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Abstract
Introduction: This article presents a finite field multiplier 
(GF) model, studying the generalized architecture of the 
LFSR component (linear regression displacement records), 
in order to generate a concurrent description. Concepts 
of structural analysis, description of parameterized com-
ponents, and mathematical treatment of signals have 
been applied. Method: The design was performed by the 
tabulation of the terms in the variable time function and 
the position in the circuit, components of the modular 
reduction, thus creating an array of combined operations. 
This model was described in VHDL, for testing behavior 
and optimization of hardware. Results: The research 
established the equations for the implementation of the 
VHDL model in its generic expression with operator con-
catenation for the hardware configuration. It is estimated 
that the hardware resources, a level of logical operators, 
obtained a 7.89% savings in the energy consumption 
associated with the signal in the multiplier design by the 
proposed optimization technique. Conclusions: The model 
simplified the description of parallel circuits with high 
performance from a mathematical model approach to 
hardware description. The proposed method contributes 
to field of optimization in the efficient modeling of ad-
vanced logic systems, which can be extrapolated to more 
complex components.

Keywords
VHDL model; finite fields multiplier; circuital optimi-
zation

Resumen
Introducción: Este artículo presenta el modelo de un multi-
plicador en campos finito GF que estudia la arquitectura 
generalizada del componente LFSR (registros de despla-
zamiento con realimentación lineal), con el propósito de 
generar una descripción concurrente, aplicando conceptos 
de análisis estructural, descripción de componentes para-
metrizados y tratamiento matemático de señales. Método: 
El diseño se realizó tabulando los términos en función de 
las variables tiempo y posición en el circuito, del com-
ponente de reducción modular, con lo que se creó una 
matriz de operaciones combinacionales. Este modelo fue 
descrito en VHDL, para las pruebas de comportamiento 
y optimización del hardware. Resultados: La investigación 
permitió establecer las ecuaciones para la implementación 
del modelo en VHDL, en su expresión genérica con el ope-
rador “concatenación”. Para la configuración de hardware 
se estimó el consumo de recursos en hardware, a nivel de 
operadores lógicos y se obtuvo una propuesta eficiente. Así 
mismo, se obtuvo un 7,89 % de ahorro del consumo de 
potencia asociada a la señal en el diseño del multiplicador, 
con la técnica de optimización propuesta. Conclusiones: El 
modelo desarrollado simplifica la descripción de circuitos 
paralelos, de alta eficiencia desde un enfoque de mode-
lado matemático para descripción de hardware. El método 
propuesto muestra sus aportes en materia de optimización 
en el modelado eficiente de sistemas lógicos avanzados, el 
cual puede ser extrapolado a componentes más complejos.

Palabras clave
modelo VHDL; multiplicador en campos finitos; opti-
mización circuital.
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Introduction
The study of the RS coder [1] for efficient implementation found that they use 
Galois GF (2m) finite field arithmetic to produce fixed length results and that 
their operations can be implemented with relatively simple circuitry [2]. Some 
of these operations are more complex, which led researchers to focus on the op-
timization of multiplication algorithms [3]. It should be borne in mind that the 
computational efficiency of arithmetic operations in finite fields is closely related 
to the particular way in which field elements are presented [4]. Therefore, we 
have detected the need to study solution alternatives for the implementation 
of GF arithmetic operations (2m) based on the mathematical foundations of 
finite fields.

The Finite Fields of Galois constitute a specific area of mathematics developed 
by E. Galois. The field is specified by a prime element p (base of the field) and a 
positive integer m, the length of the field element pm corresponds to the number 
of elements of the field, and the arithmetic operations on the finite field result 
in an element that belongs to it [5]. These properties are used in applications of 
coding, Reed-Solomon decoding [6], and cryptography. A widely used presen-
tation is the polynomial form, in which a field-generating polynomial, known 
as an irreducible polynomial p(x), is defined such that it will operate with the 
results of operations to bring the result to the fixed length defined for field.

A model that is configurable in a device that supports concurrent implemen-
tation that allows for the incorporation of Reed Solomon encoders is proposed. 
These multipliers are basic components that require implementation in a highly 
efficient way for speed, and consumption of resources and power by the fractal 
nature of these circuits [7], as well as the concatenation of complex codes [8].

1. Finite field multipliers
The multiplier in finite fields is generally more complex than a conventional 
multiplier [9]. These have been a topic of investigation; therefore, the relevance 
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of interpreting the circuit support logic for these modules and establishing an 
efficient model for their design on FPGA hardware. The arithmetic multipliers 
of Galois finite fields are based on the multiplication of two elements of the finite 
body and the reduction of the result by an irreducible polynomial p(x) of degree 
m. These can be implemented by an algorithmic model, which reproduces the 
behavior of the multiplier sequentially [10] or with parallel models, depending 
on the need for these arithmetic modules to operate at high frequencies and 
occupy the smallest possible area, which demands a balance between these 
factors. This commitment has led to the search for efficient algorithms and 
architectures, as indicated by research in the area [11].

Among the models available, the multiplier proposed by Karatsuba-Ofman 
[12] consists of a modular sub-division technique of the multiplier component, 
combinational models [13], through tables [14], and table-algorithm combi-
nations [15]. The latter presents a contribution in reducing resources based on 
the original implementation of 255×255 tables, equivalent to 65025 8-bit 
symbols, to 256 8-bit symbols for the multiplier; however, this reduction still 
demands 512 LUTs of 4 inputs when making the expansion to cover the table.

At the level of optimization of implementations are the Mastrovito Multiplier 
(combinational-matrix), Massey-Omura Multiplier, Hasan-Bhargava Multiplier, 
Paar-Rosner Multiplier, Morii-Berlekamp Multiplier, Pipelined Combinational 
Multiplier, Linear Feedback Shift Multiplier (LFSR), all these are described in 
[16]. Additionally, to achieve scalability, several algorithms have been proposed, 
all implemented in hardware [17]. 

From the study of previously developed GF multiplier models, the GF [16] 
Mastrovito, Paar-Rosner, and Pipelined Combinatorial multipliers were found to 
have the lowest consumption and highest speed compared to alternative multi-
pliers. For this reason, they have been considered as reference for the evaluation 
of the results, although some of these multipliers present optimization for a 
particular approach to the architecture and have been an important contribution 
for the interpretation of optimization alternatives. From the models studied, the 
LFSR-based multiplier is considered as the base for the optimization. It presents 
a latency of m clock pulses, which can be parallelized under a temporal analysis 
of the circuit.

This analysis is based on the study of the mathematical model of polynomial 
representation, in which it is stated: If p(x) is the irreducible polynomial, then 
the multiplication of two elements of the field, represented as the polyno-
mials A(x) and B(x) is the algebraic product of the two polynomials, and the 
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modulus operation of the polynomial p(x), also known as modular reduction, 
is that shown in equation 1.

C(x) = A(x).B(x) ↔ C(x) = A(X) x B(x) (mod p(x)) (1)

The multiplication of polynomials is associative, commutative, and distrib-
utive with respect to the addition whereby we obtain equation 2.

C(x) = B(x) Aix
i

i=0

m 1( )mod p(x) C(x) = Bi A(x)ximod p(x)( )i=0

m 1
(2)

Where A(x) and B(x) correspond to the polynomial representation of the 
operands. In the case of the RS encoder, the multiplicand A(x) corresponds to 
a coefficient of the code generator polynomial, the multiplier B(x) to the data 
input, and p(x) is the irreducible polynomial of the Galois field. For the calcu-
lation of the modular reduction, the concept of the division of polynomials on 
finite fields is used, whose mathematical expression is presented in equation 3.

an 1x
m 1 +…+ a1x + a0 pr 1x

m 1 + + p2x2 + p1x
1 + p0

             rn 1(x)              1/ pn 1x
m 1 +

(3)

Where r(x) = A(x) mod p(x) corresponds to the remainder of the division 
between the operand A(x) of the multiplication and the irreducible polynomial 
of the finite field GF(2m). For the circuital implementation of the equations, the 
stages of the multiplier in finite fields must be identified. First, the model pro-
posed by [9], which includes a modular reduction step in the results, is divided 
into four levels of operation on the data. In Figure 1, the stages are presented 
based on the initial model, where the m-bit operands and the displacement of 
the partial products that give rise to an accumulation of length m + m − 1 
are observed. This generates a resultant element that does not belong to the 
finite field and a conversion must be incorporated through a final reduction so 
that the product corresponds to an element of the field.

The circuit diagram of the multiplier GF(2m) comprises three stages: the 
operation circuit module p(x) implemented by an LFSR circuit, obtaining the 
modular reduction of the polynomial A(x), the partial product module with 
the element Bi implemented by a set of parallel AND gates. The accumulator 
of partial products, implemented by XOR gates in case of being sequential are 
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fed back using flip-flop memory storage devices. The case of the polynomial 
generator of the finite field is P(x) = x8 + x4 + x3 + x2 + 1.

Figure 1. Circuit diagram of  GF (2m) Multiplier

LFSR:
a(x) mod p(x)
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Source: Author own elaboration.

The architecture of the modular reduction stage is based on generators of 
Galois sequences; its properties are studied in [18]. From there it is observed that 
it was originally implemented by registers to obtain the n vectors corresponding 
to the partial residues. This is by means of a bit shift over the structure in m 
clock cycles, where m is equal to the number of bits of the word, in the case 
of a GF field (28), with 256 field elements of 8 bits in length. The model of a 
configurable LFSR is of great interest for the synthesis process [19]. Based on 
this, we propose the analysis of the behavior of the temporal results generated 
by the LFSR structure in order to construct a mathematical model, oriented to 
the description in VHDL.

From the circuit model and the construction of terms as a function of the 
instant and the spatial position, the behavior of the polynomial divisor module 
is determined to obtain the vectors a1 ... a8, the result of A(x) mod P(x) using 
concatenation instead of sequential processing. The implementation is reduced 
to the use of AND gates between each coefficient of p(x), and the use of XOR 
gates that operate with partial coefficients results, all in the same clock pulse. 
In this way, the configuration syntax for a parallelized version of this multiplier 
in VHDL is created, where the sequential components have been eliminated 
and replaced by variables that depend on combinational functions.
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Starting from the analysis of multiplier architectures [20], we can observe a 
combinational multiplication step composed of a set of ANDs and XORs and 
a sequential modular reduction step, which implements a division of polyno-
mials between a finite field element A(x) ∈ GF and the irreducible polynomial 
that defines the field p(x). If it is possible to define the LFSR model through 
a concurrent implementation [21], the area and power consumed are similar 
and even less compared to the sequential version [22]. For this, we analyzed 
optimizations on the circuit [18] and a mathematical model for the generation of 
the sub-sequences, considering that applications of high performance require 
parallel implementations [23].

2. Method of description of multiplier GF in VHDL
The modules for data processing in finite field algebra GF(2m) can be pro-
grammed in software through algorithms for sequential processing or hardware 
solutions for concurrent models, the latter being the model that is proposed. 
An alternative for the implementation of this model is based on search tables, 
allowing changing the representation of the elements of the field GF (2m), or 
through a circuit model where the design of the module is based on the math-
ematical model and behavior interpretation of the circuit. For this purpose, the 
architecture was analyzed, using modular reduction based on the LFSR.

For the interpretation and analysis of the LFSR device with sequential structure, 
we proceeded to describe each sequence generated at an instant of time t, thus 
obtaining the associated states, and the mathematical representation of the 
sequential LFSR. At this point, we proceeded to describe the behavior of the circuit 
for each clock pulse, using the position indexes corresponding to each memory 
element and the logical operations that are performed for the construction of 
the terms for which the descriptions are given in Table 1.

Table 1. Description of  the concurrent modular reduction circuit

u0: a1<= coef;

u1: a2<=(a1(6) xor (a1(7) and p(7))) & (a1(5) xor (a1(7) and p(6))) & (a1(4) xor (a1(7) and p(5))) 
& (a1(3) xor (a1(7) and p(4))) & (a1(2) xor (a1(7) and p(3))) & (a1(1) xor (a1(7) and p(2))) & (a1(0) 
xor (a1(7) and p(1))) & (a1(7) and p(0)); 
...

Source: Author own elaboration.
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From the description in VHDL, it is possible to reproduce the LFSR in paral-
lel. These data allow us to generalize the equations. At time t = 1 the resulting 
vector will be the data input, D_date, at time t = 2 we have the partial vector 
of the circuit operation, shown in equation 4.

at=at-1(6) and a t-1 (7) xor p(7),… , a t-1 (0) xor a t-1 (7) and p(0), a t-1 (7) and p(8) (4)

Where operations are defined by the AND and XOR logic operations, given 
that the operands are binary elements, corresponding to the coefficients of the 
polynomials A(x) and p(x). An analysis of the time outputs of the circuit during 
its operation yields an array of equations, which depend on the clock cycle and 
the position of the vector, and allow the calculation of the terms generated 
by the LFSR circuit. The mathematical-logical relationship for each of the ele-
ments generated by the LFSR component is presented in Table 2, as an array of 
combinational operations that describe the parallel multiplier model.

Table 2. Calculation of  coefficients of  partial polynomials A(x) xi mod p (x)

t i = 7 i i = 1 i = 0
1 a

0
(7) … a

0
(1) a

0
(0)

2 a
1
(6) xor a

1
(7) and p(7) a

1
(i-1) xor a

1
(7) and p(i-1) a

1
(0) xor a

1
(7) and p (0) a

1
(7) 

3 a
2
(6) xor a

2
(7) and p(7) a

2
(i-1) xor a

2
(7) and p(i-1) a

2
(0) xor a

2
(7) and p (0) a

2
(7) 

… … … … …

8 a
7
(6) xor a

7
(7) and p(7) a

7
(i-1) xor a

7
(7) and p(i-1) a

7
(0) xor a

7
(7) and p (0) a

7
(7) 

Source: Author own elaboration.

In Table 2 we can observe the relationship of the terms when applying the 
operation of each branch of the LFSR circuit on the polynomial A(x). Each 
branch is represented by the coefficient of the generator polynomial of the field 
p(x) in position i, corresponding to p(i), which will be fixed in time. Since the 
modular reduction operation generates a set of m partial residues, according to 
which its behavior can be described, it is proposed to parameterize the gener-
ating function of each element. In this way, the method used is the association 
of the sub-indices with the relation of the parameters given by the position i 
and the time instant t.

Based on this modeling technique, we establish the coefficients of the residual 
polynomial as a function of time as at(i); the coefficient of the polynomial in the 
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most significant position as at-1(m-1), representing the most significant bit fed 
back into the circuit, at a time instant t-1 and at-1(i-1), which corresponds to the 
preceding bit of the calculated element. From this procedure the equations that 
describe the behavior of the LFSR circuit for its parallel description were developed, 
in order to achieve the implementation of the concurrent structure for VHDL.

2.1. Hardware description optimization techniques 
The simplification of the circuit is proposed, defining this as a function of the 
characteristic polynomial. The first step is the selection of the irreducible or 
primitive polynomial for the generation of the field; these polynomials are 
characteristic of the length m of the field GF (2m) and are presented in detail 
in [24]. The criterion that must be met is that they divide the elements of the 
finite field and cannot be written as the product of two field polynomials [25].

A polynomial satisfying such a condition is the polynomial p(x) = 285, 
which has been selected because it is a polynomial GF field generator widely 
used in standard RS encoders [26]. At this point the steps of the calculation of 
the multiplication in finite fields were studied to describe them concurrently in 
VHDL language in order to obtain the model for the hardware implementa-
tion of the multiplier. Using the polynomial generator of the field in its binary 
form, p(x) = 100011101, which is a polynomial of degree m = 8, we obtain 
the particularized model shown in Figure 2.

Figure 2. LFSR model for p (x) = 285

a7 a6 a5 a4 a3 a2 a1 a0XOR XOR XOR XOR

Source: Author own elaboration.

This simplified circuit of the modular reduction component presents a saving 
in the resource consumption of the device. The VHDL description of the con-
current LFSR circuit model used by the multiplier is generated from a simpli-
fication of Table 2 by the direct cancellation of the branches whose coefficients 
are “0” in the selected irreducible polynomial, resulting in the VHDL code of 
the simplified structure, presented in Table 3.
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Table 3. Concurrent VHDL description of  the LFSR-based divider component

p<=’100011101”; -- Primitive polynomial = D^8+D^4+D^3+D^2+1 (285)
u0: a1<=D_date;
-- Only for terms whose coefficient of p(x) is nonzero:
u1: a2<=a1(6 downto 4)&(a1(3)xor a1(7))&(a1(2)xor a1(7))&(a1(1)xor a1(7))&a1(0)& a1(7); 
...
u7: a8<=a7(6 downto 4)&(a7(3)xor a7(7))&(a7(2)xor a7(7))&(a7(1)xor a7(7))&a7(0)& a7(7);

Source: Author own elaboration.

The products must be implemented with AND gates between the elements of 
the partial outputs of the LFSR, which are at, i, a vector of m elements with the 
data element bt, the bit being in the position t of the input B. In bitwise parallel, 
in order to obtain the resulting vectors bt, ci, j, corresponding directly to at, i, 
in case the bit in the respective position of bt is equal to ‘1’, in case otherwise 
it will be annulled. A vector Bt is defined as the concatenation of the element 
bt, m times, the partial results operate through XOR gates for the results of the 
final product, as described in Table 4.

Table 4. Description of  combinational product and accumulator in VHDL

-- ut: at+1 <= at(i) xor (at(m-1) and p(i) & ... for i=m-1 to 0
b1<= b(0) & b(0) & b(0) & b(0) & b(0) & b(0) & b(0) & b(0);
...
b8<= b(7) & b(7) & b(7) & b(7) & b(7) & b(7) & b(7) & b(7);
-- bt <= b(t-1)& b(t-1)& b(t-1)& b(t-1)& b(t-1)& b(t-1)& b(t-1)& b(t-1)

c1<=a1 and b1;
...
c8<=a8 and b8; 
-- ct <= at and bt

datex<=c1 xor c2 xor c3 xor c4 xor c5 xor c6 xor c7 xor c8; 

Source: Author own elaboration.

3. Results
The test benches of the components were created to observe the response of 
the designed modules. To validate the GF multiplier, based on LFSR, we con-
sidered the parameter m = 8, with a field generator polynomial p(x) = 285, and 
the coefficients 104 and 13. The multiplication of the first 16 elements of the 
finite field GF (256), generated the expected results, in parallel (see Figure 3).
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The operation of the RS encoder (255, k) was validated for the cases studied 
when the multiplier components to be used in the encoder were tested. For this 
purpose, the parameter k variable was established, which was assigned the values 
223, 239, and 247, using the polynomial generator of RS code for each case. The 
coefficients of the polynomial G(x) are assigned in the step of the encoder redun-
dancy generator. For its operation with the data D(x), the data entry uses values 
from 1 to k increasing, set in the test_bench. In each case, the 255-k correspond-
ing redundancy symbols are obtained. The simulation was performed using the 
ModelSim XE III 6.3c tool, incorporated in the ISE of Xilinx. The coded word 
generated corresponded with the result expected from the theoretical behavior.

Figure 3. Multiplication on GF (256) with coefficient 104 and 13

test_104/d_dato 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

test_104/datex 0 104 208 184 189 213 109 5 103 15 183 223 218 178 10 98 206

/test_13/d_dato 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

/test_13/datex 0 13 26 23 52 57 46 35 104 101 114 127 92 81 70 75 208

Source: Author own elaboration.

At the resource level of the FPGA hardware device a logical complexity of 3 
stages is obtained (modular reduction), demonstrating that the depth of the design 
does not interfere in the propagation speed of the signals, as shown in Figure 4.

To implement the circuit, 44 reported LUTs were required, the Slice number 
is associated with the number of LUTs of the FPGA as mentioned before, the 
device XC5VLX30 presents 4 LUTs per Slice. The number of inputs required by 
LUTs for the design is 6, 4, and 3, requiring 17 Slices, as shown in Table 5, which 
is a significant reduction of FPGA components, compared to previous reports.
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Table 5. Resources used by the multiplier GF(2m) with m = 8

Components Slice LUTs LUTs Reg. FF Power Consumption
[1]Ahlquist A 53 - - -

[1]MastrovitoB 64 58 - 2.75

[1]PaarC 48 53 - 3.54

[2]Optimized Multiplier 17 44 - 0.39 

Source: [1] Comparative Table [27]; [2] Dynamic Power Consumption supplied by the XPower of  the ISE11 in mW for the 
FPGA XC5VLX30 [28].

3.1. Optimization for signal allocation 
After the theoretical analysis, the power consumption in mW of the designed 
modules was obtained, using Xilinx’s XPower Analyzer tool, as shown in Table 6, 
considering as a comparison factor the order of allocation of the signals for the 
multiplier circuit [29]. 

Table 6. Power Consumption Comparison of  Multipliers

Power (mW) Logic Signal Clk IO P_Dynamic
(A(x) mod P(x) * B(x)) 0.04 0.35 0.00 - 0.39

(B(x) mod P(x) * A(x)) 0.04 0.38 0.00 - 0.42

Source: Author own elaboration.

The power consumption associated with the logic of the P_Logic circuit in 
both cases was 0.04 mW, while the P_Signal presented a variation according 
to the order of the operands, consuming a power associated with the signals 
of 0.38 mW in the case of B(x) mod p(x). A(x). A power consumption of 
0.35 mW was seen in the case of A(x) mod p(x). B(x); this optimization was 
achieved through the signal reordering technique; in this case the results of 
the multiplier were tested using the commutative property of the operations. 
There is no consumption associated with the clock signal P_clk, since the 
multiplier is concurrent and there is no consumption of P_IO because it is 
an internal component and the signals of the multiplier are not implemented in 
the external pins of the FPGA. The order of the inputs was found to only have 
an effect on the P_Signal that corresponds to a technique of decrease of the 
consumption that will be used for the design of the modules of the encoder. 
Based on the power ratio of the optimized design and the original version, a 
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7.89% savings in the power consumption associated with the signal in the 
multiplier design was obtained.

The model was developed starting from the expression of the polynomials 
generated as partial residues in the multiplication operation in finite fields, 
which was expressed as a function of the xi displacements in the multiplication 
operation with the corresponding B

i
 coefficient.

a(x) = xi A(x) mod p(x) (5)

The matrix expression for the product of symbols in Galois finite fields can 
be expressed as:

A(x)* B(x) =

a1,0 a1,m 1

am,0 am,m 1

b1,0 bm,m 1

b1,0 bm,m 1

= C0 Cm 1 ,

con at ,1 = at 1(i 1)xor at 1 m 1( )and  p i( )( ) y bt ,i = b(i)

(6)

After obtaining the multiplier equations in VHDL, a mathematical-logical 
model for reconfigurable hardware was obtained from the study of the equa-
tions of each of the elements of the LFSR, presented in Table 2. In this way, a 
generalization of the behavior of the elements at(i) was obtained in equation 7.

at (i)= at-1 (i-1) xor (at-1 (m-1) and p(i)) (7)

at is an element generated at a time t to apply the modular reduction A(x) mod 
p(x), resulting from the operation and between p(i), the polynomial coefficient of 
the feedback function at a position i, with the element at-1 

in the most significant 
position of the previous symbol, this term is in XOR with at-1, in position i. It is 
important to note that the optimization by signal organization has been con-
sidered, in which the order of multiplication factors affects the efficiency of the 
design, the most efficient distribution of signals being presented in the model.

Next, the general equation of the residual vector of the modular division or 
reduction was defined for each time instant, using the variable t as an operation 
reference with the elements of B(x). Using the concatenation operation, substi-
tute the clock signal to generate the sequence of the bits given by equation 7, 
from which equation 8 is obtained.
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at = &i=0
m 1at 1 i 1( )  xor  at 1 m 1( )and  p i( )( ) (8)

Where the ‘&’ symbol is used to indicate the concatenation operation in 
order to match the description in VHDL. This is optimized by parallelizing the 
circuit by concatenation of signals for concurrent processing. To implement 
the combinational step of the product of A(x) xi mod p(x).B(x), which corre-
sponds to the AND operation of each element of B(x) by each other at and the 
summation XOR of these, equation 9 is derived.

c = t=1
m at  and  bt (9)

Substituting equation 8 into equation 9, gives the model of the multiplier 
as equation 10.

c = t=1
m &i=0

m 1at 1 i 1( )xor at 1 m 1( )and  p i( )( )  and  bt (10)

This equation has the variable i for nonzero coefficients of the polynomial 
p(x), which achieves an optimization by the simplification of the equations, as 
mentioned in the efficiency analysis. This VHDL model allows for the resource 
consumption analysis based on the multiplier architecture, which has been 
parallelized through the concurrent description of the modular reduction stage. 
This represents an important advance in the proposed multiplier model with 
the concurrent LFSR component. The calculation of the consumption of gates 
was established by equation 11, for the calculation of AND required.

#ANDmult = m2  (11)

And for the calculation of the consumption of XOR gates we used equation 12.

#XORmult = m2+p.m-4.m-p+3  (12)

where m corresponds to the number of bits of each field word and p corre-
sponds to the number of non-zero bits of the irreducible polynomial p(x); in 
this case the optimization corresponds to the simplification of operations, as a 
function of the number of coefficients p(x). When analyzing the structure of the 
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VHDL model, the associated direct operands are obtained and an estimation of 
hardware resources can be made at the level of gates.

Conclusion
A model of the studied circuit was found where the description in VHDL was 
defined for the behavior of the LFSR function, recognizing function generating 
terms, which maintain relation with the temporal sequence, modeled concur-
rently. This proposal is innovative because it considers the temporary displace-
ments as concurrent concatenation operations of elements of the circuit, thus 
optimizing the processing speed and minimum energy consumption, which is 
of great interest at the moment. In this way, a model for implementation in 
hardware is achieved, with updated and highly efficient technology, useful for 
other developments that reuse GF multipliers as basic elements.

From the model, a generalized hardware description is obtained as a novel 
contribution since a model has not been found that allows the reproduction of 
results from a set of basic equations and obtains the results discussed here. This 
allows for a dynamic adjustment with great flexibility in its configuration; the 
adaptive proposal supports hardware development from the parameterized equa-
tions and manages to reuse the components, oriented to concurrent implemen-
tation, giving a new approach to the design. Similarly, the behavioral principles 
of the logical systems are the basis for design and optimization, recognizing the 
associated patterns in order to achieve the design of a descriptive model at the 
mathematical - logical level for the generation of the configuration code.

Considering the algorithmic relationship of the hardware functions, it has 
been proposed to advance this method of modeling, for the optimization of the 
VHDL designs, with parallel processing capacity, using the least number of re-
sources of the FPGA devices, and test it with a selected study case. We obtained 
the equations, which describe the GF multiplier, with adaptable parameters, 
since it was determined that the parameters once assigned allow optimizing the 
design since the results will be given in a function of the coefficients that defines 
the characteristic polynomial of the circuit. This is achieved by a highly efficient 
design and a novel model, which provides a method of hardware configuration, 
taking advantage of the correspondence with the VHDL code of the components 
of the multiplier element, for adaptation to new designs.
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