertidos ayudan a explicar el éxito entre el desarrollo de proyectos de I+D y su concreción, pero no miden la innovación¹⁶. Es por esto que la realización de actividades y el presupuesto destinado se vean como las primeras etapas de un proceso, cuyo desenlace exitoso (y eventual impacto sobre la productividad del trabajo) es el verdadero objetivo de investigación de la literatura bajo análisis¹⁷.


La categoría *Pacífico* incluye a Australia y Nueva Zelanda.

Para el estudio de las encuestas de innovación en América Latina, véase Crespi y Peirano (2007). Para la continuidad de la cis europea, véase Mairesse y Mohnen (2010).

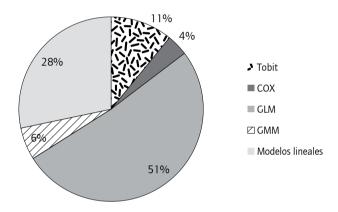
Esta diferencia es todavía mayor si se tiene en cuenta que una parte de las estimaciones (figura 6) de recursos invertidos corresponde a modelos bietápicos que corrigen el sesgo de selección mediante la estimación del gasto en I+D y luego modelan variables binarias.


Cerca del 45% de las estimaciones de la muestra tienen el gasto en 1+D como variable explicativa de la innovación.

Una alternativa para lidiar con este problema es la construcción de índices que incluyen estas y otras dimensiones. La diversidad

Figura 4. Conceptualizaciones de la innovación modeladas en la muestra. Fuente: elaboración propia.

En cuanto a la escala utilizada para medir el DI utilizada en las estimaciones econométricas incluidas en la muestra, se observa en el figura 5 que principalmente se la define como variable binaria (48%), en su mayoría en respuesta a la pregunta de "si la empresa innova o no".


Figura 5. Escalas de medición de la variable *desempeño innovador* en la muestra. Fuente: elaboración propia.

Un 19% de los modelos de la muestra la definen como una variable de conteo, generalmente igual al número de innovaciones o de patentes. Si bien este último indicador ha sido blanco de numerosas críticas, su empleo se justifica en la riqueza informativa de las patentes, que permite analizar los flujos de conocimiento entre sectores, así como entre empresas y científicos (Hall et al., 2001). Adicionalmente, las patentes en empresas industriales son *proxy* de aquellos desarrollos que las empresas consideran innovadores, y que, por ende, vale la pena proteger (Salomon & Shaver, 2005). Cabe aclarar que debido a que el patentamiento está mucho más difundido en las economías industrializadas, no se observa que el DI se mida de este modo en las estimaciones con datos de economías emergentes.

de estos índices hace imposible su comparación, por lo que se han excluido en la muestra tomada.

La medición del DI como variable continua (33%) surge de su definición como el presupuesto destinado a I+D (*input*) o como las ventas derivadas de la innovación (*output*).

Para finalizar la descripción, se presenta la distribución de los diferentes tipos de modelos econométricos de los que surgen las estimaciones (figura 6). La preponderancia de los modelos lineales generalizados —GLM— (51%) es consecuencia de la modelación de las variables binarias en formulaciones *logit* y *probit*, así como la modelación de variable de conteo en modelos log-lineales. Le siguen en orden de importancia los modelos lineales para variables continuas (28%) y los modelos bietápicos que proponen corregir el sesgo de selección (11%). El resto de la muestra (10%) consiste en estimadores que surgen de la aplicación de otros modelos (cox y método de los momentos generalizado [GMM]).

Figura 6. Tipos de modelos presentes en la muestra. Fuente: elaboración propia.

Construcción de los subsets

A nivel conceptual, todos los efectos de tamaño reflejan una única relación: el DI en función del tamaño de la empresa. Los estimadores que surgen de las distintas estimaciones que componen la muestra son exclusivamente coeficientes de regresión; por consiguiente, tanto el signo como el nivel de significación son comparables. En este sentido, sería posible estimar un único modelo de AMR incluyendo la totalidad de la muestra (Stanley & Doucouliagos, 2012).

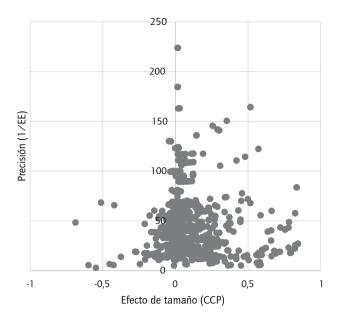
No obstante, al indagar un poco más en las distintas conceptualizaciones de la innovación, es claro que la interpretación económica de estos estimadores no es la misma. Por lo tanto, se propone segmentar la muestra en cuatro subsets más homogéneos, definidos en función de la medición de la innovación como actividades, recursos invertidos o resultado, junto con la escala de medición de las variables, tal como surge de la tabla 4. Los subsets 1, 2 y 3

corresponden a estimaciones de los resultados del proceso de innovación, distinguiendo entre las distintas escalas de medida del DI. El subset 4 incluye a las estimaciones que captan a la innovación a través de los recursos invertidos y miden al DI como una variable continua.

Tabla 4. Criterios para la definición de subsets.

			Escala de la variable dependiente			
		Binaria	Conteo	Continua		
B 1/ 1	Ocupados	347	115	96	558	
Resultados	Ventas	7	46	32	85	
D	Ocupados	0	0	76	76	
Recursos	Ventas	0	0	95	95	
A	Ocupados	47	2	0	49	
Actividades	Ventas	17	0	0	17	
Total		418	163	299	880	

Fuente: elaboración propia.


Así, quedan definidos cuatro subsets de estudios homogéneos con los que se efectuará el AMR:

- 1. Resultados de la innovación con medidas binarias (innova o no) (n = 354).
- Resultados de la innovación con medidas de conteo (número de patentes o de innovaciones) (n = 161).
- 3. Resultados de la innovación con medidas continuas (ventas innovadoras) (n = 128).
- 4. Recursos invertidos (presupuesto en i+d) (n = 165)¹⁸.

Resultados econométricos

La figura 7 es el gráfico *funnel* para las 880 estimaciones que componen la muestra, en donde se observan estimadores tanto positivos como negativos con diversos niveles de precisión, lo que denota heterogeneidad en la evidencia recopilada. Se observa que los efectos se concentran en torno a un valor positivo a medida que son más precisos, aunque en promedio los efectos positivos son más precisos que los negativos. A medida que el ccp disminuye, lo hace también su nivel de precisión, aumentando su varianza.

Del AMR simple surge un primer resultado bien claro: el efecto "genuino" entre tamaño de la firma y DI es positivo (tabla 5), lo que se encuentra en línea con resultados

Figura 7. Gráfico *funnel* para la muestra completa. Fuente: elaboración propia.

de los metaanálisis publicados en el tema (Camisón et al., 2002; Damanpour, 2010). Dicho efecto se estima en 0,13, valor en torno al cual se agrupan los efectos de tamaño más precisos. Asimismo, hay evidencia de heterogeneidad, dado el bajo valor-p de la prueba Q.

Por otro lado, hay evidencia de sesgo de publicación: no se observan efectos de tamaño negativos y no significativos, lo que hace presumir que estos resultados son descartados por los propios investigadores o rechazados para su publicación. La prueba de asimetría derivada del coeficiente estimado para la varianza indica que los efectos de tamaño no se distribuyen en forma de cono, es decir, simétricamente.

Tabla 5.

AMR bivariado para toda la muestra.

0,13 (0,075)*		
-4,834 (2,448)**		
874		
0,72		
QE(df = 749) = 25866,37		
P-val < ,0001		
Z= -1,97		
P-val= 0,048		
$\chi^2 = 5,54 \text{ gl} = 1, \text{ p-val} = 0,018$		

Notas: todos los modelos incluyen variables ficticias de *paper* para captar el efecto inobservable, cuyos coeficientes no se presentan. Para la prueba de Hausman, H0). Efectos fijos y aleatorios son consistentes. Significatividad: ***0,01, **0,05, *0.1.

Fuente: elaboración propia.

La diferencia de seis estimaciones con respecto a la tabla 3 (76+95) se debe a estimaciones de serie de tiempo que se descartan.

Entonces, si el efecto de tamaño "genuino" es positivo, no extraña encontrar estimadores positivos que sean estadísticamente significativos. Lo que induce a pensar en la existencia de sesgo de publicación es que, entre los resultados estadísticamente no significativos —es decir, poco precisos—, no haya valores estimados con ambos signos. No es posible ser concluyente acerca de por qué no se observan dichos coeficientes: si debido a que no han sido medidos, si solo surgen de modelos econométricos mal especificados y rechazados para su publicación, o si es porque van en contra del consenso académico. El modelo simple refuerza la noción de que las estimaciones más precisas son las de signo positivo. Los resultados son robustos bajo la especificación del modelo con el error estándar del efecto de tamaño como regresor, en lugar de su varianza.

Las figuras 8.A a 8.D son los gráficos *funnel* para cada uno de los cuatro subsets previamente definidos. En los

cuatro gráficos se detectan efectos de tamaño (ccr) tanto positivos como negativos, aunque las distribuciones siguen patrones diferentes. La forma de cono puede identificarse más claramente en el panel 7.3, con efectos de tamaño en torno a cero y una distribución que tiene un grado de precisión promedio menor al resto. Las figuras 8.A y 8.B muestran mayor concentración de valores positivos, mientras que la figura 8.D muestra una mayor dispersión de los efectos. Con excepción de la figura 8.C, parece haber un indicio sobre la relación positiva entre tamaño e innovación.

El AMR bivariado para los cuatro subsets (tabla 6) permite verificar en parte lo expuesto en el análisis del figura 8. Se observa un efecto de tamaño promedio positivo distinto de cero para todos los casos, excepto para la obtención de ventas derivadas de la innovación. Es decir, tanto para obtener innovaciones, patentes o invertir en actividades innovativas (AI), se evidencia una relación directa con el

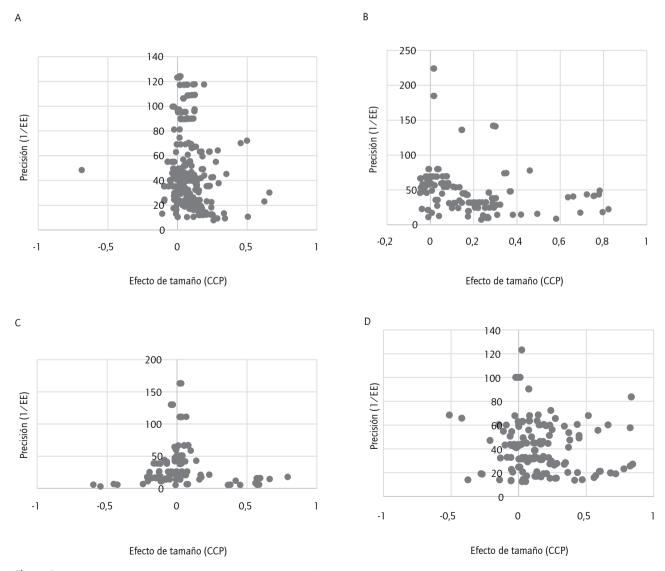


Figura 8. Funnel plots para cada subset. A. Innova o no; B. Número de innovaciones; C. Ventas derivadas de la innovación; D. Recursos invertidos. Fuente: elaboración propia.

Tabla 6.
Resultados del AMR bivariado.

	Subset 1: innova o no	Subset 2: nro. de patentes o innovaciones	Subset 3: ventas innovadoras	Subset 4: recursos invertidos
Intercepto	0,088***	0,468***	0,01	0,127***
(valor-p)	(< 0,001)	(< 0,001)	-0,591	-0,007
Varianza	-10,308*	-49,269**	-5,747***	1,264
(valor-p)	0,06	0,02	0,003	0,92
Prueba de heterogeneidad residual (valor-p)	< 0,001	< 0,001	<0,001	<0,001
Prueba de asimetría (valor-p)	0,06	0,02	0,003	0,92
Prueba de Hausman	P-val = 0,007	P-val = 0,001	P-val = 0,49	P-val = 0,30

Nota. Los modelos 1 y 2 incluyen variables ficticias de *paper*; los modelos 3 y 4 incluyen efectos aleatorios. Para la prueba de Hausman, H0) Efectos fijos y aleatorios son consistentes. Código de significación: ***0,01, **0,05, *0,1.

Fuente: elaboración propia.

tamaño de la firma (siendo mayor en el caso de patentes y más débil en el caso de obtener o no innovaciones). Nuevamente, los resultados van en la dirección de lo expuesto previamente; el tamaño incide claramente sobre los esfuerzos en innovación, pero no tanto en sus resultados. Diferente es el caso de generar ventas a partir de nuevos productos o procesos, donde el tamaño de la empresa parece perder relevancia; el efecto promedio no difiere de cero. Este resultado refleja la idea de que, para obtener resultados económicos, deben ponerse en juego otro tipo de capacidades, ligadas a lo comercial y organizacional (Damanpour, 2010; Nelson, 1991).

En cuanto al análisis de simetría, los resultados coinciden con lo expuesto para toda la muestra. Los coeficientes negativos y significativos de la varianza dan cuenta de distribuciones asimétricas, excepto en el caso de recursos invertidos (subset 4). En los tres primeros casos, a mayor varianza, menores efectos de tamaño: nuevamente son los efectos más pequeños (o negativos) los menos precisos. El subset "recursos invertidos" es el único que brinda evidencia de simetría, es decir, no existe correlación entre el efecto de tamaño y su grado de precisión.

Estos resultados no son concluyentes en tanto este tipo de análisis no toma en cuenta el efecto de las variables que podrían explicar dicha asimetría. Por ende, el rechazo o no de la hipótesis de asimetría debe complementarse con otras variables que moderen la relación estudiada y expliquen la heterogeneidad observada. Este es el objetivo final del trabajo cuyo avance se presenta en esta instancia.

Reflexiones finales

El presente trabajo constituye la primera etapa de un análisis de metarregresión aplicado a estudiar la relación entre tamaño de la firma y DI. A pesar de ser uno de los aspectos más relevantes en la tradición de la economía de la innovación, los resultados de la investigación empírica no son concluyentes. La heterogeneidad de los efectos de tamaño ha dado lugar a argumentos igualmente diversos que tratan de explicar relaciones en uno u otro sentido, y es el objetivo de este trabajo sintetizar dichos resultados. Si bien existen antecedentes en la materia, la implementación de la metodología AMR resulta novedosa, ya que permite indagar acerca de posibles sesgos de publicación, al tiempo que se nutre de las publicaciones más recientes (1990-2017); es decir, actualiza los resultados anteriormente obtenidos.

Un primer aporte de este trabajo consta de la descripción de la literatura bajo estudio, sus matices y similitudes. Frente a posibles sesgos de publicación en la evidencia empírica, el AMR es una herramienta que permite sintetizar los avances académicos en un determinado campo, así como encontrar el efecto de tamaño "genuino". Tal como surge del marco teórico, el consenso académico tiende a defender la idea de un efecto positivo.

Merece aquí la atención la marcada disparidad entre las publicaciones de países desarrollados y emergentes en las bases de trabajos consultadas. Si bien es cierto que el estudio sistemático de la innovación mediante encuestas a nivel nacional se inicia antes y tiene una mayor continuidad en países desarrollados, ello no implica la ausencia de estos temas en la agenda de investigación en las economías emergentes, sino que gran parte de esta literatura es de más difícil acceso y constituye la llamada "literatura gris". Como consecuencia, es posible que dicho consenso académico se base en realidades ajenas a nuestros contextos y, por ende, no den guías precisas para la política industrial como herramienta para el desarrollo.

Asimismo, la distinta operacionalización de la innovación y la necesidad de reducir un fenómeno complejo en una sola variable contribuyen a parte de la heterogeneidad observada en los resultados. Si bien desde la década de los 90 se cuenta con un marco metodológico (el *Manual de Oslo*) que se ha actualizado y extendido a otras regiones —un ejemplo es el *Manual de Bogotá* (Jaramillo et al., 2001)—, dista de haber una única forma de medir la innovación (De Carvalho et al., 2017). También los diferentes criterios a la hora de incluir empresas en una encuesta (e. g., empresas grandes o familiares) añaden heterogeneidad.

Tanto los esfuerzos que hace la empresa para lograr innovaciones como los resultados de esos esfuerzos se toman como válidos —aunque estos últimos prevalecen por sobre los primeros—. En el ámbito de la innovación tecnológica, tales esfuerzos están asociados a actividades de I+D, paso previo a la obtención de nuevos productos o procesos. Estas diferentes conceptualizaciones se emplean como punto de partida para la construcción de subsets homogéneos para el AMR. Como indican los resultados, estas diferencias no son menores y pueden cambiar las conclusiones que del análisis se extraen. Si bien se detecta una relación directa entre tamaño de la firma y *output* innovador, dicho resultado no se mantiene cuando la innovación se mide mediante ventas.

Los primeros resultados de esta investigación muestran que la heterogeneidad observada excede la atribuible a la variabilidad muestral tanto para la muestra completa (880 observaciones) como para cada uno de los cuatro subsets, es decir, existen características que influyen sobre el resultado más allá de la variabilidad debida al empleo de diversas muestras. Los resultados econométricos dan cuenta de un efecto de tamaño promedio corregido positivo, acorde a los antecedentes antes citados. Por otro lado, la correlación negativa entre el signo de las estimaciones y su varianza (o error estándar) avala la hipótesis de sesgo de publicación, ya que los efectos de tamaño pequeños o negativos son los que mayor nivel de error poseen. El principal resultado de esta investigación ratifica el consenso académico de una relación directa entre tamaño de la firma y DI.

El objetivo último de este trabajo es poder explicar la heterogeneidad observada, esto es, modelar los efectos de tamaño que componen la muestra en función de características de los datos utilizados y de las decisiones metodológicas aplicadas. Con dicho fin, se han codificado diferentes características a nivel estudio (región, sectores incluidos, tipo de publicación) y estimación (tipo de modelo, controles efectuados, operacionalización del tamaño, entre otras) que potencialmente explicarían la heterogeneidad.

Ello constituye el paso posterior de esta investigación, aún en curso.

Declaración de conflicto de interés

Los autores no manifiestan conflictos de intereses institucionales ni personales.

Referencias bibliográficas

- Aboal, D., & Garda, P. (2016). Technological and non-technological innovation and productivity in services vis-à-vis manufacturing sectors. *Economics of Innovation and New Technology*, *25*(5), 435-454. https://doi.org/10.1080/10438599.2015.1073478
- Ahuja, G. (2000). Collaboration networks, structural holes, and innovation: A longitudinal study. *Administrative Science Quarterly*, 45(3), 425-455. https://doi.org/10.2307/2667105
- Ahuja, G., & Katila, R. (2001). Technological acquisitions and the innovation performance of acquiring firms: A longitudinal study. Strategic Management Journal, 22(3), 197-220. https://doi.org/10.1002/smj.157
- Allred, B. B., & Park, W. G. (2007). Patent rights and innovative activity: Evidence from national and firm-level data. *Journal of International Business Studies*, 38(6), 878-900. https://doi.org/10.1057/palgrave.jibs.8400306
- Almeida, P., Hohberger, J., & Parada, P. (2011). Individual scientific collaborations and firm-level innovation. *Industrial and Corporate Change*, 20(6), 1571-1599. https://doi.org/10.1093/icc/dtr030
- Aristizabal-Ramirez, M., Botero-Franco, M. C., & Canavire-Bacarreza, G. (2017). Does financial development promote innovation in developing economies? An empirical analysis. *Review of Development Economics*, 21(3), 475-496. https://doi.org/10.1111/rode.12314
- Arthur, W. B. (1990). Positive feedbacks in the economy. *Scientific American*, *262*, 92-99. https://www.adamdell.com/media/file/original/17_Positive_Feedbacks_in_the_Economy.pdf
- Arvanitis, S. (2008). Explaining innovative activity in service industries: Micro data evidence for Switzerland. *Economics of Innovation and New Technology*, *17*(3), 209-225. https://doi.org/10.1080/10438590601004220
- Aschhoff, B., & Schmidt, T. (2008). Empirical evidence on the success of R&D cooperation—happy together? *Review of Industrial Organization*, 33(1), 41-62. https://doi.org/10.1007/s11151-008-9179-7
- Audretsch, D. B. (1995). Firm profitability, growth, and innovation. *Review of Industrial Organization*, *10*(5), 579-588. https://doi.org/10.1007/BF01026883
- Bachmann, F., Liseras, N., & Graña, F. M. (2016). Análisis de los determinantes de la innovación bajo un enfoque sistémico. Ponencia presentada en xxi Reunión Anual de la Red PyMEs-MERCOSUR, Tandil, Argentina, 28 de septiembre.
- Baptista, R., & Swann, P. (1998). Do firms in clusters innovate more? Research Policy, 27(5), 525-540. https://doi.org/10.1016/ S0048-7333(98)00065-1
- Barasa, L., Knoben, J., Vermeulen, P., Kimuyu, P., & Kinyanjui, B. (2017). Institutions, resources and innovation in East Africa: A firm level approach. *Research Policy*, 46(1), 280-291. https://doi.org/10.1016/j.respol.2016.11.008
- Barge-Gil, A. (2013). Open strategies and innovation performance. *Industry & Innovation*, 20(7), 585-610. https://doi.org/10.1080/13662716.2013.849455

- Bartoloni, E., & Baussola, M. (2001). The determinants of technology adoption in Italian manufacturing industries. *Review of Industrial Organization*, *19*(3), 305-328. https://doi.org/10.1023/A:1011881516500
- Battisti, G., Gallego, J., Rubalcaba, L., & Windrum, P. (2015). Open innovation in services: Knowledge sources, intellectual property rights and internationalization. *Economics of Innovation and New Technology*, 24(3), 223-247. https://doi.org/10.1080/10438599.20 14.924745
- Becheikh, N. (2013). The impact of knowledge acquisition and absorptive capacity on technological innovations in developing countries: Evidence from Egyptian small and medium-sized enterprises. *Journal of African Business*, 14(3), 127-140. https://doi.org/10.1080/15228916.2013.843997
- Becheikh, N., Landry, R., & Amara, N. (2006). Lessons from innovation empirical studies in the manufacturing sector: A systematic review of the literature from 1993–2003. *Technovation*, *26*(5-6), 644-664. https://doi.org/10.1016/j.technovation.2005.06.016
- Belderbos, R. (2001). Overseas innovations by Japanese firms: An analysis of patent and subsidiary data. *Research Policy*, 30(2), 313-332. https://doi.org/10.1016/S0048-7333(99)00120-1
- Benavente, J. M. (2006). The role of research and innovation in promoting productivity in Chile. *Economics of Innovation and New Technology*, *15*(4-5), 301-315. https://doi.org/10.1080/10438590500512794
- Berends, H., Jelinek, M., Reymen, I., & Stultiëns, R. (2014). Product innovation processes in small firms: Combining entrepreneurial effectuation and managerial causation. *Journal of Product Innovation Management*, *31*(3), 616-635. https://doi.org/10.1111/ jpim.12117
- Beugelsdijk, S., & Cornet, M. (2002). "A far friend is worth more than a good neighbour": Proximity and innovation in a small country. *Journal of Management and Governance*, *6*(2), 169-188. https://doi.org/10.1023/A:1015775321949
- Bishop, P., & Wiseman, N. (1999). External ownership and innovation in the United Kingdom. *Applied Economics*, *31*(4), 443-450. https://doi.org/10.1080/000368499324156
- Blundell, R., Griffiths, R., & Van Reenen, J. (1999). Market share, market value and innovation in a panel of British manufacturing firms. *The Review of Economic Studies*, 66(3), 529-554. https://doi.org/10.1111/1467-937X.00097
- Bond, S., Harhoff, D., & Van Reenen, J. (1999). Investment, R&D, and financial constraints in Britain and Germany. Working paper No. 99/4. Institute of Fiscal Studies. https://doi.org/10.1920/ wp.ifs.1999.9905
- Bratti, M., & Felice, G. (2012). Are exporters more likely to introduce product innovations? *The World Economy*, *35*(11), 1559-1598. https://doi.org/10.1111/j.1467-9701.2012.01453.x
- Breschi, S., Malerba, F., & Orsenigo, L. (2000). Technological regimes and Schumpeterian patterns of innovation. *The Economic Journal*, 110(463), 388-410. https://doi.org/10.1111/1468-0297.00530
- Buesa, M., Baumert, T., Heijs, J., & Martínez, M. (2002). Los factores determinantes de la innovación: Un análisis econométrico sobre las regiones españolas. *Economía Industrial*, 347, 67-84. https:// www.mincotur.gob.es/Publicaciones/Publicacionesperiodicas/ EconomiaIndustrial/RevistaEconomiaIndustrial/347/67-84%20 347%20MIKEL%20BUESA.pdf
- Cabral, J., & Traill, W. B. (2001). Determinants of a firm's likelihood to innovate and intensity of innovation in the Brazilian food industry. *Journal on Chain and Network Science*, 1(1), 33-48. https://doi.org/10.3920/JCNS2001.x004

- Camisón, C., Lapiedra, R., Segarra, M., & Boronat, M. (2002). *Meta-análisis de la relación entre tamaño de empresa e innovación*. Instituto Valenciano de Investigaciones Económicas, SA. https://core.ac.uk/download/pdf/7150721.pdf
- Capron, H., & Cincera, M. (2004, noviembre). Industry/University S&T Transfers: What can we learn from Belgian Cis-2 Data? CEPR Discussion Paper N.º 4685. CEPR.
- Card, D., & Krueger, A. (1995). Time-series minimum-wage studies: A meta-analysis. *The American Economic Review*, 85(2), 238-243. http://www.jstor.org/stable/2117925.
- Cassiman, B., & Veugelers, R. (2002). Complementarity in the innovation strategy: Internal R&D, external technology acquisition, and cooperation in R&D. *IESE Business School Working Paper N.º 457*. https://doi.org/10.2139/ssrn.303562
- Cassiman, B., & Veugelers, R. (2006). In search of complementarity in innovation strategy: Internal R&D and external knowledge acquisition. *Management Science*, 52(1), 68-82. https://www.jstor.org/stable/20110484
- Cefis, E. (2010). The impact of M&A on technology sourcing strategies. *Economics of Innovation and New Technology*, 19(1), 27-51. https://doi.org/10.1080/10438590903016385
- Cefis, E., & Marsili, O. (2015). Crossing the innovation threshold through mergers and acquisitions. *Research Policy*, 44(3), 698-710. https://doi.org/10.1016/j.respol.2014.10.010
- Classen, N., Carree, M., Van Gils, A., & Peters, B. (2014). Innovation in family and non-family sMEs: An exploratory analysis. *Small Business Economics*, 42(3), 595-609. https://doi.org/10.1007/s11187-013-9490-z
- Clausen, T. H. (2009). Do subsidies have positive impacts on R&D and innovation activities at the firm level? *Structural Change and Economic Dynamics*, 20(4), 239-253. https://doi.org/10.1016/j.strueco.2009.09.004
- Clausen, T. H., & Pohjola, M. (2013). Persistence of product innovation: Comparing breakthrough and incremental product innovation. *Technology Analysis & Strategic Management, 25*(4), 369-385. https://doi.org/10.1080/09537325.2013.774344
- Cockburn, I., & Henderson, R. (1994). Racing to invest? The dynamics of competition in ethical drug discovery. *Journal of Economics & Management Strategy*, *3*(3), 481-519. https://doi.org/10.1111/j.1430-9134.1994.00481.x
- Cohen, W. M. (2010). Fifty years of empirical studies of innovative activity and performance. En B. H. Hall, & N. Rosenberg (Eds.), *Handbook of the Economics of Innovation* (Vol. 1, pp. 129-213). Elsevier. https://doi.org/10.1016/S0169-7218(10)01004-X
- Conte, A., & Vivarelli, M. (2014). Succeeding in innovation: Key insights on the role of R&D and technological acquisition drawn from company data. *Empirical Economics*, *47*(4), 1317-1340. https://doi.org/10.1007/s00181-013-0779-1
- Corsino, M., Espa, G., & Micciolo, R. (2011). R&D, firm size and incremental product innovation. *Economics of Innovation and New Technology*, 20(5), 423-443. https://doi.org/10.1080/10438599.2011.562354
- Crepon, B., Duguet, E., & Mairessec, J. (1998). Research, Innovation And Productivity: An Econometric Analysis At The Firm Level. *Economics of Innovation and New Technology*, 7(2), 115-158. https://doi.org/10.1080/10438599800000031
- Crespi, G., & Peirano, F. (Mayo, 2007). Measuring innovation in Latin America: What we did, where we are and what we want to do. [Conferencia]. Conference on Micro Evidence on Innovation in Developing Countries (MEIDE I), Maastricht, Países Bajos. https://www.merit.unu.edu/meide/papers/2007/PEIRANO_CRESPI_Measuring%20innovation%20in%20Latin%20America_what%20

- we%20did,%20where%20we%20are%20and%20what%20 we%20want%20to%20do.pdf
- Crespi, G., Giuliodori, D., Giuliodori, R., & Rodriguez, A. (2016). The effectiveness of tax incentives for R&D+i in developing countries: The case of Argentina. *Research Policy*, 45(10), 2023-2035. https://doi.org/10.1016/j.respol.2016.07.006
- Czarnitzki, D., & Kraft, K. (2005). license expenditures of incumbents and potential entrants: An empirical analysis of firm behavior. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.732303
- Damanpour, F. (1991). Organizational innovation: A meta-analysis of effects of determinants and moderators. *Academy of Management Journal*, *34*(3), 555-590. https://doi.org/10.5465/256406
- Damanpour, F. (1992). Organizational size and innovation. *Organization Studies*, 13(3), 375-402. https://doi.org/10.1177/017084069201300304
- Damanpour, F. (2010). An integration of research findings of effects of firm size and market competition on product and process innovations. *British Journal of Management*, *21*(4), 996-1010. https://doi.org/10.1111/j.1467-8551.2009.00628.x
- Damijan, J. P., Kostevc, Č., & Rojec, M. (2011). Innovation and firms' productivity growth in Slovenia: Sensitivity of results to sectoral heterogeneity and to estimation method. En P. Nijkamp & I. Siedschlag (Eds.), *Innovation, Growth and Competitiveness* (pp. 165-193). Springer. https://doi.org/10.1007/978-3-642-14965-8_8
- De Carvalho, G. D., Cruz, J., de Carvalho, H., Duclós, L., & de Fátima Stankowitz, R. (2017). Innovativeness measures: A bibliometric review and a classification proposal. *International Journal of Innovation Science*, *9*(1), 81-101. https://doi.org/10.1108/JJIS-10-2016-0038
- De Propris, L. (2000). Innovation and inter-firm co-operation: The case of the west midlands. *Economics of Innovation and New Technology*, 9(5), 421-446. https://doi.org/10.1080/10438590000000017
- de-Oliveira, F., & Rodil-Marzábal, Ó. (2019). Structural characteristics and organizational determinants as obstacles to innovation in small developing countries. *Technological Forecasting and Social Change*, 140, 306-314. https://doi.org/10.1016/j.techfore.2018.12.021
- Dhingra, S. (2013). Trading away wide brands for cheap brands. *American Economic Review*, 103(6), 2554-2584. https://doi.org/10.1257/aer.103.6.2554
- Dimos, C., & Pugh, G. (2016). The effectiveness of R&D subsidies: A metaregression analysis of the evaluation literature. *Research Policy*, 45(4), 797-815. https://doi.org/10.1016/j.respol.2016.01.002
- Dohnert, S., Crespi, G., & Maffioli, A. (Eds). (2017). Exploring firm-level innovation and productivity in developing countries: The perspective of Caribbean small states. Banco Interamericano de Desarrollo (BID). https://publications.iadb.org/publications/english/document/Exploring-Firm-Level-Innovation-and-Productivity-in-Developing-Countries-The-Perspective-of-Caribbean-Small-States.pdf
- Doran, J., & Jordan, D. (2016). Cross-sectoral differences in the drivers of innovation: Evidence from the Irish community innovation survey. *Journal of Economic Studies*, *43*(5), 719-748. https://doi.org/10.1108/JES-10-2014-0171
- Doran, J., & O'Leary, E. (2016). The innovation performance of Irish and foreign-owned firms: The roles of R&D and networking. *The World Economy*, *39*(9), 1384-1398. https://doi.org/10.1111/twec.12378
- Duran, P., Kammerlander, N., van Essen, M., & Zellweger, T. (2016). Doing more with less: Innovation input and output in family firms. *Academy of Management Journal*, *59*(4), 1224-1264. https://doi.org/10.5465/amj.2014.0424

- Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in metaanalysis detected by a simple, graphical test. *BMJ*, *315*(7109), 629-634. https://doi.org/10.1136/bmj.315.7109.629
- Elshamy, H. (2015). The impact of firm size on innovative activity: An analysis based on Egyptian firm data. *International Journal of Business and Technopreneurship*, 5(3), 397-406. https://caf.journals.ekb.eg/article_154782_2beec991fa65e25158a41ff7c 88cd387.pdf
- Eriksson, T., Qin, Z., & Wang, W. (2014). Firm-level innovation activity, employee turnover and HRM practices—Evidence from Chinese firms. *China Economic Review*, *30*, 583-597. https://doi.org/10.1016/j.chieco.2014.02.005
- Fassio, C. (2015). how similar is innovation in German, Italian and Spanish medium-technology sectors? Implications for the sectoral systems of innovation and distance-to-the-frontier perspectives. *Industry and Innovation*, *22*(2), 102-125. https://doi.org/10.108 0/13662716.2015.1033160
- Fitjar, R. D., & Rodríguez-Pose, A. (2015). Networking, context and firm-level innovation: Cooperation through the regional filter in Norway. *Geoforum*, *63*, 25-35. https://doi.org/10.1016/j.geoforum.2015.05.010
- Fitjar, R. D., Gjelsvik, M., & Rodríguez-Pose, A. (2013). The combined impact of managerial and relational capabilities on innovation in firms. *Entrepreneurship & Regional Development*, 25(5-6), 500-520. https://doi.org/10.1080/08985626.2013.798353
- Fontana, R., & Guerzoni, M. (2008). Incentives and uncertainty: An empirical analysis of the impact of demand on innovation. *Cambridge Journal of Economics*, *32*(6), 927-946. https://doi.org/10.1093/cje/ben021
- Forés, B., & Camisón, C. (2016). Does incremental and radical innovation performance depend on different types of knowledge accumulation capabilities and organizational size? *Journal of Business Research*, 69(2), 831-848. https://doi.org/10.1016/j.jbusres.2015.07.006
- Foster, L., Grim, C., & Zolas, N. J. (2016). A portrait of firms that invest in R&D. *SSRN Electronic Journal*. https://doi.org/10.2139/ssrn.2845982
- François, J. P., Favre, F., & Negassi, S. (2002). Competence and organization: Two drivers of innovation. *Economics of Innovation and New Technology*, *11*(3), 249-270. https://doi.org/10.1080/10438590210906
- Freel, M. S. (2003). Sectoral patterns of small firm innovation, networking and proximity. *Research Policy*, 32(5), 751-770. https://doi.org/10.1016/S0048-7333(02)00084-7
- Fritsch, M., & Meschede, M. (2001). Product innovation, process innovation, and size. *Review of Industrial Organization*, *19*(3), 335-350. https://doi.org/10.1023/A:1011856020135
- Fu, X., Mohnen, P., & Zanello, G. (2018). Innovation and productivity in formal and informal firms in Ghana. *Technological Forecasting* and Social Change, 131, 315-325. https://doi.org/10.1016/j. techfore.2017.08.009
- Galindo, L. M., Samaniego, J., Alatorre, J. E., Ferrer Carbonell, J., & Reyes, O. (2015). Meta-análisis de las elasticidades ingreso y precio de la demanda de gasolina: Implicaciones de política pública para América Latina. *Revista CEPAL*, 117, 7-25. https://repositorio.cepal.org/bitstream/handle/11362/39463/REV117_Galindo_et_al.pdf
- Ganau, R., & Di Maria, E. (2014). Determinants of technological innovation in SMEs. Firm-level factors, agglomeration economies and the role of KIBS providers. *ERSA conference papers*, European Regional Science Association. https://www.econstor.eu/ handle/10419/124398

- Ganotakis, P., & Love, J. H. (2011). R&D, product innovation, and exporting: Evidence from UK new technology based firms. *Oxford Economic Papers*, *63*(2), 279-306. https://doi.org/10.1093/oep/gpq027
- Ganter, A., & Hecker, A. (2013). Persistence of innovation: Discriminating between types of innovation and sources of state dependence. *Research Policy*, *42*(8), 1431-1445. https://doi.org/10.1016/j.respol.2013.04.001
- Gelabert, L., Fosfuri, A., & Tribó, J. A. (2009). Does the effect of public support for R&D depend on the degree of appropriability? *The Journal of Industrial Economics*, *57*(4), 736-767. https://doi.org/10.1111/j.1467-6451.2009.00396.x
- Goedhuys, M., & Veugelers, R. (2012). Innovation strategies, process and product innovations and growth: Firm-level evidence from Brazil. *Structural Change and Economic Dynamics*, *23*(4), 516-529. https://doi.org/10.1016/j.strueco.2011.01.004
- González, X., Miles-Touya, D., & Pazó, C. (2016). R&D, worker training and innovation: Firm-level evidence. *Industry and Innovation*, *23*(8), 694-712. https://doi.org/10.1080/13662716.2016.120 6463
- Greve, H. R. (2003). A behavioral theory of R&D expenditures and innovations: Evidence from shipbuilding. *Academy of Management Journal*, 46(6), 685-702. https://doi.org/10.5465/30040661
- Gussoni, M., & Mangani, A. (2012). L'impatto del supporto pubblico sulla spesa in R&S: L'influenza della cooperazione e dell'appropriabilità dei risultati. *L'industria*, (2), 237-254. https://doi.org/10.1430/37674
- Hall, B. H., & Mairesse, J. (2006). Empirical studies of innovation in the knowledge-driven economy. *Economics of Innovation and New Technology*, 15(4-5), 289-299. https://doi.org/10.1080/10438590500512760
- Hall, B. H., & Ziedonis, R. H. (2001). The patent paradox revisited: An empirical study of patenting in the U.S. semiconductor industry, 1979-1995. *The RAND Journal of Economics*, *32*(1), 101-128. https://doi.org/10.2307/2696400
- Hall, B., Jaffe, A., & Trajtenberg, M. (2001). *The NBER patent citation data File: Lessons, insights and methodological tools* [Documento interno de trabajo n.° 8498]. National Bureau of Economic Research. https://doi.org/10.3386/w8498
- Hao, K. Y., & Jaffe, A. B. (1993). Effect of liquidity on firms' R&D spending. *Economics of Innovation and New Technology*, 2(4), 275-282. https://doi.org/10.1080/10438599300000008
- Harris, M. N., Rogers, M., & Siouclis, A. (2003). Modelling firm innovation using panel probit estimators. *Applied Economics Letters*, *10*(11), 683-686. https://doi.org/10.1080/1350485032000138999
- Herstad, S. J., & Sandven, T. (2014). Marked for life? On researcher involvement at infancy and the innovative capabilities of survivor firms. *Applied Economics Letters*, *21*(17), 1210-1213. https://doi.org/10.1080/13504851.2014.920464
- Herstad, S. J., Sandven, T., & Ebersberger, B. (2015). Recruitment, knowledge integration and modes of innovation. *Research Policy*, 44(1), 138-153. https://doi.org/10.1016/j.respol.2014.06.007
- Himmelberg, H., & Petersen, B. (1994). R&D and internal finance: A panel study of small firms in high-tech industries. *The Review of Economics and Statistics*, *76*(1), 38-51. https://doi.org/10.2307/2109824
- Hitt, M. A., Hoskisson, R. E., & Kim, H. (1997). International diversification: Effects on innovation and firm performance in product-diversified firms. *Academy of Management Journal*, 40(4), 767-798. https://doi.org/10.5465/256948

- Hoelz Pinto, A. M., & Lage de Souza, F. (2015). Competition and innovation in the Caribbean. En S. Dohnert, G. Crespi, & A. Maffioli (Eds.), Exploring firm-level innovation and productivity in developing countries: The perspective of Caribbean small states (pp. 45-63). BID. http://dx.doi.org/10.18235/0000616
- Honig-Haftel, S., & Martin, L. R. (1993). The effectiveness of reward systems on innovative output: An empirical analysis. *Small Business Economics*, 5(4), 261-269. https://doi.org/10.1007/BF01516247
- Jaramillo, H., Lugones, F., & Salazar, M. (2001). Normalización de indicadores de innovación tecnológica en América Latina y el Caribe: manual de Bogotá (N.º Doc. 21557). Red Iberoamericana de Indicadores de Ciencia y Tecnología (RICYT), Organización de Estados Americanos (OEA) y Programa CYTED. http://www.ricyt.org/wpcontent/uploads/2019/09/bogota-1.pdf
- Kampik, F., & Dachs, B. (2011). The innovative performance of German multinationals abroad: Evidence from the European community innovation survey. *Industrial and Corporate Change*, 20(2), 661-681. https://doi.org/10.1093/icc/dtr008
- Kang, K. H., & Kang, J. (2010). Does partner type matter in R&D collaboration for product innovation? *Technology Analysis & Strategic Management*, 22(8), 945-959. https://doi.org/10.1080/09537325.2010.520473
- Keupp, M. M., & Gassmann, O. (2013). Resource constraints as triggers of radical innovation: Longitudinal evidence from the manufacturing sector. *Research Policy*, 42(8), 1457-1468. https://doi. org/10.1016/j.respol.2013.04.006
- Knott, A. M., & Vieregger, C. (2016). Reconciling the firm size and innovation puzzle. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2756232
- Kochhar, R., & David, P. (1996). Institutional investors and firm innovation: A test of competing hypotheses. *Strategic Management Journal*, 17(1), 73-84. https://doi.org/10.1002/(SICI)1097-0266(199601)17:1<73::AID-SMJ795>3.0.CO;2-N
- Krassoi, E., & Stanley, T. D. (2009). Efficiency wages, productivity and simultaneity: A meta-regression analysis. *Journal of Labor Research*, 30(3), 262-268. https://doi.org/10.1007/s12122-009-9066-5
- Leal-Rodríguez, A. L., Eldridge, S., Roldán, J. L., Leal-Millán, A. G., & Ortega-Gutiérrez, J. (2015). Organizational unlearning, innovation outcomes, and performance: The moderating effect of firm size. *Journal of Business Research*, *68*(4), 803-809. https://doi.org/10.1016/j.jbusres.2014.11.032
- Leiblein, M. J., & Madsen, T. L. (2009). Unbundling competitive heterogeneity: Incentive structures and capability influences on technological innovation. *Strategic Management Journal*, *30*(7), 711-735. https://doi.org/10.1002/smj.746
- Lerner, J., & Wulf, J. (2007). Innovation and incentives: Evidence from corporate R&D. *The Review of Economics and Statistics*, 89(4), 634-644. https://doi.org/10.1162/rest.89.4.634
- Liu, X., & Buck, T. (2007). Innovation performance and channels for international technology spillovers: Evidence from Chinese hightech industries. *Research Policy*, 36(3), 355-366. https://doi. org/10.1016/j.respol.2006.12.003
- López, A., & Orlicki, E. (2006). ¿Quién patenta en la Argentina? Un análisis econométrico para el sector manufacturero. En Anales de sistemas de propiedad intelectual y gestión tecnológica en economías abiertas: una visión estratégica para América Latina y el Caribe. OMPI-CEPAL. https://aaep.org.ar/anales/works06/Lopez_Orlicki.pdf
- Losada-Otárola, M., & Zuluaga, J., C. (2013). Derramamientos sectoriales de conocimiento e innovación en la industria manufacturera colombiana: Un análisis multinivel. *Innovar*, 23(47), 19-32.

- https://revistas.unal.edu.co/index.php/innovar/article/view/40240/42092
- Love, J. H., & Ashcroft, B. (1999). Market versus corporate structure in plant-level innovation performance. *Small Business Economics*, *13*(2), 97-109. https://doi.org/10.1023/A:1008182504928
- Love, J. H., & Roper, S. (1999). The determinants of innovation: R&D, technology transfer and networking effects. *Review of Industrial Organization*, *15*(1), 43-64. https://doi.org/10.1023/A:1007757110963
- Love, J. H., Ashcroft, B., & Dunlop, S. (1996). Corporate structure, ownership and the likelihood of innovation. *Applied Economics*, 28(6), 737-746. https://doi.org/10.1080/000368496328489
- Machikita, T., Miyahara, S., Tsuji, M., & Ueki, Y. (2009). Linked versus non-linked firms in innovation: The effect of economies of network in East Asia. En K. Limskul (Ed.), *Development of Regional Production and Logistic Networks in East Asia* (pp. 250-325). Economic Research Institute for ASEAN and East Asia. https://www.eria.org/uploads/media/Research-Project-Report/RPR_FY2008_4-1_Chapter_5.pdf
- MacPherson, A. D. (1998). Academic-industry linkages and small firm innovation: Evidence from the scientific instruments sector. Entrepreneurship & Regional Development, 10(4), 261-276. https:// doi.org/10.1080/08985629800000015
- Mairesse, J., & Mohnen, P. (2010). Using innovation surveys for econometric analysis. En B. H. Hall, & N. Rosenberg (Eds.), *Handbook of the Economics of Innovation* (Vol. 2, pp. 1129-1155). https://doi.org/10.1016/S0169-7218(10)02010-1
- Malerba, F., Orsenigo, L., & Peretto, P. (1997). Persistence of innovative activities, sectoral patterns of innovation and international technological specialization. *International Journal of Industrial Organization*, 15(6), 801-826. https://doi.org/10.1016/S0167-7187(97)00012-X
- Maré, D. C., Fabling, R., & Stillman, S. (2014). Innovation and the local workforce. *Papers in Regional Science*, *93*(1), 183-201. https://doi.org/10.1111/j.1435-5957.2012.00479.x
- Marín, A., & Petralia, S. (2018). Sources and contexts of inter-industry differences in technological opportunities: The cases of Argentina and Brazil. *Innovation and Development*, 8(1), 29-57. https://doi.org/10.1080/2157930x.2018.1429191
- Marín, A., Liseras, N., Calá, C. D., & Graña, F. M. (2017). Oportunidades de innovación divergentes: ¿es el territorio importante? *Pymes, Innovación y Desarrollo, 5*(1), 2-23. https://revistas.unc.edu.ar/index.php/pid/article/view/18475
- Martinez-Ros, E. (1999). Explaining the decisions to carry out product and process innovations: The Spanish case. *The Journal of High Technology Management Research*, *10*(2), 223-242. https://doi.org/10.1016/S1047-8310(99)00016-4
- Montoya-Weiss, M. M., & Calantone, R. (1994). Determinants of new product performance: A review and meta-analysis. *Journal of Product Innovation Management*, *11*(5), 397-417. https://doi.org/10.1111/1540-5885.1150397
- Morris, D. (2015). Access to financing and innovation in Caribbean firms. En S. Dohnert, G. Crespi, & A. Maffioli (Eds.), *Exploring firm-level innovation and productivity in developing countries: The perspective of Caribbean small states* (pp. 29-45). BID. http://doi.org/10.18235/0000616
- Mothe, C., Nguyen-Thi, U. T., & Nguyen-Van, P. (2015a). Assessing complementarity in organizational innovations for technological innovation: The role of knowledge management practices. *Applied Economics*, 47(29), 3040-3058. https://doi.org/10.1080/0003 6846.2015.1011320

- Mothe, C., Nguyen-Thi, U. T., & Nguyen-Van, P. (2015b). Complementarities in organizational innovation practices: Evidence from French industrial firms. *Economics of Innovation and New Technology*, 24(6), 569-595. https://doi.org/10.1080/10438599.2014.949
- Negassi, S. (2004). R&D co-operation and innovation a microeconometric study on French firms. *Research Policy*, *33*(3), 365-384. https://doi.org/10.1016/j.respol.2003.09.010
- Nelson, J. P., & Kennedy, P. E. (2009). The use (and abuse) of metaanalysis in environmental and natural resource economics: An assessment. *Environmental and Resource Economics*, 42(3), 345-377. https://doi.org/10.1007/s10640-008-9253-5
- Nelson, R. R. (1991). Why do firms differ, and how does it matter? Strategic Management Journal, 12(S2), 61-74. https://doi.org/10.1002/smj.4250121006
- Nelson, R. R., & Winter, S. G. (1982). An evolutionary theory of economic change. Harvard University Press.
- Nieto, M. J., Santamaria, L., & Fernandez, Z. (2015). Understanding the innovation behavior of family firms. *Journal of Small Business Management*, *53*(2), 382-399. https://doi.org/10.1111/jsbm.12075
- Nooteboom, B., Van Haverbeke, W., Duysters, G., Gilsing, V., & van den Oord, A. (2007). Optimal cognitive distance and absorptive capacity. *Research Policy*, *36*(7), 1016-1034. https://doi.org/10.1016/j.respol.2007.04.003
- Organización para la Cooperación y el Desarrollo Económicos (OECD). (1992). *Manual de Oslo*. OCDE. https://www.oecd.org/science/inno/2367614.pdf
- Petruzzelli, A., Ardito, L., & Savino, T. (2018). Maturity of knowledge inputs and innovation value: The moderating effect of firm age and size. *Journal of Business Research*, *86*, 190-201. https://doi.org/10.1016/j.jbusres.2018.02.009
- Pradhan, J. P. (2003). Liberalization, firm size and R&D performance: A firm level study of Indian pharmaceutical industry. *Journal of Indian School of Political Economy*, *14*(4), 647-666. http://ssrn.com/abstract=1515681
- Raymond, W., Mohnen, P., Palm, F., & van der Loeff, S. S. (2010). Persistence of innovation in Dutch manufacturing: Is it spurious? *The Review of Economics and Statistics*, *92*(3), 495-504. https://doi.org/10.1162/REST_a_00004
- Reichstein, T., & Salter, A. (2006). Investigating the sources of process innovation among UK manufacturing firms. *Industrial and Corporate Change*, *15*(4), 653-682. https://doi.org/10.1093/icc/dtl014
- Reichstein, T., Salter, A. J., & Gann, D. M. (2008). Break on through: Sources and determinants of product and process innovation among UK construction firms. *Industry & Innovation*, *15*(6), 601-625. https://doi.org/10.1080/13662710802565198
- Roper, S., & Hewitt-Dundas, N. (2015). Knowledge stocks, knowledge flows and innovation: Evidence from matched patents and innovation panel data. *Research Policy*, 44(7), 1327-1340. https://doi.org/10.1016/j.respol.2015.03.003
- Rosenbusch, N., Brinckmann, J., & Bausch, A. (2011). Is innovation always beneficial? A meta-analysis of the relationship between innovation and performance in smes. *Journal of Business Venturing*, *26*(4), 441–457. https://doi.org/10.1016/j.jbusvent.2009.12.002
- Rouvinen, P. (2004). Is technology policy practised as it is preached? Finnish evidence. Finnish Economic Papers, 17(2), 51-61. http://hdl.handle.net/1814/3556
- Sadowski, B. M., & Sadowski-Rasters, G. (2006). On the innovativeness of foreign affiliates: Evidence from companies in The Netherlands.

- Research Policy, 35(3), 447-462. https://doi.org/10.1016/j.respol.2006.01.003
- Sakakibara, M., & Branstetter, L. (1999). Do stronger patents induce more innovation? Evidence from the 1988 Japanese patent law reforms. Working paper 7066. https://doi.org/10.3386/w7066
- Salomon, R. M., & Shaver, J. M. (2005). Learning by exporting: New insights from examining firm innovation. *Journal of Economics & Management Strategy*, *14*(2), 431-460. https://doi.org/10.1111/j.1530-9134.2005.00047.x
- Schumpeter, J. A. (1935). The analysis of economic change. *The Review of Economics and Statistics*, 17(4), 2-10. https://doi.org/10.2307/1927845
- Schumpeter, J. A. (1942). *Capitalism, socialism and democracy*. Harper & Brothers.
- Segarra-Blasco, A., Garcia-Quevedo, J., & Teruel-Carrizosa, M. (2008). Barriers to innovation and public policy in Catalonia. *International Entrepreneurship and Management Journal*, *4*(4), 431-451. https://doi.org/10.1007/s11365-008-0086-z
- Sequeira, T., & Neves, P. (2020). Stepping on toes in the production of knowledge: A meta-regression analysis. *Applied Economics*, 52(3), 260-274 https://doi.org/10.1080/00036846.2019.1644447
- Sharma, S. (2007). Financial Development And Innovation In Small Firms.
 World Bank Group. https://doi.org/10.1596/1813-9450-4350
- Shefer, D., & Frenkel, A. (2005). R&D, firm size and innovation: An empirical analysis. *Technovation*, 25(1), 25-32. https://doi. org/10.1016/S0166-4972(03)00152-4
- Sorensen, J. B., & Stuart, T. E. (2000). Aging, obsolescence, and organizational innovation. Administrative Science Quarterly, 45(1), 81-112. https://doi.org/10.2307/2666980
- Srholec, M. (2010). A multilevel approach to geography of innovation. *Regional Studies*, 44(9), 1207-1220. https://doi.org/10.1080/00343400903365094
- Stanley, T. D. (2001). Wheat from chaff: Meta-analysis as quantitative literature review. *Journal of Economic Perspectives*, *15*(3), 131-150. https://doi.org/10.1257/jep.15.3.131
- Stanley, T. D. (2005). Beyond publication bias. *Journal of Economic Surveys*, *19*(3), 309-345. https://doi.org/10.1111/j.0950-0804.2005.00250.x
- Stanley, T. D., & Doucouliagos, H. (2012). *Meta-regression analysis in economics and business*. Routledge.
- Stanley, T. D., & Doucouliagos, H. (2014). Meta-regression approximations to reduce publication selection bias. *Research Synthesis Methods*, *5*(1), 60-78. https://doi.org/10.1002/jrsm.1095
- Stanley, T. D., & Doucouliagos, H. (2017). Neither fixed nor random: Weighted least squares meta-regression. *Research Synthesis Methods*, 8(1), 19-42. https://doi.org/10.1002/jrsm.1211
- Sterne, J., & Egger, M. (2001). Funnel plots for detecting bias in metaanalysis: Guidelines on choice of axis. *Journal of Clinical Epi*demiology, 54(10), 1046-1055. https://doi.org/10.1016/ S0895-4356(01)00377-8
- Sterne, J., Sutton, A. J., Ioannidis, J., Terrin, N., Jones, D., Lau, J., Carpenter, J., Rücker, G., Harbord, R. M., Schmid, C. H., Tetzlaff, J., Deeks, J. J., Peters, J., Macaskill, P., Schwarzer, G., Duval, S., Altman, D. G., Moher, D., & Higgins, J. P. T. (2011). Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. *BMJ*, 343, d4002. https://doi.org/10.1136/bmj.d4002
- Stroup, D. F., Berlin, J. A., Morton, S. C., Olkin, I., Williamson, D., Rennie, D., Moher, D., Becker, B. J., Sipe, T. A., & Thacker, S. (2000). Meta-analysis of observational studies in epidemiology. A proposal for

- reporting. *JAMA*, *283*(15), 2008-2012. https://doi.org/10.1001/jama.283.15.2008
- Stuart, T. (1999). A structural perspective on organizational innovation. *Industrial and Corporate Change*, 8(4), 745-775. https://doi. org/10.1093/icc/8.4.745
- Sutton, A J, Duval, S., Tweedie, R. L., Abrams, K. R., & Jones, D. R. (2000). Empirical assessment of effect of publication bias on metaanalyses. *BMJ*, 320(7249), 1574-1577. https://doi.org/10.1136/ bmj.320.7249.1574
- Sutton, A. J., & Higgins, J. P. T. (2008). Recent developments in metaanalysis. *Statistics in Medicine*, *27*(5), 625-650. https://doi. org/10.1002/sim.2934
- Tavassoli, S., & Karlsson, C. (2015). Persistence of various types of innovation analyzed and explained. *Research Policy*, 44(10), 1887-1901. https://doi.org/10.1016/j.respol.2015.06.001
- Tello, M. D. (2015). Firms' innovation, public financial support, and total factor productivity: The case of manufactures in Peru. *Review of Development Economics*, 19(2), 358-374. https://doi.org/10.1111/rode.12147
- Teplov, R., Albats, E., & Podmetina, D. (2019). What does open innovation mean? Busines versus academic perceptions. *International Journal of Innovation Management*, 23(1), 1-33. https://doi.org/10.1142/S1363919619500026
- Tether, B. S., & Bascavusoglu-Moreau, E. (2012). A different path to growth? Service innovation and performance amongst uk manufacturers. Centre for Business Research, University of Cambridge.
- Ugur, M., Awaworyi, S., & Solomon, E. (2016). Technological innovation and employment in derived labour demand models: A hierarchical meta-regression analysis. *Journal of Economic Surveys*, *32*(1), 50-82. https://doi.org/10.1111/joes.12187
- Ugur, M., Trushin, E., Solomon, E., & Guidi, F. (2015). R&D and productivity in OECD firms and industries: A hierarchical meta-regression analysis. *SSRN Electronic Journal*. https://doi.org/10.2139/ssrn.2693943
- van Beers, C., & Sadowski, B. M. (2003). On the relationship between acquisitions, divestitures, and innovations: An explorative study. *Journal of Industry, Competition and Trade, 3*(1-2), 131-143. https://doi.org/10.1023/A:1025486722201
- Van Beveren, I., & Vandenbussche, H. (2010). Product and process innovation and firms' decision to export. *Journal of Economic Policy Reform*, 13(1), 3-24. https://doi.org/10.1080/17487870903546267
- Van Leeuwen, G., & Klomp, L. (2006). On the contribution of innovation to multi-factor productivity growth. *Economics of Innovation and New Technology*, *15*(4-5), 367-390. https://doi.org/10.1080/10438590500512927
- Veugelers, R., & Cassiman, B. (2005). R&D cooperation between firms and universities. Some empirical evidence from Belgian manufacturing. *International Journal of Industrial Organization*, *23*(5-6), 355-379. https://doi.org/10.1016/j.ijindorg.2005.01.008
- Viechtbauer, W. (2007). Hypothesis tests for population heterogeneity in meta-analysis. *British Journal of Mathematical and Statistical Psychology*, 60(1), 29-60. https://doi.org/10.1348/000711005X64042
- Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. *Journal of Statistical Software*, *36*(3), 1-48. https://doi.org/10.18637/jss.v036.i03
- Wooldridge, J. M. (2002). Econometric analysis of cross section and panel data. MIT press.
- Wörter, M. (2007). Driving forces for research and development strategies: An empirical analysis based on firm-level panel

- data. KOF Working Papers, 184. https://doi.org/10.3929/ethz-a-005510829
- Zoghi, C., Mohr, R. D., & Meyer, P. B. (2010). Workplace organization and innovation. *Canadian Journal of Economics*, *43*(2), 622-639. https://doi.org/10.1111/j.1540-5982.2010.01586.x
- Zuluaga Jiménez, J. C., Sánchez Manchola, I. D., & Barrios Aguirre, F. (2012). Ambiente regional y desempeño innovador de las firmas. Una propuesta de análisis multinivel. *Estudios Gerenciales*, *28*(Edición Especial), 169-189. https://doi.org/10.18046/j. estger.2012.1484

ANEXO

Anexo 1. Estudios incluidos en el metaanálisis.

Referencia	Estimaciones	País	Periodo	Tamaño de la muestra	Medida de innovación	Medida de tamaño	Conclusión sobre el efecto de tamaño
Aboal y Garda (2016)	10	Uruguay	2004-2009	1.328	AI; resultados obtenidos	Ocupados	Positivo
Ahuja (2000)	11	Internacional	1982-1992	996	Resultados obtenidos	Ocupados	Positivo
Ahuja y Katila (2001)	6	Internacional	1980-1991	598	Resultados obtenidos	Ocupados	Positivo
Allred y Park (2007)	5	Economías desarrolladas	1990-2000	1.081	Recursos invertidos	Ventas	Positivo
Almeida et al. (2011)	10	EE. UU. y Europa	1990-2003	971	Resultados obtenidos	Ocupados	Positivo
Aristizabal-Ramirez et al. (2017)	20	Economías emergentes	2006-2013	9.101	Resultados obtenidos	Ocupados	Positivo
Arvanitis (2008)	2	Suiza	1997-1999	595	Resultados obtenidos	Ocupados	Positivo
Aschhoff y Schmidt (2008)	8	Alemania	2001-2004	699	Resultados obtenidos	Ocupados	Nulo
Audretsch (1995)	7	EE.UU.	1975-1982	81	Resultados obtenidos	Ventas	Negativo; nulo
Bachmann et al. (2016)	3	Argentina	2002-2004	1.241	Resultados obtenidos	Ocupados	Negativo
Baptista y Swann (1998)	11	Reino Unido	1975-1982	1.984	Resultados obtenidos	Ventas	Positivo
Barasa et al. (2016)	11	Kenya, Tan- zania y Uganda	2010-2012	1.541	Resultados obtenidos	Ocupados	Nulo
Barge-Gil (2013)	6	España	2004-2008	14.576	Resultados obtenidos	Ocupados	Negativo
Bartoloni y Baussola (2001)	1	Italia	1990-1992	13.334	Resultados obtenidos	Ocupados	Positivo
Battisti et al. (2015)	16	Europa	2002-2004	173	Resultados obtenidos	Ocupados	Positivo; nulo
Becheikh (2013)	1	Egipto	2009	2.132	Resultados obtenidos	Ocupados	Positivo
Belderbos (2001)	2	Japón	1990-1993	194	Resultados obtenidos	Ventas	Positivo
Benavente (2006)	15	Chile	1997-1998	197	AI; recursos invertidos; resultados obtenidos	Ocupados	Nulo
Beugelsdijk y Cornet (2002)	6	Alemania	1996	1.510	Resultados obtenidos	Ocupados	Negativo
Bishop y Wiseman (1999)	3	Reino Unido	1996	320	AI; resultados obtenidos	Ocupados	Positivo
Blundell et al. (1999)	9	Reino Unido	1972-1982	2.943	Resultados obtenidos	Ventas	Positivo
Bond et al. (1999)	2	Alemania y Reino Unido	1985-1994	218	Al	Ventas	Positivo
Bratti y Felice (2011)	7	Italia	2001-2003	1.635	Resultados obtenidos	Ocupados	Nulo
Cabral y Traill (2001)	4	Brasil	1994-1996	132	Resultados obtenidos	Ocupados	Positivo
Capron y Cincera (2004)	4	Bélgica	1998	1.204	Resultados obtenidos	Ocupados	Positivo
Cassiman y Veugelers (2002)	9	Bélgica	1993	316	Resultados obtenidos	Ocupados	Negativo
Cassiman y Veugelers (2006)	15	Bélgica	1993	269	AI; resultados obtenidos	Ventas	Varios

Referencia	Estimaciones	País	Periodo	Tamaño de la muestra	Medida de innovación	Medida de tamaño	Conclusión sobre el efecto de tamaño
Cefis (2010)	13	Alemania	1998-2002	4.604	Al	Ocupados	Negativo; nulo
Cefis y Marsili (2015)	8	Países Bajos	1994-2002	513	Resultados obtenidos	Ocupados	Nulo
Classen et al. (2014)	4	Alemania	2006	1.067	AI; recursos invertidos; resultados obtenidos	Ocupados	Positivo
Clausen (2009)	8	Noruega	1999-2001	1.019	Recursos invertidos	Ocupados	Positivo; nulo
Clausen y Pohjola (2013)	6	Noruega	1998-2006	1.644	Resultados obtenidos	Ocupados	Varios
Cockburn y Henderson (1994)	3	EE. UU. y Europa	1993	171	Recursos invertidos	Ventas	Nulo
Conte y Vivarelli (2014)	13	Italia	2002	2.247	Recursos invertidos; resultados obtenidos	Ocupados	Varios
Corsino et al. (2011)	4	Internacional	1999-2004	564	Resultados obtenidos	Ocupados	Positivo
Crepon et al. (1998)	8	Francia	1990	4.164	AI; resultados obtenidos	Ocupados	Nulo
Crespi et al. (2016)	21	Argentina	1998-2004	2.083	Recursos invertidos	Ventas	Positivo
Czarnitzki y Kraft (2005)	6	Alemania	1992-1995	1.915	Recursos invertidos	Ocupados	Positivo
Damijan et al. (2011)	3	Eslovenia	1996-2002	4.947	AI; recursos invertidos; resultados obtenidos	Ocupados	Positivo
De Propris (2000)	1	Reino Unido	1994-1996	270	Resultados obtenidos	Ocupados	Nulo
Dhingra (2013)	8	Tailandia	2003-2006	413	Resultados obtenidos	ambos	Nulo
Doran y Jordan (2016)	9	Irlanda	2004-2006	591	Resultados obtenidos	Ocupados	Positivo
Doran y O'Leary (2016)	4	Irlanda	2006-2008	522	Resultados obtenidos	Ocupados	Nulo
Elshamy (2015)	1	Egipto	2010-2012	70	Resultados obtenidos	Ocupados	Positivo
Eriksson et al. (2014)	8	China	2011	564	AI; resultados obtenidos	Ocupados	Positivo
Fassio (2015)	3	Alemania, Es- paña e Italia	2002-2004	2.126	Recursos invertidos	Ventas	Negativo
Fitjar et al. (2013)	4	Noruega	2010	1.602	Resultados obtenidos	Ocupados	Positivo
Fitjar y Rodríguez-Pose (2015)	8	Noruega	2010	1.602	Resultados obtenidos	Ocupados	Positivo
Fontana y Gueronzi (2008)	1	Europa	2000	486	Resultados obtenidos	Ocupados	Positivo
Foster et al. (2016)	10	EE. UU.	2005-2010	7.223.000	AI; recursos invertidos	Ocupados	Positivo
François et al. (2002)	4	Francia	1990-1996	3.906	Resultados obtenidos	Ocupados	Positivo
Freel (2003)	8	Reino Unido	2001	90	Resultados obtenidos	Ocupados	Positivo
Fritsch y Meschede (2001)	5	Alemania	1995	627	Recursos invertidos	Ocupados	Nulo
Fu et al. (2018)	5	Ghana	2010-2013	501	Resultados obtenidos	Ocupados	Nulo
Ganau y Di Maria (2014)	24	Italia	2004-2006	2911	Resultados obtenidos	Ocupados	Positivo
Ganotakis y Love (2011)	2	Reino Unido	2004	314	Resultados obtenidos	Ocupados	Positivo
Ganter y Hecker (2013)	8	Alemania	2002-2008	984	Resultados obtenidos	Ocupados	Nulo
Gelabert et al. (2009)	7	España	2000-2005	4.008	Recursos invertidos	Ocupados	Nulo

INNOVAR

Referencia	Estimaciones	País	Periodo	Tamaño de la muestra	Medida de innovación	Medida de tamaño	Conclusión sobre el efecto de tamaño
Goedhuys y Veugelers (2012)	4	Brasil	2000-2002	1.563	Resultados obtenidos	Ocupados	Nulo
González et al. (2016)	2	España	2001-2011	9.462	Resultados obtenidos	Ocupados	Nulo
Greve (2003)	8	Japón	1971-1996	147	Recursos invertidos; resultados obtenidos	Ocupados	Positivo
Gussoni y Mangani (2012)	8	Alemania y España	1998-2000	1.703	Recursos invertidos	Ocupados	Nulo
Hall et al. (1999)	6	Japón, Francia y EE.UU.	1978-1989	2.652	Recursos invertidos	Ventas	Positivo
Hall y Ziedonis (2001)	6	EE. UU.	1979-1995	164	Resultados obtenidos	Ocupados	Positivo
Hao y Jaffe (1993)	13	Internacional	1973-1988	321	Recursos invertidos	Ventas	Positivo
Harris et al. (2003)	4	Australia	1995-1998	11.271	Resultados obtenidos	Ocupados	Positivo
Herstad et al. (2015)	15	Noruega	2006-2008	1.230	AI; resultados obtenidos	Ocupados	Nulo
Herstad y Sandven (2014)	4	Noruega	2008-2010	616	Resultados obtenidos	Ocupados	Nulo
Himmelberg y Petersen (1994)	13	Internacional	1983-1987	368	Recursos invertidos	Ventas	Positivo
Hitt et al. (1997)	2	Internacional	1988-1990	293	Recursos invertidos	Ventas	Positivo
Hoelz Pinto y Lage de Sousa (2015)	24	Caribe	2010-2014	3.644	AI; recursos invertidos; resultados obtenidos	Ocupados	Nulo
Honig Haftel (1993)	8	EE. UU.	1983-1988	28	Resultados obtenidos	Ocupados	Positivo
Kampik y Dachs (2011)	4	Europa	2002-2004	1.718	Recursos invertidos; resultados obtenidos	Ocupados	Positivo
Kang y Kang (2010)	3	Corea del Sur	2005	1.353	Resultados obtenidos	Ocupados	Positivo
Keupp y Gassmann (2013)	4	Suiza	1990-2008	1.476	Resultados obtenidos	Ocupados	Nulo
Knott y Vieregger (2016)	2	EE. UU.	2008-2011	2.030	Recursos invertidos	ambos	Positivo
Kochhar y David (1996)	4	NASDAQ	1989	99	Resultados obtenidos	Ventas	Positivo
Leiblein y Madsen (2009)	5	Internacional	1990-1999	2.599	Resultados obtenidos	Ventas	Nulo
Lerner y Wulf (2007)	4	Internacional	1987-1997	177	Resultados obtenidos	Ventas	Positivo
Liu y Buck (2007)	3	China	1997-2002	126	Resultados obtenidos	Ocupados	Positivo
López y Orlicki (2006)	4	Argentina	1992-2000	1.286	Resultados obtenidos	Ocupados	Nulo
Losada-Otálora y Zuluaga (2012)	1	Colombia	2004	4.780	Resultados obtenidos	Ocupados	Positivo
Love et al. (1996)	4	Escocia	1992	318	AI; resultados obtenidos	Ocupados	Nulo
Love y Ashcroft (1999)	3	Escocia	1993	304	Resultados obtenidos	Ocupados	Positivo
Love y Roper (1999)	4	Reino Unido	1995	576	Resultados obtenidos	Ocupados	Positivo
Love y Roper (2001)	4	Reino Unido, Irlanda y Alemania	1991-1994	684	Resultados obtenidos	Ocupados	Negativo; nulo
Machikita et al. (2009)	1	Indonesia, Vietnam, Tailandia y Filipinas	2008	128	Resultados obtenidos	Ocupados	Positivo

Referencia	Estimaciones	País	Periodo	Tamaño de la muestra	Medida de innovación	Medida de tamaño	Conclusión sobre el efecto de tamaño
MacPherson (1998)	1	EE.UU.	1989-1993	129	Resultados obtenidos	Ocupados	Nulo
Malerba et al. (1997)	2	Unión Europea	1984	164	Resultados obtenidos	Ocupados	Nulo
Maré et al. (2014)	5	Nueva Zelanda	2000-2008	13.722	Resultados obtenidos	Ocupados	Positivo
Marín et al. (2015)	10	Argentina	2002-2004	1.245	Resultados obtenidos	Ocupados	Negativo
Marín y Petralia (2018)	12	Argentina y Brasil	1998-2003	4.787	Resultados obtenidos	Ocupados	Nulo
Martínez-Ros (1999)	7	España	1990-1993	8.000	Resultados obtenidos	Ocupados	Positivo
Morris (2015)	16	Caribe	2008-2014	2.460	Resultados obtenidos	Ocupados	Nulo
Mothe et al. (2015a)	3	Luxemburgo	2004-2006	568	Resultados obtenidos	Ocupados	Nulo
Mothe et al. (2015b)	3	Francia	2006-2008	2.673	Resultados obtenidos	Ocupados	Negativo
Negassi (2004)	7	Francia	1990-1996	16.417	Resultados obtenidos	Ventas	Positivo
Nieto et al. (2015)	3	España	1998-2007	15.173	Recursos invertidos; resultados obtenidos	Ocupados	Nulo
Nooteboom et al. (2007)	8	Internacional	1986-1997	762	Resultados obtenidos	Ventas	Positivo
Peters et al. (2003)	11	Suecia y Alemania	1998-2000	206	Recursos invertidos; resultados obtenidos	Ocupados	Negativo; nulo
Pradhan (2003)	2	India	1989-2001	1.998	Recursos invertidos	Ventas	Positivo
Raymond et al. (2010)	8	Países Bajos	1994-2000	1.764	Resultados obtenidos	Ocupados	Positivo
Reichstein et al. (2008)	12	Reino Unido	1998-2000	376	Resultados obtenidos	Ocupados	Nulo
Reichstein y Salter (2006)	4	Reino Unido	2001	2.885	Resultados obtenidos	Ocupados	Positivo
Roper y Hewitt- Dundas (2015)	15	Irlanda	1991-2008	2.002	Resultados obtenidos	Ocupados	Positivo; nulo
Rouvinen (2004)	2	Finlandia	1994-1996	1.000	Resultados obtenidos	Ocupados	Nulo
Sadowski y Sadowski- Rasters (2006)	2	Países Bajos	1994-1996	3.427	Resultados obtenidos	Ocupados	Positivo
Sakakibara y Branstetter (1999)	6	Japón	1983-1994	3.423	Recursos invertidos; resultados obtenidos	Ventas	Positivo
Salomon y Sahver (2005)	24	España	1990-1997	3.471	Resultados obtenidos	Ocupados	Nulo
Segarra-Blasco et al. (2008)	2	Cataluña	2002-2004	1.332	Al	Ocupados	Positivo
Sharma (2007)	20	Internacional	2003-2006	1.127	AI; recursos invertidos	Ventas	Positivo
Shefer y Frenkel (2005)	2	Israel	1994	178	Recursos invertidos	Ventas	Negativo; nulo
Sorensen y Stuart (2000)	36	Asia, Japón, UE y EE.UU.	1986-1992	3.349	Resultados obtenidos	ambos	Varios
Srholec (2010)	6	Rep. Checa	1999-2001	1.809	Resultados obtenidos	Ocupados	Positivo
Stuart (1999)	10	Internacional	1986-1992	2.685	Recursos invertidos; resultados obtenidos	Ventas	Positivo
Tavassoli y Karlsson (2015)	6	Suecia	2002-2012	1.722	Resultados obtenidos	Ocupados	Positivo; nulo
Tello (2015)	18	Perú	2002-2007	203	AI; resultados obtenidos	Ocupados	Positivo

INNOVAR

Referencia	Estimaciones	País	Periodo	Tamaño de la muestra	Medida de innovación	Medida de tamaño	Conclusión sobre el efecto de tamaño
Tether y Bascavusoglu- Moreau (2012)	3	Reino Unido	2002-2006	2.206	Resultados obtenidos	Ocupados	Positivo
van Beers y Sadowski (2003)	5	Países Bajos	1994-1996	1.459	Resultados obtenidos	Ocupados	Positivo
Van Beveren y Van- denbussche (2010)	3	Bélgica	1998-2004	189	Resultados obtenidos	Ocupados	Nulo
van Leeuwen y Klomp (2006)	8	Países Bajos	1994-1996	1.926	AI; recursos invertidos; resultados obtenidos	Ocupados	Negativo
Veugelers y Cassiman (2005)	1	Bélgica	1990-1992	504	Resultados obtenidos	Ocupados	Positivo
Wörter (2007)	1	Suiza	1999-2005	2.777	AI	Ocupados	Negativo
Zoghi et al. (2010)	3	Canadá	1999-2003	15.433	Resultados obtenidos	Ocupados	Positivo
Zuluaga Jiménez et al. (2012)	5	Colombia	2003-2004	4.819	Resultados obtenidos	Ocupados	Positivo

Nota. La última columna trata de sintetizar los principales resultados de cada estudio, en algunos casos muy diversos. Aquellos efectos estadísticamente significativos se denotan como positivos y negativos respectivamente, mientras que los no significativos son los "nulos"; los estudios con resultados muy heterogéneos se clasifican como "varios".

Fuente: elaboración propia.