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Introduction

The term structure of interest rates (or yield curve, for short) plays a cen-
tral role in an economy. Current yields have useful information for forecasting
future short yields and, potentially, real economy activity, inflation, and other
key economic variables (Piazzesi, 2010). Market participants use these fore-
casts for pricing financial assets, taking investment decisions, and managing
financial risks. Central banks use them to inform monetary policy. Con-
sumers use them to make saving and consumption decisions. Thus, superior
modeling and forecasting of the yield curve serve policymakers in evaluating
past, current, and future economic conditions and help market participants
and consumers in taking better financial decisions.

In this paper, we model and forecast the daily yield curve for Colombia
using non-arbitrage affine term structure models (ATSMs). The affine term
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structure modeling framework dominates the theoretical and empirical litera-
ture on term structure models (Piazzesi, 2010). To our knowledge, this is the
first study to test the in-sample fit and out-of-sample forecasting capabilities
of ATSMs using data for Colombia, which is a necessary step to determine
the usefulness of ATSMs.

ATSMs specify the risk-neutral evolution of some unobservable factors
responsible for the dynamics of the yield curve by making the yields of dif-
ferent maturities an affine (linear) function of those factors. These models
provide a flexible structure for examining the dynamics of zero-coupon bond
yields by ruling out arbitrage opportunities. They consistently link the cross-
sectional and time-series properties of the yield curve (Piazzesi, 2010). The
no-arbitrage conditions, in turn, improve the efficiency of the estimates.

Using daily data from 2002 to 2015, we estimate a battery of ATSMs fol-
lowing the estimation methods presented in Ait-Sahalia and Kimmel (2010).
We find that a three-factor Gaussian model fits the data and forecasts the daily
yield curve for Colombia remarkably well. As Dai and Singleton (2000) point
out, Gaussian models are fully flexible regarding the signs and magnitudes
of conditional and unconditional correlations of the underlying factors but at
the cost of assuming constant conditional variances.1 We find that allowing
for conditional heteroscedasticity in the analyzed ATSMs has little effect on
the accuracy of the forecasts for our sample data and severely complicates the
maximization of the log-likelihood functions. For our daily data, the three-
factor ATSM outperforms the one- and two-factor ATSM. The root mean
squared errors (RMSE) of in-sample, one, and five day ahead forecasts of av-
erage yields are below twenty basis points. This makes the three-factor ATSM
especially appealing for pricing financial instruments, taking investment deci-
sions, andmanaging financial risk. It also offers the possibility of investigating
the yield curve dynamics at higher frequencies than those traditionally used
in the literature.

1 Gaussian models allow nominal interest rates to take on negative values. However, this is
a limitation of ATSMs in general. They cannot accommodate simultaneously unrestricted
correlations among the underlying factors and positive interest rates (Dai & Singleton, 2000).
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We show that the factors of the estimated three-factor ATSM closely
mimic three widely used empirical proxies for the level, the slope, and the
curvature of the yield curve. In particular, the third factor has a strong cor-
relation with an average of the short- and long-run zero coupon yields. The
second factor is highly correlated with the slope of the yield curve computed
as the difference between ten-year and three-month interest rates. The first
factor is highly correlated with an empirical proxy of the curvature computed
as twice the four-year yield minus the slope of the yield curve. In addition,
principal component analyses produce similar looking level, slope, and curva-
ture factors as those of the three-factor ATSM. Our results are robust to the
choice of estimation periods, the use of non-smoothed zero coupon bond
yields to estimate the models, and the use of data at lower frequencies (e.g.,
weekly and monthly).

The article is organized as follows. Section I reviews the previous litera-
ture. Section II presents the ATSMs. Section III explains the methodology
we use for estimation and forecasts. Section IV describes the data. Section V
presents and discusses the main empirical results. The last section concludes.

I. Literature review

Before ATSMs, the dominant framework for explaining the term struc-
ture of interest rates was the expectation hypothesis, according to which ex-
pected returns are constant over time (Campbell, 1986). The liquidity prefer-
ence and the preferred habitat theories of the term structure of interest rates
can be seen as extensions of the expectation hypothesis, making additional
predictions regarding term premiums as a function of the time to maturity
of zero coupon bonds. Most tests of the expectation hypothesis reject the
existence of constant risk premiums (Campbell & Shiller, 1991; Fama &
Bliss, 1987). Thus, modeling time-varying risk premiums is at the heart of
ATSMs.

ATSMs date back to the work of Vasicek (1977) and Cox, Ingersoll and
Ross (1985). Duffie and Kan (1996) study ATSMs in detail and show how
yields for every maturity can be represented as affine functions of some un-
observed factors-latent variables. Dai and Singleton (2000) define a canonical
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representation of ATSMs according to which an Am(N)-ATSM includes N
factors, m of which affect the conditional volatility of the other factors. For
instance, an A0(3)-ATSM implies that three homoscedastic latent factors
explain the dynamics of the yield curve. Likewise, an A1(3)-ATSM implies
that three latent factors explain the dynamics of the yield curve and that one
of the factors determines the conditional volatility of all of them.

Ang and Piazzesi (2003) estimate a discrete Gaussian ATSM incorporat-
ing two observable macroeconomic factors: inflation and real activity. Their
study finds that macroeconomic factors highly determine the movements of
the short and middle ends of the curve, while latent factors are more influen-
tial in long yields. They also show, using out-of-sample forecast comparisons,
that no-arbitrage cross-equation restrictionsmake ATSMsmore accurate than
unrestricted VARs, and that the inclusion of macroeconomic factors further
improves their performance. We contribute to the literature in Colombia by
estimating a benchmark model without macroeconomic factors as a natural
step for future research incorporating them.

Estimating ATSMs is challenging. There exist different methods in the
literature (e.g., quasi maximum likelihood, Kalman filtering, simulation, and
method of moments, among others). Duan and Simonato (1999) propose a
state-space representation of ATSMs and approximate the conditional mean
and variance under the assumption that the diffusion process is Gaussian.
They estimate the latent factors using the Kalman filter. This allows them to
evaluate the likelihood function (quasi likelihood function for non Gaussian
models) and estimate the parameters of various ATSMs.

Brandt and He (2006) argue that the quasi maximum likelihood method
is skewed for multi-factor models. They present a correction for the quasi-
likelihood function, which is obtained by simulation and converges to the real
likelihood function. This method reduces the skewness and variability of the
estimated parameters, but it is computationally intensive.

More recently, Ait-Sahalia and Kimmel (2010) propose a new method to
estimate ATSMs. They use closed-form approximations of the log-likelihood
functions for the state variables following themethods presented in Ait-Sahalia
(2008). They find that their proposed method generates superior parameter
estimates.
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ATSMs have been used for several purposes. For instance, Singleton
and Umantsev (2002) price options on coupon bonds and swaptions using
ATSMs. Ho, Huang andYildirim (2014) propose amethod for pricing inflation-
indexed derivatives based on ATSMs. Duffee (2002) uses ATSMs to ana-
lyze the behavior of expected excess returns. Durham (2006) uses ATSMs to
model observed and unobserved components of nominal U.S treasury curves
and estimate inflation risk premiums.

Another branch of models currently being used for representing the yield
curve are the dynamic models derived from the Nelson-Siegel equation, orig-
inally proposed by Nelson and Siegel (1987) as a curve-fitting tool. Diebold
and Li (2006) re-parametrize the original model to depend on three dynamic
factors associated with level, slope, and curvature. They produce forecasts by
fitting autoregressive models to these factors and compare them to several
other models. While the proposed model performs poorly for short forecast
horizons (1 month), results improve as the horizon is enlarged.

These models are further analyzed by Diebold, Rudebusch, Glenn and
Aruoba (2006), who include macroeconomic factors in their regressions and
allow for correlated dynamic factors. They use variance decompositions to
assess the effects of latent and macroeconomic factors on the different ends
of the curve, finding a greater influence of the observable factors in short
yields.

In a more recent study, Christensen, Diebold and Rudebusch (2011) ad-
just the dynamic Nelson-Siegel models (both in their independent and corre-
lated factor versions) to be arbitrage free. They derive a model similar to tra-
ditional ATSMs, but in which the coefficients of the affine functions that de-
scribe yields match the Nelson-Siegel factor loadings. Their results show that
the correlated specification has a superior in-sample performance, while the
simpler model of uncorrelated factors produces better out-of-sample fore-
casts. They also suggest that no-arbitrage restrictions improve the forecast
accuracy of the models.

This kind of dynamic Nelson-Siegel models has been widely accepted
amongst practitioners. It has paralleled the development of ATSMs as dy-
namic models of the yield curve. The main difference between these two
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types of models hinges on the no-arbitrage restrictions; but recent studies,
such as Christensen et al. (2011), have brought them closer together. A com-
plete review of dynamic Nelson-Siegel models can be found in Diebold and
Rudebusch (2013).

For Colombia, most studies model the yield curve focusing on interpo-
lation and curve-fitting of cross-sectional data. The Nelson-Siegel model
and cubic splines are the main methodologies used. Few studies use dy-
namic models, most of them adopting the dynamic Nelson-Siegel framework.
Melo-Velandia and Castro-Lancheros (2010) use themethodology inDiebold,
Rudebusch, Glenn and Aruoba (2006) to relate monthly yield data for Colom-
bia to macroeconomic factors. They find a strong relation between the model
factors (level, slope, and curvature) and the interbank rate, inflation, the GDP
gap, and the EMBI. They show, using Granger causality tests, that macroeco-
nomic variables affect the yield curve factors. Maldonado-Castaño, Zapata-
Rueda and Pantoja-Robayo (2014) use the re-parametrization of the Nelson-
Siegel model presented in Diebold and Li (2006) and apply the Kalman filter
to estimate and forecast its factors.

Restrepo-Tobón and Botero-Ramírez (2008) calibrate one-factor arbitrage-
free interest rate models to daily yield curves in Colombia. Their study con-
cludes that these types of models can closely represent Colombia’s term struc-
ture of interest rates. To our knowledge, no study has extended these re-
sults to multi-factor models and out-of-sample forecasts. We intend to exam-
ine these generalizations and forecast capabilities using arbitrage-free ATSMs
with daily data for Colombia.

II. Affine term structure models

We denote the yield of a zero-coupon bond withmaturity τ by γτ . ATSMs
assume that the short-term interest rate is an affine function2 of a state vec-
tor X(t) of N underlying factors, which can be observable (macroeconomic
variables) or latent (Piazzesi, 2010). Thus,

2 A function F : RN → RM is said to be affine if F (X) = A + B ·X for some vector A
and matrix B.
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r = lim
τ→0

γτ = δ0 + δ⊤1 X(t) (1)

with δ0 ∈ R and δ1 ∈ RN .
The state vector is assumed to follow an affine diffusion process under

the risk-neutral measure Q, that is,

dX(t) = κ̃
(
Θ̃−X(t)

)
dt+ Σ

√
S(t)dW̃t, (2)

where κ̃, Σ ∈ RN×N , Θ̃ ∈ RN , W̃ is an N-dimentional independent brown-
ian motion and S(t) is a N ×N diagonal matrix with entries

[S(t)]i,i = αi + β⊤
i X(t), (3)

with αi ∈ R and βi ∈ RN .
The market price of risk Λ(X) ∈ RN is also specified in order to ob-

tain the physical dynamics. Following the literature, we assume that Λ(t) =√
S(t)λ, where λ is a vector of constants (see Dai & Singleton, 2000). Thus,

the state process is also affine under the physical measure P (Duffie & Kan,
1996), that is,

dX(t) = κ(Θ−X(t))dt+ Σ
√

S(t)dWt. (4)

Under this structure, Duffie and Kan (1996) show that the yield for any
maturity τ can be obtained as an affine function of the state vector, that is,

γτ (t) = A(τ) +B(τ)⊤X(t). (5)

The coefficients B(τ) and A(τ) are the solution to the following system
of differential equations:

a′(τ) = −δ0 + b(τ)⊤κ̃Θ̃ +
1

2

N∑
i=1

[b(τ)⊤Σ]2iαi (6)

b′(τ) = −δ1 − κ̃⊤b(τ) +
1

2

N∑
i=1

[b(τ)⊤Σ]2iβi, (7)
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with a(0) = 0, b(0) = 0⃗, A(τ) = −a(τ)/τ , and B(τ) = −b(τ)/τ . These
equations come from imposing no-arbitrage restrictions (Duffie & Kan,
1996).

Dai and Singleton (2000) propose a canonical representation in which
Σ is an identity matrix. We adopt their notation and representations. As an
example, the following equations specify the physical dynamics of three-factor
models:

The A3(3) model:

dX(t) =


κ11 κ12 κ13

κ21 κ22 κ23

κ31 κ32 κ33




θ11

θ21

θ31

−X(t)

 dt

+


√

X1(t) 0 0

0
√

X2(t) 0

0 0
√

X3(t)

 dWt

(8)

The A2(3) model:

dX(t) =


κ11 κ12 0

κ21 κ22 0

κ31 κ32 κ33




θ11

θ21

0

−X(t)

 dt

+


√

X1(t) 0 0

0
√

X2(t) 0

0 0
√

1 + β31X1(t) + β32X2(t)

 dWt

(9)
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The A1(3) model:

dX(t) =


κ11 0 0

κ21 κ22 κ23

κ31 κ32 κ33




θ11

0

0

−X(t)

 dt

+


√

X1(t) 0 0

0
√

1 + β21X2(t) 0

0 0
√

1 + β31X1(t)

 dWt

(10)

The A0(3) model:

dX(t) = −


κ11 0 0

κ21 κ22 0

κ31 κ32 κ33

X(t)dt+


1 0 0

0 1 0

0 0 1

 dWt (11)

See Ait-Sahalia andKimmel (2010) for a full specification of all themodels
mentioned in this paper.

III. Methodology

To estimate the models, we follow the technique for maximum likelihood
estimation of ATSMs proposed in Ait-Sahalia and Kimmel (2010) and Ait-
Sahalia (2008). They approximate the log-likelihood function of ATSMs by
a series of highly accurate expansions for the conditional distributions of the
state processes. The resulting density expansion from this approach is in
closed form. To estimate the parameter vector θ of an Am(N) model, N
yields in a panel data of bond yields are assumed to be observed without er-
ror. All others yields are assumed to be observed with independent Gaussian
errors.
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A. The log-likelihood function

For a given parameter vector θ, Equation (6) gives A(τ) and B(τ) for all
τ .3 We then form a vector Γ0(θ) (N × 1), whose elements are A(τ), and
a matrix Γ(θ) (N × N ), whose columns are B(τ), for all τ (maturities) ob-
served without error. The same is done for maturities observed with errors,
obtaining Γe0(θ) and Γe(θ).

A vector containing yields observed without errors γne(t) can then be
expressed as

γne(t) = Γ0(θ) + Γ(θ)⊤X(t) (12)

using Equation (5). Equation (12) is a linear system with N equations and N
unknown variables, which allows us to obtain time series of the values of each
state variable in X(t).

Using these estimated state variables, we calculate the estimated yields
observed with error using Equation (5).

As in Ait-Sahalia and Kimmel (2010), we denote by pX(∆, x | x0; θ) the
conditional density ofX(t+∆) = x givenX(t) = x0 and pγ(δ, γ | γ0; θ) the
transition function of the vector of yields observed without errors. It follows
from Equation (12) that

pγ(∆, γ | γ0, θ) = det
∣∣(Γ(θ)⊤)−1

∣∣ pX (
∆, X̂ (t+∆) |X̂ (t) ; θ

)
, (13)

where X̂(t) = (Γ(θ)⊤)−1 (γne (t)− Γ0 (θ)). As the conditional density of
the state process is not known in closed form in most models, we use the
approximations introduced in Ait-Sahalia (2008). The log-likelihood of yields
observed without errors at times t0, . . . , tn with constant time steps of ∆ is
then:

ℓ(θ) =
1

n

n∑
i=1

ln (pγ (∆, γne (ti) | γne (ti−1) ; θ)). (14)

3 We solve this ordinary differential equations system using the ode45(...) solver in Mat-
lab®R2013A.
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Estimates for yields observed with error are obtained using X̂(t) and
Equation (5). Errors are obtained by comparing the estimates with their ob-
served values and their log-likelihood is computed using the Gaussian density
function. The final log-likelihood function, which we maximize to obtain pa-
rameter estimates, is computed by adding the log-likelihood of observation
errors with the log-likelihood of yields observed without error. Figure 1 sum-
marizes this process.

Figure 1. Obtaining the log-likelihood functions

Yields
observed

without error

X = (Γ(θ)⊤)−1(γne − Γ0(θ)) γ̂e = Γe0(θ) + Γe(θ)
⊤X

State
loglikelihood

Yields
observed
with error

ϵ = γe − γ̂e

Error
loglikelihood

Total log-
likelihood

Source: authors’ elaboration based on Ait-Sahalia and Kimmel (2010).

B. Optimization procedure

The log-likelihood functions of most ATSMs present multiple local max-
ima. This makes traditional optimization methods (e.g., gradient based meth-
ods) unreliable. In addition, the domain of feasible parameters is restricted for
various models. This makes the estimation procedure a difficult task. We turn
to heuristic algorithms to maximize the log-likelihood function. In particular,
we use the ‘differential evolution’ heuristic approach (Storn & Price, 1997)
given its ability to search for optimal parameter values in a continuous space.
The algorithm works as follows:
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Algorithm 1. Differential evolution

Data: # Generations:ng, Population size:np, F ∈ [0, 2], CR ∈ [0, 1]
P1← Random initial population
for i = 1 to ng do

P0← P1
for j = 1 to np do
{a, b, c} ← random individuals from P0
V ← a+ F ∗ (b− c)
for k = 1 to #Params do

if rand ≤ CR then
Uk ← Vk

else
Uk ← P0(j)k

end
end
if fobj(U) ≤ P0(j) then

P1(j)← U
end

end
end

Source: authors’ elaboration.

Solutions (sets of parameter values) are treated as vectors. We represent
the j − th solution of a population P as P (j), and its i− th parameter value
as P (j)i. ‘Evolution’ is recreated by comparing individuals (solutions) from
an initial population with new ones and preserving the best. New individuals
are generated as linear combinations of individuals from the initial popula-
tion. Before being compared with the initial individual, they can ‘mutate’
by changing some of their parameter values with a given probability. This
‘evolutionary’ process is repeated over numerous generations and the best
individual from the last population (according to a given objective function)
is taken as the final solution.4

4 The pseudo code for differential evolution is presented in Algorithm 1 and an implementation
thereof in Matlab®R2013A is available upon request.
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C. Forecasts

ATSMs have mostly been used for monthly and yearly studies of the term
structure of interest rates. We intend to evaluate their performance in fore-
casting the yield curve for Colombia at higher frequencies. Short-horizon
forecasts of yield movements can be of help to investors and portfolio man-
agers in building strategies andmanaging risk. For instance, accurate forecasts
could give trading signals or be used to compute measures such as the value
at risk of a portfolio.

With the estimated parameters, we find the ‘true’ state value for the last
‘known’ date (determined by the horizon) using Equation (5). We then
simulate 10,000 state trajectories from this date up to the desired forecast
date using Euler’s numeric scheme on Equation (4). For each trajectory, we
use Equation (5) to obtain yields for all maturities (observed with and without
error). We take our forecast value as the mean of the 10,000 simulated points
for every maturity.

We also report the simulated 95% confidence intervals for the forecast
yields. The limits are obtained by computing the 2.5 and 97.5 percentile points
of the 10,000 simulated values for every yield. We repeat this procedure for
all days in the validation sample.

IV. Data

We use daily zero coupon yields estimated using the Nelson-Siegel model
obtained from Infoval between January 8 2002 and February 3 2015. The
sample includes 3.051 trading days. We use the first 2,000 observations for es-
timation, reserving the rest for out-of-sample forecasts and validations. Sum-
mary statistics for this dataset are presented in Table 1.

We consider maturities of 0.25, 0.5, 1, 2, 4, 5, 7, 8, 9 and 10 years. As
pointed out above, for every Am(N) model, we assume that the N yields
observed without errors are:

• 3 months yield for one-factor models.
• 3 months and 4 years yields for two-factor models.
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• 3 months, 4 years and 10 years yields for three-factor models.

Table 1. Summary statistics for the Nelson-Siegel data set

Maturity (years) 0.25 0.50 1.00 2.00 4.00 5.00 7.00 8.00 9.00 10.00

Minimum 1.44 2.02 2.91 3.67 4.08 4.27 4.54 4.65 4.75 4.84

First quartile 3.97 4.10 4.54 5.19 6.22 6.55 6.96 7.10 7.19 7.29

Median 5.23 5.39 5.76 6.60 8.03 8.48 8.85 8.93 8.98 9.02

Third quartile 7.54 8.12 8.99 9.66 10.68 10.98 11.55 11.69 11.84 11.90

Maximum 11.44 11.66 12.88 14.52 16.75 17.10 17.20 17.34 17.44 17.53

Mean 5.76 6.09 6.67 7.56 8.61 8.93 9.33 9.46 9.55 9.63

Variance 4.59 4.82 5.42 6.49 7.58 7.81 8.02 8.06 8.09 8.11

Standard deviation 2.14 2.20 2.33 2.55 2.75 2.79 2.83 2.84 2.84 2.85

Excess kurtosis −1.07 −1.31 −1.39 −1.04 −0.73 −0.72 −0.74 −0.75 −0.75 −0.75

Note: the total number of observations is 3051.
Source: authors’ elaboration based on data from Infovalmer.

The remaining yields are assumed to be observed with independent Gaus-
sian errors.

In order to check the robustness of the models, we also work with a
data set of bootstrapped zero rates obtained from Bloomberg®. These zero
coupon yields are non-smoothed counterparts of the Nelson-Siegel yields.
We use daily observations from April 29 2005 to May 22 2015. The first 1,700
observations are used for estimation. Table 2 presents summary statistics for
the bootstrapped yield data set.

V. Empirical results

We estimate nine ATSMs ranging from one to three factors. Following
the notation in Dai and Singleton (2000), we consider the following models:
AM (N) with N,M ∈ {1, 2, 3} and M ≤ N .
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Table 2. Summary statistics for the bootstrapped data set

Maturity (years) 0.25 0.5 1 2 4 5 7 8 9 10

Minimum 2.81 3.00 3.37 3.77 4.12 4.25 4.67 4.78 4.86 4.97

First quartile 3.93 3.99 4.44 5.10 6.14 6.42 6.95 7.11 7.18 7.28

Median 4.77 4.92 5.23 6.01 7.23 7.69 8.33 8.37 8.40 8.41

Third quartile 7.42 7.57 8.06 8.66 9.33 9.72 9.80 9.84 9.82 9.82

Maximum 10.16 10.51 11.07 11.98 12.71 12.93 13.12 13.11 13.10 13.13

Mean 5.67 5.83 6.17 6.79 7.69 8.03 8.45 8.56 8.60 8.62

Variance 4.67 4.71 4.77 4.42 4.02 3.98 3.65 3.44 3.22 3.06

Standard deviation 2.16 2.17 2.18 2.10 2.00 1.99 1.91 1.85 1.79 1.75

Excess kurtosis −0.94 −0.89 −0.84 −0.75 −0.70 −0.80 −0.66 −0.58 −0.48 −0.41

Note: the total number of observations is 2625.
Source: authors’ elaboration based on data from Bloomberg.

The estimation of the models A2(2), A1(3), A2(3) and A3(3) does not
converge using our data. This can be due to the higher complexity that the
feasible solution space acquires as conditional volatility is introduced. We
tested numerous optimization procedures which either found no feasible so-
lutions or stagnated on initial parameter values. Out of the tested method-
ologies, differential evolution performed best.

We report results for the models A0(1), A1(1), A0(2), A1(2) and A0(3).

A. In-sample Fit

The RMSE for the in-sample fit of each model and maturity is presented
in Table 4. The parameter values used for the differential evolution heuristic
are presented in Table 3. A plot of the in-sample fit for the model with the
lowest RMSE is presented below (all others can be found in Appendix).
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Table 3. Differential evolution parameter values used for estimation

Parameter Value

ng 2000

np 200

F 0.4

CR 0.9

Note: the algorithm is stopped if the standard deviation of the objective
functions of all solutions in a population were less than 0.1.
Source: authors’ elaboration.

Table 4. In-sample root-mean-square error (RMSE) between modeled and observed yields

RMSE (basis points)

Maturity A0(1) A1(1) A0(2) A1(2) A0(3)

(Years) NS BS NS BS NS BS NS BS NS BS

0.25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.5 34.7293 14.3485 33.5475 13.5516 13.3769 18.1574 14.3687 16.4851 9.8554 17.2051

1 84.4390 34.1240 81.5798 30.6891 26.2842 33.4925 25.2418 32.6466 18.3131 31.5518

2 139.5312 54.1757 135.2037 50.1033 25.8577 32.7213 27.4021 31.8013 16.0763 31.8009

4 183.5011 78.8338 178.2805 76.2121 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

5 194.6745 86.6065 189.2136 84.6585 13.4699 30.9987 15.2345 29.7403 4.8226 22.5503

7 211.2276 92.6067 204.9971 93.3573 37.5874 56.8845 38.5727 56.1768 7.3120 29.2402

8 218.4159 90.3075 211.4492 90.2334 48.4840 57.7654 48.7305 57.1240 5.8909 24.5676

9 225.3108 90.6555 217.3645 86.9753 58.8277 57.9986 60.1145 56.3779 3.3835 17.0939

10 232.0046 98.9167 222.8885 89.4189 68.7309 61.6099 74.0213 57.7069 0.0000 0.0000

Note: errors are reported in basis points. Columns marked with NS correspond to the Nelson-Siegel yields
(2.000 observations); BS indicates bootstrapped rates (1.700 observations).
Source: authors’ elaboration using data from Infovalmer (for the NS set) and Bloomberg (for the BS set).

Figure 2, when compared with Figures A1-A4 (see the Appendix), depicts
how the A0(3) model outperforms all other models based on its ability to
fit the data. Table 4 shows that the in-sample RMSEs for this model are
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below 18.31 basis points for all maturities. Short and middle-maturity yields
obtain higher in-sample errors because of their more platykurtic distributions
(Tables 1 and 2). For long-term maturities, the RMSEs are below 7.31 basis
points. Thus, based on the RMSE criterion, the A0(3) model is the best
model, which implies that, out of the models taken into account, a three-
factor homoscedastic structure best describes the evolution of the yield curve
in Colombia.

Figure 2. A0(3) In-sample fit (Nelson-Siegel data)
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Source: authors’ elaboration using data from Infovalmer.

B. Out-of-sample forecasts

We conduct out-of-sample forecasts for one and five days. Tables 5 and
6 report the RMSEs between the mean forecast (of the 10,000 simulated
trajectories) and the observed values. The A0(3) model outperforms the
other models considered in forecasting out-of-sample yields. RMSEs for in-
sample, one- and five-day ahead forecasts are below 20 basis points. Again,
shorter yields (0.5, 1 and 2 years) present higher errors, while longer maturities
are more stable and easier to forecast.
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Table 5. One-day out-of-sample forecast mean RMSE

RMSE (basis points)

Maturity A0(1) A1(1) A0(2) A1(2) A0(3)

(Years) NS BS NS BS NS BS NS BS NS BS

0.25 8.1601 5.8908 7.9698 5.8018 8.2444 5.8321 91.5271 1531.2320 7.9759 5.8237

0.5 37.9014 15.1482 36.4622 14.3558 11.4499 12.4465 76.9352 1481.7873 12.0973 14.1969

1 100.5005 41.7525 95.2800 40.7645 17.0386 21.3431 74.3880 1410.7824 17.5101 25.1460

2 191.4617 80.9970 182.8747 81.5551 13.4894 21.6089 78.0349 1282.2888 14.2782 24.5432

4 299.7667 143.2359 279.1309 144.1055 6.1066 4.9791 50.3135 1100.0893 6.0965 5.0062

5 333.5070 167.0939 304.3713 165.5840 8.2769 13.2989 37.2752 1029.5393 6.8395 10.1583

7 378.8010 199.4466 333.1596 189.3652 16.1299 29.6337 30.2056 890.7205 7.5100 17.0006

8 394.2433 213.9765 341.5084 198.2714 21.1197 35.2649 34.7320 830.5686 7.2349 11.5639

9 406.5176 229.8556 347.5867 208.2402 26.7962 45.0049 43.2201 779.4247 6.7211 12.5920

10 416.4146 245.3361 352.1222 217.6140 33.0581 55.3252 55.2536 732.6228 6.4229 6.0447

Note: errors are reported in basis points. Columns marked with NS correspond to the Nelson-Siegel yields
(1050 observations); BS indicates bootstrapped rates (924 observations).
Source: authors’ elaboration using data from Infovalmer (for the NS set) and Bloomberg (for the BS set).

Table 6. Five-day out-of-sample forecast mean RMSE

RMSE (basis points)

Maturity A0(1) A1(1) A0(2) A1(2) A0(3)

(Years) NS BS NS BS NS BS NS BS NS BS

0.25 15.1925 12.2025 12.4830 11.2027 16.1403 11.5939 428.0572 7642.6494 12.7942 11.5112

0.5 33.1407 20.1558 39.0481 17.4795 13.5451 15.6078 392.5900 7452.2251 14.9358 17.0529

1 95.5089 45.5055 97.3026 41.9420 15.8807 22.8493 354.2918 7112.1345 19.3979 26.6267

2 187.4598 84.2295 184.7206 82.1965 14.8798 23.4962 310.8762 6492.8519 17.9351 27.5118

4 297.0978 145.9109 280.6704 144.5052 14.9246 14.0779 235.1709 5490.7906 14.8562 14.2994

5 331.2655 169.5456 305.7547 165.9627 16.4029 19.6076 207.0488 5077.5200 15.4784 15.9843

7 377.1450 201.5111 334.2807 189.6990 21.1581 33.4648 175.7343 4360.6013 15.8685 21.7465

8 392.7905 215.9600 342.5253 198.6720 24.9186 38.6090 170.9744 4056.5068 15.7456 17.6619

9 405.2278 231.7549 348.5144 208.6865 29.6757 47.8283 172.1168 3786.4570 15.5817 18.2408

10 415.2573 247.0460 352.9735 217.9718 35.2785 57.9955 178.1510 3542.6739 15.6207 16.2657

Note: errors are reported in basis points. Columns marked with NS correspond to the Nelson-Siegel yields
(1046 observations); BS indicates bootstrapped rates (920 observations).
Source: authors’ elaboration using data from Infovalmer (for the NS set) and Bloomberg (for the BS set).
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The A0(2) model performs marginally better than the A0(3) in forecast-
ing some of the shorter maturities. However, RMSEs for longer yields (τ > 5)
are considerably bigger for the A0(2).

Apart from the A0(2) and A0(3), the models are not good at forecasting
the specified maturities. One-factor models fall short when adjusting a high
number of yields. In addition, the A1(2) model presents very large errors,
which might be due to complications in the estimation procedure introduced
by conditional heteroscedasticity.

Figures 3-6 show simulated confidence intervals for states and yields fore-
casts. In line with previous results, short yields have wider confidence in-
tervals and sometimes deviate from them. Longer maturities have narrower
intervals and follow them more consistently.

Figure 3. A0(3) out-of-sample one-day state forecast confidence intervals
(Nelson-Siegel data)
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Source: authors’ elaboration using data from Infovalmer.
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Figure 4. A0(3) out-of-sample one-day yield forecast confidence intervals
(Nelson-Siegel data)
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Figure 5. A0(3) out-of-sample five-day state forecast confidence intervals
(Nelson-Siegel data)
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Figure 6. A0(3) out-of-sample five-day yield forecast confidence intervals
(Nelson-Siegel data)

%
 a

.c

0.25y

11/2011 08/2013 05/2015

3

3.5

4

4.5

5

%
 a

.c

0.5y

11/2011 08/2013 05/2015

3.5

4

4.5

5

%
 a

.c

1y

11/2011 08/2013 05/2015

3.5

4

4.5

5

5.5

%
 a

.c

2y

11/2011 08/2013 05/2015
3.5

4

4.5

5

5.5

6

%
 a

.c

4y

11/2011 08/2013 05/2015

4

5

6

7

%
 a

.c

5y

11/2011 08/2013 05/2015
4

5

6

7

%
 a

.c

7y

11/2011 08/2013 05/2015

5

6

7

%
 a

.c

8y

11/2011 08/2013 05/2015

5

6

7

%
 a

.c

9y

11/2011 08/2013 05/2015

5

5.5

6

6.5

7

7.5

%
 a

.c

10y

11/2011 08/2013 05/2015

5

6

7

8

Real

Forecast 95% C.I

Source: authors’ elaboration using data from Infovalmer.

C. Robustness tests

All the results discussed earlier are based on a data set of yields extracted
from market data using the Nelson-Siegel method. These yield curves are
smoother than what is normally observed in the market. In order to test the
robustness of our results, we also use non-smoothed data obtained from zero
coupon yields constructed using the bootstrap method, also known as the
non-smoothed Fama-Bliss method (Fama & Bliss, 1987), which iteratively
builds the discount rate function by computing the forward rates necessary
to price successively longer maturity bonds.5

5 There are other methods to compute zero coupon yields from market data. For instance,
the smoothed Fama-Bliss method makes these discount rates smoothed by fitting a function
to the ‘non-smoothed’ rates. The McCulloch method uses a cubic spline with an implicit
smoothness penalty. The Fisher-Nychka-Zervos method employs a cubic spline to the for-
ward rate function. The Nelson-Siegel method uses an exponential function for the discount
rate function and applies it directly to bond prices. Bliss (1996) shows the non-smoothed
Fama-Bliss method is the most appropriate.
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With the bootstrapped yields, our results change little (Tables 4-6). How-
ever, both the in- and out-of-sample forecasting errors tend to be slightly
higher. The A0(3) model still outperforms the other models based on in-
and out-of-sample forecasts for all maturities. However, the A0(2) model
obtains lower errors than the A0(3) in forecasting shorter maturity yields.
Similar to the Nelson-Siegel yields, the A1(1) model has lower RMSEs than
the A0(1). The big errors in the A1(2) model also persist.

In order to evaluate the A0(3) model forecast capabilities, we compare
its out-of-sample results with a random walk benchmark. We choose this
simple model as a benchmark because it has remained hard to beat by mod-
els in the literature. For instance, Ang and Piazzesi (2003) find that it out-
performs unrestricted vector auto-regressions (VARs), and only manage to
slightly beat it (although not for all maturities) using an arbitrage-free model
with macroeconomic factors. Duffee (2002) also documents random walks
beating ATSMs’ forecast capabilities. The one-day and five-day out-of-sample
forecast RMSE comparisons are presented in Table 7.

Consistent with the literature, the A0(3) forecasts are outperformed by
random walks. While the shorter end of the curve presents bigger differences
in its forecast RMSEs, yields with maturities over four years obtain RMSEs
less than two basis points over the random walk benchmark for both one-day
and five-day ahead forecasts with the Nelson-Siegel data set.

The higher forecast errors for short yields can be attributed to the lack of
macroeconomic factors in our setting. The literature shows macroeconomic
factors may play a role in forecasting short and mid-maturity yields (Ang &
Piazzesi, 2003).

To further evaluate the performance of theA0(3)model against a random
walk over time and maturity, we analyze the cumulative squared prediction
error (CSPE), a metric introduced in Welch and Goyal (2008). The CSPE
compares the forecasting performance of a model against a benchmark over
time. Calling γi the measured value of a yield observed at time i and γ̂RW

i ,
γ̂
A0(3)
i its forecast values by the random walk and A0(3)models, respectively,
we compute the CSPE as follows:
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Table 7. Comparison of out-of-sample forecast RMSE between the A0(3) model and a
random walk benchmark

1-day forecast RMSE (Basis points) 5-days forecast RMSE (Basis points)

Maturity Nelson-Siegel Bootstrapped Nelson-Siegel Bootstrapped

(Years)
A0(3)

Random
A0(3)

Random
A0(3)

Random
A0(3)

Random

walk walk walk walk

0.25 7.9759 7.9753 5.8237 5.8115 12.7942 12.5073 11.5112 11.2754

0.50 12.0973 7.2085 14.1969 5.1796 14.9358 11.3416 17.0529 10.7431

1.00 17.5101 6.3573 25.1460 4.3725 19.3979 10.5281 26.6267 10.1987

2.00 14.2782 5.3922 24.5432 4.8386 17.9351 11.9459 27.5118 12.3527

4.00 6.0965 6.0908 5.0062 4.9523 14.8562 14.7843 14.2994 13.7999

5.00 6.8395 6.1126 10.1583 5.0093 15.4784 15.0885 15.9843 13.8300

7.00 7.5100 6.0007 17.0006 5.2088 15.8685 15.1914 21.7465 14.2843

8.00 7.2349 6.0505 11.5639 5.3522 15.7456 15.2614 17.6619 14.4649

9.00 6.7211 6.1963 12.5920 5.5129 15.5817 15.3958 18.2408 14.7716

10.00 6.4229 6.4222 6.0447 5.9155 15.6207 15.5942 16.2657 15.0288

Source: authors’ elaboration using data from Infovalmer (for the NS set) and Bloomberg (for the BS set).

CSPEt =

t∑
i=1

[(
γ̂RW
i − γi

)2 − (
γ̂
A0(3)
i − γi

)2
]

(15)

A positive slope in this metric means the A0(3) model outperforms the
random walk over a period of time. We obtain the CSPE for all the maturities
over the entire validation sample. Figure 7 presents the CSPE obtained for
one-day and five-day forecast horizons using the A0(3)model estimated with
daily observations.

In line with the results from Table 7, all the CSPEs from Figure 7 have a
negative value at the end of the validation sample indicating that the random
walk model has better accuracy overall. However, several interesting results
can be drawn from the behavior of the CSPE metric over time and maturity.
For one-day forecasts, CSPEs are very close to zero for the set of maturities
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which were assumed to be observed without error for the estimation of the
model (0.25, 4 and 10 years). This is not the case for the rest of maturities,
which have a steady decline in their CSPEs through most of the sample. This
marked difference made by the assumption of an observation error in the
estimation procedure repeats itself in the five-day forecasts: theA0(3) is more
accurate when forecasting yields observed without error, even surpassing the
random walk model for a long period of time around the end of 2012.

Figure 7. Cumulative squared prediction error difference between a random walk and the
A0(3) model

0.25y

10/2010 12/2012 02/2015

-0.8

-0.6

-0.4

-0.2

0

0.2

0.5y

10/2010 12/2012 02/2015

-8

-6

-4

-2

0

1y

10/2010 12/2012 02/2015

-20

-10

0

2y

10/2010 12/2012 02/2015

-15

-10

-5

0

4y

C
S

P
E

 d
if
fe

re
n
c
e
 b

e
tw

e
e

n

R
a
n
d
o
m

 W
a
lk

 a
n
d
 A

0
(3

)

10/2010 12/2012 02/2015

-0.2

0

0.2

5y

10/2010 12/2012 02/2015

-1

-0.5

0

7y

10/2010 12/2012 02/2015

-2

-1.5

-1

-0.5

0

8y

10/2010 12/2012 02/2015

-1.5

-1

-0.5

0

9y

10/2010 12/2012 02/2015

-0.6

-0.4

-0.2

0

10y

10/2010 12/2012 02/2015

-0.1

0

0.1

0.2

1-day forecast

5-day forecast

Note: These results are obtained using the Nelson-Siegel data set.
Source: authors’ elaboration using data from Infovalmer.

When analyzing the effect of maturity on the CSPE, the difference be-
tween short and long yields is highlighted again. Yields with maturities of
less than four years have a much steeper descend in their CSPE than longer
yields. This causes them to have significantly lower final values in both one-
day and five-day forecasts. CSPEs for longer yields fall at a much slower rate
and even stagnate after 2012, indicating the A0(3) model and the random
walk are similarly accurate from 2013 to 2015.
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In order to check the robustness of our results to the frequency of ob-
servation, we re-estimate the A0(3) model using weekly and monthly obser-
vations from the Nelson-Siegel dataset. We follow the same estimation and
forecast methodologies that were used for daily observations. Table 8 reports
the results for weekly data and Table 9 reports the results for monthly ones.
Forecasts are obtained with a one-period ahead horizon (one week and one
month, respectively).

Table 8. Modeled and forecast RSME for the A0(3) model estimated with weekly
observations

RMSE (basis points)

Maturity (Years) In-sampleA0(3) fit
Out-of-sample 1-week forecast

A0(3) Random walk

0.25 0.0000 23.7651 12.3279

0.50 10.3195 23.3404 11.3276

1.00 18.4792 25.4479 10.3468

2.00 15.5717 23.7895 11.9871

4.00 0.0000 16.9017 15.1659

5.00 4.6319 16.5392 15.6178

7.00 7.1523 16.4781 15.8800

8.00 5.8183 16.3442 15.9748

9.00 3.3527 16.3501 16.1189

10.00 0.0000 16.8046 16.3293

Note: 500 observations were used for estimation, and 124 for forecast validations.
Source: authors’ elaboration using data from Infovalmer (for the NS set).
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Table 9. Modeled and forecast RSME for the A0(3) model estimated with monthly
observations

RMSE (basis points)

Maturity (Years) In-sampleA0(3) fit
Out-of-sample 1-month forecast

A0(3) Random walk

0.25 0.0000 37.7977 20.3857

0.50 10.7852 34.2667 19.7754

1.00 19.9255 34.2831 19.7233

2.00 17.4827 34.3616 23.9683

4.00 0.0000 33.1740 31.3470

5.00 5.0450 33.9651 32.9028

7.00 7.6208 34.5065 33.9756

8.00 6.0756 34.3494 34.0358

9.00 3.5034 34.1842 33.9807

10.00 0.0000 34.2838 33.8912

Note: 100 observations were used for estimation, and 49 for forecast validations.
Source: authors’ elaboration using data from Infovalmer (for the NS set).

Forecast RMSEs are below 26 basis points for the weekly estimations and
below 38 basis points for the monthly estimations. As was the case with daily
estimations, short term yields have higher errors in the weekly results, but this
is not the case with the monthly forecasts.

We also compute CSPEs for both weekly and monthly forecasts. These
results are presented in Figure 8. The distinction between yields assumed to
be observed with and without error during estimation seems to lose relevance
at these lower frequencies. For instance, the four-year yield CSPEs resemble
those from the five-year yield very closely, which is not the case for daily
observations (see Figure 7). Maturity is the differentiating factor in Figure
8, with short yields again having poor performance but yields with maturities
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over four years showing better accuracy with theA0(3). One-month forecasts
CSPEs also show better behavior than weekly ones, suggesting that lower
frequency facilitates forecasting.

Figure 8. Cumulative squared prediction error difference between a random walk and the
A0(3) model
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Source: authors’ elaboration using data from Infovalmer.

Although most studies focus their analyses and forecast tests on lower
frequencies, we compare the out-of-sample RMSEs presented here with a
few results from the literature as follows:

• Duffee (2002) reports RMSEs ranging from 28 to 52 basis points when
forecasting U.S. yields with maturities up to 10 years with a three-month
forecast horizon using various ATSMs and ‘essentially affine’ term struc-
ture models, which are a more flexible variation of ATSMs.

• Ang and Piazzesi (2003) also forecast U.S. yields with maturities up to
5 years and obtain RMSEs ranging from 18 to 30 basis points, making
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out-of-sample one-month forecasts and updating estimations at every
observation. They manage to lower their errors by including macroeco-
nomic factors in their model.

• Maldonado-Castaño et al. (2014) use a dynamic Nelson-Siegel model,
estimated by Kalman filtering, to produce one-day yield forecasts for
the Colombian market. They achieve RMSEs ranging from 21 to 57
basis points for yields with maturities of 3 months, 3 years and 13 years.

Overall, our forecast RMSEs compare well against these results. Our
monthly errors are in the range delimited by Duffee (2002), which should be
taken as an upper bound considering the longer forecast horizon. One-month
RMSEs from Ang and Piazzesi (2003) are lower, but close to our results.
Finally, our one-day forecasts achieve lower errors than those reported by
Maldonado-Castaño et al. (2014) using Colombian data.

We also compare the modeled latent factors from the A0(3) model to
three empirical proxies for the level, the slope, and the curvature of the yield
curve. Following Diebold and Li (2006), we take the following proxies for
the empirical factors:

• Level: (γ0.25 + γ4 + γ10)/3

• Slope: γ0.25 − γ10
• Curvature: 2γ4 − γ10 − γ0.25

We compare these proxies with the modeled latent factors from theA0(3)
model estimatedwith theNelson-Siegel dataset. Results for the non-smoothed
yields data set are similar. Table 10 presents correlation coefficients between
the estimated A0(3)-ATSMs latent factors and the empirical proxies for the
level, the slope, and the curvature of the yield curve. The three estimated
factors have high correlations with the level of the yield curve. The empirical
proxies for the slope and the curvature show high correlations with the first
and second estimated factors, respectively. Figure 9 depicts these relations.
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Table 10. Correlation coefficients between the A0(3) factors and the proxies for
empirical factors

Level Slope Curvature

X1 0.7198 −0.7027 0.3667

X2 0.8928 −0.5102 0.7095

X3 −0.9929 0.1166 −0.2949

Source: authors’ elaboration using data from Infovalmer.

Figure 9. Empirical factor comparison with estimated latent factors for the A0(3) model
with the Nelson-Siegel data set
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Source: authors’ elaboration using data from Infovalmer.

We also compare the three A0(3) estimated factors with the first three
principal components of the yield curve. Table 11 presents their correspond-
ing correlation coefficients. Figure 10 depicts their relations. As with the
empirical proxies, there is a strong correlation between the estimated factors
and the three first principal components, which together explain close to 96%
of the variance of the yield curve.
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Table 11. Correlation coefficients between the A0(3) factors and the principal components
of the yield data

PC1 PC1 PC3

X1 0.7554 −0.4945 −0.4201

X2 0.9332 −0.2361 0.2683

X3 −0.9807 −0.1919 −0.0267

Source: authors’ elaboration using data from Infovalmer.

Figure 10. Comparison of the first three principal components of the Nelson-Siegel yields
with estimated latent factors for the A0(3) model
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Conclusions

We estimate five ATSMs using daily data for Colombia. To our knowl-
edge, this is the first paper applying ATSMs to the Colombian bond market.
Our main empirical results indicate that a homoscedastic three-factor ATSM
fits the data remarkably well. Our results hold under a series of robutsness
tests, which include using an alternative data set and data observed at lower
frequencies (e.g., weekly and monthly).
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We find that the three estimated factors for the ATSM closely mimic the
behavior of three empirical proxies for the level, the slope, and the curvature
of the yield curve. According to principal components analyses, these esti-
mated factors account for about 96% of the yield curve variance. One- and
two-factor ATSMs are unable to describe the behavior of the yield curve in
Colombia and should not be used in practice.

Our forecasts have similar errors to those reported in past studies and are
close to the random walk benchmark. We encounter larger forecast errors in
the short end of the curve, which are highly influenced by macroeconomic
factors. Our results can serve as a benchmark for future research in which
observable macroeconomic variables could be used. We think this is a natural
next step in our research.

We find evidence supporting the assumption of normally distributedmea-
surement errors on some of the yields disturbs forecasts for said maturities
at high frequencies. We hypothesize that as our current estimation method-
ology is only concerned with the distribution of these errors, but not their
minimization, other methodologies could yield better forecast results. These
errors become less significant as the forecast horizon enlarges possibly due
to the increment of variability between observations. This may explain why
the existing literature, which focuses on lower frequency analyses, has not yet
found this assumption to be problematic.

Therefore, the estimation of ATSMs applying different methodologies
from the one used in this paper is also a necessary future development of our
research. Because of its complexity, the literature on estimation of ATSMs
is growing quickly. It is important to assess whether our results and choice
of model hold using novel estimation procedures and to find less computa-
tionally intensive routines that can ease the use of ATSMs in the Colombian
market.

Our work opens the possibility for future research on the relation between
macroeconomic factors and the behavior of the yield curve using ATSMs. A
promising area for further work is the identification of empirical macroeco-
nomic factors not spanned by the yield curve and that can potentially be useful
in forecasting it.
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Appendix

Plots of the in-sample fit for the A0(1), A1(1), A0(2) and A1(2)models

Figure A1. A0(1) in-sample fit (Nelson-Siegel data)
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Source: authors’ elaboration using data from Infovalmer.

Figure A2. A1(1) in-sample fit (Nelson-Siegel data)
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Source: Source: authors’ elaboration using data from Infovalmer.
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Figure A3. A0(2) in-sample fit (Nelson-Siegel data)
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Source: authors’ elaboration using data from Infovalmer.

Figure A4. A1(2) in-sample fit (Nelson-Siegel data)
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Source: authors’ elaboration using data from Infovalmer.
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