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Abstract 
It is well known that the mechanical environment affects 
biological tissues. The importance of theories and models 
that aim at explaining the role of the mechanical stimuli 
in process such as differentiation and adaptation of tis-
sues is highlighted because if those theories can explain 
the tissue’s response to mechanical loading and to its 
environment, it becomes possible to predict the conse-
quences of mechanical stimuli on growth, adaptation and 
aging of tissues. This review aims to present an overview 
of the various theories and models on tissue differentiation 
and adaptation, and their mathematical implementation. 
Although current models are numerically well defined and 
are able to resemble the tissue differentiation and adapta-
tion processes, they are limited by (1) the fact that some 
of their input parameters are likely to be site-and species-
dependent, and (2) their verification is done by data that 
may make the model results redundant. However, some 
theories do have predictive power despite the limitations 
of generalization. It seems to be a matter of time until new 
experiments and models appear with predictive power and 
where rigorous verification can be performed. 

Keywords 
computational biology; mechanobiology; finite element; 
tissue growth; tissue differentiation; skeletal regeneration 

Resumen 
Se ha aceptado ampliamente que el ambiente mecánico 
afecta los tejidos bilógicos. La importancia de teorías y 
modelos que buscan explicar el rol de los estímulos me-
cánicos en procesos como la diferenciación y adaptación 
de tejidos radica en que si pueden explicar la respuesta de 
un tejido a su ambiente alrededor, es posible predecir 
las consecuencias de estímulos mecánicos en procesos 
como el crecimiento, la adaptación y el envejecimiento 
de tejidos. Este trabajo resume teorías y modelos de 
diferenciación y adaptación de tejidos y su implemen-
tación matemática. Aunque los modelos actuales están 
numéricamente bien definidos y son capaces de emular 
los procesos de diferenciación y adaptación, están limitados 
a causa de 1) la naturaleza de sus parámetros, que son 
muy probablemente dependientes de la especie y lugar de 
análisis, y 2) los datos que usualmente son empleados para 
su verificación, ya que podrían llegar a hacer redundantes 
los resultados del modelo. A pesar de estas limitaciones que 
impactan en la generalización de resultados, las teorías 
y modelos actuales tienen el poder predictivo necesario 
para el estudio general de los procesos de diferenciación y 
adaptación de tejidos. Es cuestión de tiempo, la llegada de 
nuevos modelos y experimentos que permitan una mayor 
generalización y verificación. 

Palabras clave
biología computacional; mecanobiología; elementos 
finitos; diferenciación de tejidos
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Introduction
It is well known that the mechanical environment affects biological tissues, 
in which mechanical loads activate or inhibit processes involving the genesis, 
adaptation, and aging of tissues [1]. This is especially important for tissues that 
have a primary biomechanical function such as musculoskeletal or cardiovascular 
tissues; however, biomechanical and mechanobiological factors appear to be 
critical for regulating cell behavior, and tissue maintenance and transformation 
in virtually all other tissues of the body [2].

The study of tissue differentiation and adaptation to their mechanical environ-
ment is challenging. These processes are complex, involving so many variables 
that physical experimentation is often either time consuming, expensive, or 
impossible [3]. For instance, forces applied to tissue might be of different type 
or nature: internal quasi-static forces caused by tissue growth; external forces 
imposed on the organism; and intermittent joint forces caused by muscle con-
tractions [4]. As a result of the mechanical environment created by all those 
forces, time-dependent, spatially complex patterns of internal tissue stresses and 
strains are created in all tissues [4]. 

Since the 19th century, several theories and models have been proposed to 
explain the role of mechanical stimuli on biological processes [5]-[13]. In the last 
decades, the increasing computational power has allowed the implementation 
and simulation of many of the proposed theories and models of tissue differentia-
tion and adaptation. In mechanobiology, a field that describes the mechanisms 
by which mechanical loads regulate biological processes, computational models 
have been developed to complement lab experiments in order to propose and test 
rules that may govern the effects of mechanical loading on cells and tissues [14].

The importance of such theories and models is highlighted because if those 
theories can explain the tissues’ response to mechanical loading, it becomes pos-
sible to predict the consequences of mechanical stimuli on growth, adaptation, 
and aging. Additionally, it is now clear that mechanobiological interactions 
between cells and their underlying substrate can critically influence cell behavior 
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and the resulting tissue, even in tissues and organs without a predominant 
biomechanical role [2],[15]. Currently, models of tissue differentiation and 
adaptation gain importance due to the studies on functional tissue engineering, 
in which the effects of biomechanical factors on native and repair tissues, and 
the development and application of computational models of tissue growth 
and remodeling are among its priorities [15]. 

Several works have reviewed the processes of tissue differentiation and ad-
aptation in musculoskeletal tissues from different perspectives [16]-[18]. 
However, to the knowledge of the author, the literature that reviews their 
mathematical fundamentals and implementation is scarce. For example [19], 
this review aims to present an overview of the various theories on tissue differ-
entiation and adaptation, their mathematical implementation, and a discussion 
and possible future steps in this research area.

1. Theories of Tissue Differentiation

1.1. Classic Theories
In the late 19th century, W. Roux (1981) suggested a relationship between me-
chanical stimuli and tissue differentiation [5]. His thesis, the “Theory of Func-
tional Adaptation,” was that cells are in constant competition among themselves 
for their own “functional stimulus” and, eventually, this competition determines 
the final tissue phenotype. The “functional” stimuli were defined as compression 
for the formation and maintenance of bone, tension for connective tissue, and 
a combination of both with shear for cartilage. Like Roux, F. Pauwels based his 
theory almost exclusively on clinical observations and simple experiments [11]. 
However, he introduced basic concepts of stress and strain to the description of 
the problem. In his theory, he identified the mechanical stimuli that are “felt” 
by the cells as elongation and hydrostatic pressure (Figure 1).

Pauwels proposed elongation as the stimulus for the formation of connective 
tissue and hydrostatic pressure as the stimulus for the formation of cartilage. In 
this theory, bone formation does not have a specific stimulus and only occurs by 
calcification of the cartilage when “the cell is protected from all direct mechanical 
stresses” and under the influence of hydrostatic pressure, see Figure 2. With 
the consideration of elongation and hydrostatic pressure as stimuli, Pauwels 
effectively described the tissue differentiation process in terms of mechanical 
invariants, i.e., magnitudes independent of the coordinate system.
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Figure 1. Left: “Quantitative proportions of  elongation due to tension (Z), compression (D), and 
shearing (S)”. Right: “How the hydrostatic pressure acts on the cell” (above: positive pressure, 

below: negative pressure

Source: Pauwels [11]

Figure 2. Schematic representation of  the hypothesized influence of  biophysical stimuli on tissue 
phenotype. Desmoid ossification has been added to Pauwels’ model

Source: Weinans and Prendergast [20]

1.2. Interfragmentary Strain Theory
Considering that strain tolerance is higher for granulation tissue, moderate for 
cartilage, and lower for bone tissue, Perren and Cordey [6] proposed that at 
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the beginning of the fracture-healing process, when motion and strain are high, 
the first tissue that appears is granulation tissue since it is the only one able to 
withstand this mechanical environment. Once the granulation tissue stiffens the 
mechanical environment, the formation of cartilage can begin. Finally, with 
the presence of cartilage inside the gap, the mechanical environment becomes 
more suitable for bone generation. Perren and Cordey defined the concept of 
Interfragmentary Strain (IFS) for fractures as:

L
IFS

L

∆= ,

where L is the length of the “fracture” gap and ΔL is the change in length caused 
by loading. Both terms are defined in the axial direction of the bone. The IFS 
is a measurement of stretch capacity that can be related to adequate environ-
ments for specific tissues. 

1.3. Consideration of the Load History 
Carter et al. were the first to explicitly interpret Pauwels’ theory in terms of well-
defined mechanical magnitudes and to include loading history in the analysis. 
They associated elongation with either octahedral shear strain or octahedral 
shear stress, and hydrostatic pressure with either hydrostatic stress or volumetric 
strain [21]. The hypothesis of Carter et al. involves these invariants with their 
load history, assuming that the variation in time of the mechanical loading is 
the triggering factor that stimulates tissue differentiation. Finally, Carter et al. 
proposed the use of an index that measures the load history of the suggested 
invariants. This index, initially considered only for osteogenesis, was called the 
Osteogenic Index (OI) [7]; however, a similar combination of hydrostatic stress 
and octahedral shear stress histories could be used for other tissues, see Figure 3.

1.4. The Fluid Flow as Stimulus
Considering that there is evidence showing the importance of fluid flow at the 
cellular level [22], Prendergast et al. described how fluid flow can amplify cellular 
deformation [9], [23] and thus proposed the use of the relative velocity between 
the phases as a stimulus for tissue differentiation. The biphasic theory developed 
by Mow [24] was used to determine the substrate strain as well as the relative 
velocity between the phases.
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Figure 3. Carter et al.’s theory expanded to the skeletal tissues. A specific combination of  the 
mechanical invariants produces certain type of  tissue
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Source: taken from Carter [21]

Prendergast et al.’s theory affirms that the mechanical environment, in terms 
of the substrate strain and the relative fluid velocity, is the relevant factor in 
tissue differentiation. Finally, they hypothesized that changes in the mechanical 
environment are systematic and, consequently, that the mechanical stimuli could 
stimulate the replacement of one cell population by another. This means that 
the stimuli are not only the key factor for the generation of tissues, but are also 
important for the constant adaptation of tissues [9]. This theory is illustrated 
in Figure 4.

Figure 4. A ‘mechanoregulatory pathway’ can be used to describe the hypothesized interaction 
between mechanical stimuli and tissue phenotype*
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*Observe that the pathway is a curve in 3D and that the final tissue phenotype depends on the load history.

Source: From Prendergast et al. [9]
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1.5. A Simple Quantitative Theory
Claes and Heigele [8] followed the main idea of Pauwels and Carter et al. in 
considering that the most important mechanical stimuli are strain and hydro-
static pressure. However, they included clinical information on ossification 
paths, which may guide the fracture-healing process. Their hypothesis was 
that “new bone formation in fracture healing occurs primarily along fronts of 
existing bone or calcified tissue and that the type of bone healing […] depends 
on the local strain and stress magnitudes”. They used a finite analysis model 
to estimate the local magnitudes of strain and stress in callus tissues and along 
different ossification paths, which were obtained from histological images of a 
previous in vivo experiment.

The analysis performed by Claes and Heigele was a visual comparison of 
the typical locations of intramembranous bone formation and endochondral 
ossifications with the calculated strain and hydrostatic pressure. This analysis al-
lowed them to state the quantitative relationships between mechanical stimuli 
and tissue differentiation shown in Figure 5. These relationships, determined 
by the mechanical stimuli, define specific areas in the figure that correspond to 
endochondral versus intramembranous ossification.

1.6. The Strain as Unique Mechanic Factor in Tissue Differentiation 
In 2005, Duda et al. [25] presented a model of osteochondral defect healing 
that is based on the hypothesis that the strain of the tissue, expressed as the 
minimum principal strain, is a main stimulus for tissue differentiation. However, 
Duda et al. did not consider local stress as an additional stimulus, as Claes and 
Heigele did. Despite the simplicity of the model, it showed good qualitative 
and quantitative agreement with the histological findings. 

1.7. Other Factors Different than Mechanical Loading
Biochemical signaling, cellular mechanisms, and local vascularization also 
play important roles in tissue differentiation and adaptation. Therefore, recent 
works have developed algorithms that emulate the effects of those factors, 
sometimes including them in the models of mechanically induced adaptation, 
in the search for a more comprehensive representation of the differentiation and 
adaptation processes. 

Bailon-Plaza and Van der Meulen [26] proposed an early mathematical 
framework in which the effect of growth factors, as biochemical signals, was 
included in the process of bone healing. This model was later extended to include 
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mechanically induced adaptation [27]. Isaksson et al. [10] and Moore et al. 
[28] also combined biological and mechanical factors in a mechanistic model of 
bone healing. They accounted for cell activities such as migration, proliferation, 
differentiation, and apoptosis. Quantification of the model constants, which 
mainly dictate the rates of various processes, was seen as a problem because 
they likely depend on the conditions of the subject (e.g., species, gender, clinical 
status, age, etc.). 

Additionally, vascularization plays an important role in tissue generation and 
maintenance. To test how this factor may influence bone healing, Geris et al. 
[29] include the possibility of angiogenesis in the model previously developed 
by Bailon-Plaza and Van der Meulen [26]. This was done by describing the 

Figure 5. Quantitative tissue-differentiation theory
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angiogenesis as a process involving endothelial cells, a vascular matrix, and a 
generic angiogenic growth factor produced by osteoblasts and hypertrophic 
chondrocytes. 

2. Mathematical Implementation
The first implementations of the theories of tissue differentiation and adaptation 
used static mechanical models to determine the general stress state during a 
specific moment of the biological process. Currently, the models for the various 
theories have improved through the use of finite element analysis within an 
iterative algorithm that allows the study of the complete development of the 
process. Recent studies have commonly included dynamic variation of material 
properties, cell distribution, and mechanical loading.

All the algorithms used have similar outlines (see Figure 6). First, there is 
an initial step in which the characteristics of the tissue are established (i.e., ge-
ometry and material properties). Second, the tissue is mechanically loaded and 
biophysical stimuli are determined (e.g., stresses, strains, flow velocities). Third, 
the phenotype for each point in the geometry is updated based on a numerical 
approximation of a chosen theory. Fourth, if the migration of pluripotent cells 
is considered, a new cell distribution within the tissue is obtained using, for in-
stance, diffusion analysis. Fifth, the material properties are updated, and a new 
iteration, corresponding to a new time point, can be started. Convergence of the 
numerical procedures is often evaluated in terms of the mechanical properties; 
that is, if the change in mechanical properties is lower than a certain limit, the 
algorithm converges.

In a numerical description of the tissue differentiation and adaptation pro-
cesses, it is possible to identify the following three different parts or (sub-) models:
•	 A mechanical (sub-) model, which calculates the mechanical state of the 

tissue: stress/strain, flow velocities, and pressures.
•	 A diffusion (sub-) model, which estimates the motion of cells and bio-signals 

due to concentration gradients.
•	 A reaction (sub-) model, which predicts the change in the phenotype of 

the tissue cells as a result of the mechanical state of the tissue and the con-
centration of bio-factors. These are the numerical implementations of the 
previously described theories. 

Brief descriptions of each model and their numerical implementations are 
presented below.
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Figure 6. General scheme of  the algorithms in Tissue Differentiation and Adaptation
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2.1. Mechanical Models
Determining the mechanical state of a tissue requires a proper description of the 
tissue as a material. Frequently, the tissues in the previously described theories 
are modeled as single-phase elastic and biphasic materials. The choice between 
these two material descriptions relies on the loading and boundary conditions as 
well as on the level of consideration of the model. In general terms, a single-phase 
elastic model is usually appropriate when strain rates are higher than 0.1 or 
0.01 Hz, when the boundary conditions constrain free fluid flow from and to the 
tissue (low permeability), or when the consideration level is larger than the tissue 
level. Otherwise, a biphasic description should be used [30].

2.1.1. Single-Phase Elastic Model 

Considering isotropy and linear elasticity (Hooke’s law), the equations that 
relate stress and strain are as follows:

( ) ( )2xx xx yy zzσ λ µ ε λ ε ε= + + +
 
and 2xx xy xyσ µε µγ= = ,

where λ and μ are the Lamé constants, defined as
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( )( )1 1 2

vE

v v
λ =

+ −
, and

 ( )2 1

E

v
µ =

+
,

with E as the Young’s modulus and υ as the Poisson ratio. The stiffness relation 
can be written as follows:

eDσ ε= ,

with De as the elastic stiffness matrix.
Finally, invariants such as the hydrostatic stress (σd) and octahedral shear 

stress (σs), parameters for the other (sub-) models (diffusion and reactive models), 
are calculated as follows:

( )1

3d x y zσ σ σ σ= + + ,

( ) ( ) ( ) ( )2 22 2 2 21
6

3s x y x z y z xy xz yzσ σ σ σ σ σ σ τ τ τ= − + − + − + + + .

2.1.2. Biphasic Approach 

A more accurate material description is given by the biphasic theory or by poro-
elasticity. When incompressibility is assumed, the mathematical implementations 
and solutions of these techniques are equivalent [31], [32], and both approaches 
estimate the stress state of the phases as follows [33]:

2s s s
s pI e Iσ φ λ µε= + + , and 

s
f pIσ φ= − ,

where σs is solid stress, σf is fluid stress, e and ε are dilatational strain and total 
strain, respectively; p is apparent pressure, φ is the volume fraction, and λ and 
μ are the Lamé constants.

2.2. Diffusion Model [34]
Differentiation and adaptation of tissues are influenced by the local concentra-
tion of cells and bio-signals (e.g., growth factors). Motion of both, cells and bio-
signals, can be modeled as following a diffusion process. However, this diffusion 
process can have either of two approaches: the chemical pattern approach and the 
mechanochemical approach. On the one hand, in the chemical pattern approach, 
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pattern formation and morphogenesis take place sequentially. Morphogenesis, 
i.e., formation of the structure, is essentially a slave process that is determined 
once the chemical pattern has been solved. On the other hand, in the mecha-
nochemical approach, pattern formation and morphogenesis are considered to 
go on simultaneously as a single process, which may be closer to reality.

The diffusion model that uses the mechanochemical approach consists of 
three governing equations: The conservation equation for the cell population 
density, the mechanical balance of the forces between the cells and the extracel-
lular matrix (ECM), and the conservation law governing the ECM. Without 
minor details, the equations are written as follows:

2.2.1. Cell Conservation Equation

( ) [ ]2 3
1 2 1 2

n u
n D n D n n a a rn N n

t t
ρ ρ

 ∂ ∂    = −∇ + ∇ ∇ − ∇ ∇ − ∇ ∇ − ∇ + −    ∂ ∂ 



  

,
 

where the terms from left to right in the right side of the equation are related 
to cell convection, diffusion, haptotaxis, and mitosis, respectively; D1, D2, a1, 
a2, r, and N are positive parameters. The vector u is the displacement of ECM, 
and n and ρ are the number of cells and density of the ECM, respectively. 

2.2.2. Cell-Matrix Mechanical Interaction Equation

0,Fσ ρ∇ + =




where F is the external force acting on the matrix and σ is the stress tensor. How-
ever, the stress tensor has contributions from the ECM and the cells, such that:

,ECM CELLSσ σ σ= +

where σECM as a linear viscoelastic material, can be written in terms of the viscous 
and elastic components as:

[ ] [ ]1 2 ' ' ,ECM t t I E v Iσ µ ε µ θ ε θ= + + +
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with E' = E/(1 + v) and ( )
1 2

' /

v

v v

−

=
.

The subscript t denotes partial differentiation, I is the unit tensor, and μ1 and 
μ2 are the shear and bulk viscosities of the ECM. ε is the strain tensor, defined 
as ( )T

u uε = ∇ + ∇
 

, and θ is the dilation, uθ = ∇


.

On the other hand, the stress due to the cell traction, σCELLS, is:

( ) ( )12 21 ,CELLS n n Iσ τ λ ρ γ ρ
−

= + + ∇

where τ is the traction force generated by the cell, λ is a measure of how the 
force is reduced because of neighboring cells, and γ is a measure of the nonlocal 
long-range cell-ECM interactions. Finally, to complete the description of the 
terms in the cell matrix:

,F su= −
 

where s > 0 is an elastic parameter characterizing the substrate attachments.

2.2.3 Matrix conservation equation

The conservation equation for the matrix material, ρ(r,t), is

( ) ( ), , ,tu S n u
t

δρ ρ ρ
δ

+ ∇ =
 



where matrix flux is considered due to convection and S(n,ρ,u) is the rate of 
secretion of matrix by the cells. 

2.3. Reaction (Sub-) Model
The theories described in the first section can be written as numerical algo-
rithms to be included, along with the mechanical and diffusion (sub-) models, 
in a model of tissue development and adaptation. Various authors highlighted 
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above, among others, have implemented their theories using different mechani-
cal stimuli, mechanical thresholds, or the methods of modeling the tissue. The 
mathematical implementations are described briefly in this section.

2.3.1. The Osteogenic Index

Carter et al.’s theory is qualitative, and no specific relationships between the 
stimuli have been proposed to define the regions shown in Figure 9. However, 
to achieve physiologic ossification patterns in their models, Carter et al. define 
an Osteogenic Index as:

( )
1

,
c

i si dii
OI n kσ σ

=
= +∑

where ni is the number of cycle repetitions for each load case, c is the number of 
load cases, and k is an experimental constant. σd and σs are the magnitudes 
of the stimuli considered by the authors, i.e., hydrostatic stress and octahedral 
shear stress.

The mechanical stimuli can be calculated for each load case as:

( )1

3d x y zσ σ σ σ= + +
 
and

( ) ( ) ( ) ( )2 22 2 2 21
6 ,

3s x y x z y z xy xz yzσ σ σ σ σ σ σ τ τ τ= + + + + + + + +

where the stress terms, σi and τij, are expressed in an orthogonal base (x, y, z). 
Cartilage growth and ossification processes are accelerated in presence of high 
values of OI and delayed or avoided in areas of low OI values [35]. In the case 
of articular cartilage development (loaded with a cyclic stimulus), the proposed 
equation is modified to:

( ) ( )( )maxmin 1, 1,max min ,i n Si i n diOI kσ σ= == +

where a cyclic load condition has been discretized in n consecutive loading cases. 
For each point of the material one IOmaxmin can be found using the maximum 
shear stress and the minimum value of hydrostatic stress during the entire cycle 
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load [35]. The value of constant k must be previously calculated for each specific 
case (specific geometry, specific load conditions). This parameter is calculated by 
iteration until the plot of the OI matches the documented ossification patterns. 
Finally, matching plots of strain and hydrostatic stresses with histological images 
allows the determination of levels of pressure and strain for each phenotype.

The various models of Carter et al. have used an elastic material model to 
represent the tissue, in a single-phase approach. This is held by the authors with 
the premise that the solution is sufficient to describe the ossification patterns, 
while other problems, such as the behavior of the cartilage, must be handled with 
biphasic theory [36].

2.3.2. Biphasic Implementation

When authors want to consider the relative flow as a stimulus for tissue dif-
ferentiation, they must apply a biphasic theory. In the constitutive equations it 
is possible to relate the boundary conditions with the internal mechanical loads 
such as substrate strain, poro-pressure and/or relative velocity among phases, 
and the material properties of the tissue. Huiskes et al. [37] proposed some rules 
for tissue differentiation using the biphasic approach that were later refined by 
Lacroix et al. [38], and Kelly and Prendergast [39] as follows:

 3
v

a b

γ + >  for fibrous connective tissue,

 1 3
v

a b

γ< + <  for fibrocartilaginous tissue, 

0.53 1
v

a b

γ< + <  for apposition of immature woven bone,

0.01 0.53
v

a b

γ< + <  for apposition of mature woven bone, and

0.01
v

a b

γ + <  for bone resorption,

where γ is the substrate (distortional) strain, ν is the relative fluid velocity, and a and 
b are experimental constants. The values of a (=0.0375) and b (=3 μm/s) were 
calculated by Huiskes et al. from experiments conducted in dogs by Søbolle 
[40]. However, these values should be used cautiously because these constants 
are likely site- and species-dependent. 
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3. Discussion and Future Steps
The first theories of tissue differentiation and adaptation were based on simple 
experiments and clinical experiences. Later, similar hypotheses included mechani-
cal variables in the description of the process. The implementations of mechanical 
variables and computational power have allowed not only the description, but 
also the prediction of events. Currently, models include other variables and 
parameters such as biosignaling and vascularization to increase their prediction 
capacity. Although the nature of these recently-included variables is distinct 
from the mechanical state of the tissue, they are influenced by the mechanical 
environment of the tissue and its function by being subject.

However, although it is accepted that mechanical function can influence the 
shape and structure of skeletal tissues, as well as the regulation of their devel-
opment, it is still not totally clear how these processes are accomplished and 
how different inducing factors work together. Experimental verification of the 
different theories is out of the scope of this review. Nevertheless, verification is 
always an essential part of modeling, and the theories presented here have an 
important setback: their models often need input data that obviates the need 
for the models in the first place [41].

In general, tissue regulation includes two biological processes: an initial tis-
sue differentiation and a subsequent tissue adaptation. The boundary between 
these processes is not well defined. To study both process using a single theory or 
model would require a common definition of change-inducing factors. However, 
the specific weights of those common change-inducing factors on the overall 
process are likely to change over time and based on tissue maturity, making it 
difficult to achieve a unified theory of tissue regulation. 

The different quantitative relationships in the reaction models have been 
widely tested using computer models [29], [39]. However, conclusions from 
those works are always limited by the fact that many of the parameters have been 
defined based on specific experiments. This imposes a limitation because the 
value of such parameters is very likely to be site- and species-dependent [42], 
[43]. Moreover, the data needed to validate mechanoregulation theories often 
provide the same insight as the models, making the models less useful in certain 
cases of basic research [41]. However, some theories do have predictive power 
despite the limitations of generalization. It seems to be a matter of time until 
new experiments and models appear with predictive power and where rigorous 
verification can be performed [44]. 
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Current theories and models are proper steps toward a final model that 
remains elusive. In general, numerical models force us to describe every detail 
of a theory in a quantitative way and, at the same time, allow us to make pre-
dictions instead of merely describing the process. However, the need for new 
experiments to evaluate the different tissue differentiation theories is evident. 
Testing of more and more complex research hypotheses is encouraged by the 
new and more powerful computational resources, but the original theories still 
require definitive validation or verification. 
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