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Abstract: This paper considers the problem of collinearity among inputs in a stochastic frontier production model, an issue that has received
little attention in the econometric literature. To address this problem, a principal-component-based solution is proposed, which allows carrying
out a joint interpretation of technical efficiency and the technology parameters of the model. Applications of the method to simulated and real
data show its usability and effective performance.
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Una solución para la multicolinealidad en modelos de función de producción de frontera estocástica

Resumen: Este artículo considera el problema de colinealidad entre insumos en un modelo de producción de frontera estocástica, un tema que
ha recibido poca atención en la literatura econométrica. Para abordar el problema, se propone una solución basada en componentes principales
que permite interpretar conjuntamente la eficiencia técnica y los parámetros de tecnología del modelo. Los resultados de la aplicación del método
con datos simulados y reales muestran que éste es fácil de usar y presenta un buen desempeño.
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Une solution au probléme de la multicolinéarité dans les modéles de fonction production á frontiére
stochastique

Résumé: Cet article examine le probléme de la colinéarité concernant les inputs dans un modéle de production á frontiére stochastique, une
question qui a reçu peu trés d’attention dans la littérature économétrique. Pour résoudre ce probléme, nous proposons une solution basée dans
la méthode des composants principaux, laquelle permet d’interpréter á la fois l’efficacité et la technologie des paramétres techniques. Tout en
utilisant des données réelles et simulées, les résultats de l’application de la méthode montrent qu’elle est facile á utiliser et elle présente en plus
une bonne performance.
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Introduction

It is well known that the production frontier and technical efficiency anal-
yses on a productive unit assume that deviations of the observed product
from its maximum (or potential) attainable output, located on the produc-
tion frontier, are due exclusively to inefficiencies of the productive unit (see,
e.g., Kumbhakar & Lovell, 2000; Coelli, et al., 2005). For instance, if the as-
sumed production function is a Cobb-Douglas technology y = x⊤β + v,
where y and x are the logarithms of the observed output and the input vec-
tor respectively, then the production frontier x⊤β is deterministic, and v =
y−x⊤β corresponds to the production inefficiency. The lack of randomness
in the production frontier of this kind of models does not correspond to the
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real economic life, where uncontrollable random production shocks occur
commonly.

The stochastic frontier production model (Aigner, Lovell & Schmidt,
1977; Meeusen & van den Broeck, 1977) is specified as

yi = x⊤
i β + vi − ui, i = 1, . . . , n, (1)

where yi is the observed output and xi the k-dimensional vector of inputs
for the ith firm, x⊤

i β and vi
iid∼ (0, σ2v) represent the deterministic and noise

components of the frontier respectively, x⊤
i β + vi is the maximum output

reached by the firm which constitutes the stochastic frontier, and ui is the
non-negative random technical inefficiency component (i.e., the amount by
which the firm fails to achieve its optimum). A symmetric distribution, such
as the normal distribution, is usually assumed for vi. It is also common to
assume that vi and ui are independent, and that both errors are uncorre-
lated with xi. Typically, the production function relies on a Cobb-Douglas,
translog, or any other logarithmic production model log(yi) = x⊤

i β+vi−ui,
where the components of xi are logarithms of inputs, its squares and cross-
products.

Most of the proposed stochastic frontier models in the literature differ
mainly on the assumed probability distribution function for the inefficiency
component u ≥ 0 in order to apply the maximum likelihood estimation
method. In this regard, Kumbhakar and Lovell (2000), Coelli, et al. (2005),
and Greene (2008) present an extensive literature about some distributions.
Some instances are the half-normal model u ∼ N+(0, σ2u), where N+ de-
notes the non-negative half-normal distribution (Aigner, Lovell & Schmidt,
1977); the exponential model u ∼ Exp(λ), λ > 0 (Meeusen & van den
Broeck, 1977; Aigner, Lovell & Schmidt, 1977); the gamma model u ∼
Γ(λ, θ), λ > 0 and θ > 0 (Stevenson, 1980; Greene, 1980a; Greene, 1980b);
and the truncated normal u ∼ N+(µu, σ

2
u) (Stevenson, 1980).

An issue with applications of stochastic frontier analysis emerges when
inputs are highly correlated, from which the multicollinearity problem arises,
leading to precision loss in estimates. This loss is also given by low input
variability. In the presence of collinearity, it is known that: (i) separating
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the individual effects of each independent variable could be a difficult task;
(ii) the precision loss is expressed in large estimated variances of estimates,
and hence the parameters could be non-statistically significant; (iii) the esti-
mated coefficients can have incorrect signs and impossible magnitudes; and
(iv) there are instability problems in the sense that small changes in obser-
vations, or eliminating an apparently insignificant variable, can produce large
changes in estimates (see, e.g., Belsley, Kuh & Welsh, 1980; Fomby, Johnson
& Hill, 1984; Groß, 2003). Therefore, it is clear that multicollinearity is a
data-driven issue rather than a statistical one (Belsley, Kuh & Welsh, 1980),
which can have harmful implications for the estimation of technology coeffi-
cients due to their relation with the scale returns generated by the production
model.

Despite these drawbacks, a great extent of literature on stochastic fron-
tier analysis considers the multicollinearity problem as unimportant or uses
a non-statistical solution. For example, Filippini, et al. (2008) exclude the
input whose correlation with other inputs is quite high in order to prevent
multicollinearity. Other studies sacrifice the advantages of flexible functional
forms for the deterministic component due to the cost of statistically insignif-
icant estimates generated by unreliable parameter estimates resulting from lin-
ear dependencies between inputs (Kumbhakar & Lovell, 2000; Puig & Junoy,
2001; Filippini, 2008). Finally, others argue that, when technical inefficiency
estimation is the main aim, multicollinearity is not necessarily a serious prob-
lem and the interpretation of estimates is secondary (Puig & Junoy, 2001).
To the best of our knowledge, no theoretical research has been reported on
studying both the stochastic frontier analysis and multicollinearity jointly.

In this paper, we propose a principal-component-based solution for mul-
ticollinearity in a stochastic frontier model. Basically, we use a re-paramete-
rization of the model in terms of all k principal components and restrict the
corresponding coefficient vector to those principal components associated
to the r < k nonzero eigenvalues. Finally, estimates of the original model
are recovered. The solution permits a joint estimation of the technical effi-
ciency and parameters through this better specified model. Also, through a
simulation experiment, the proposed estimator is shown to be consistent and
has less mean square error with respect to the traditional stochastic frontier
analysis.
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The rest of the paper is organized as follows. In Section I., the solution
is described, and its performance is studied by a Monte Carlo simulation ex-
periment in Section II. In Section III., an application with real data is carried
out. Finally, some conclusions are given.

I. The principal component solution

For the case where there is only near exact multicollinearity (i.e., when one
or more nearly exact linear relations exist among the regressors), we consider
the matrix representation of the stochastic frontier production model (1),

y = β01+Xβ + v − u, (2)

where y, v, u, and 1 are n-dimensional vectors of observed outputs, produc-
tion and inefficiency random errors, and ones respectively; X is the n × k
design matrix of inputs; and β the corresponding k-dimensional vector of
coefficients. For clarity and notational simplicity, all inputs are assumed to be
standardized in the sequel.

Now, based on the spectral decomposition of the k×k symmetric matrix
X⊤X ,

X⊤X = PΛP⊤,

whereΛ = diag(λ1, λ2, . . . , λk) is the diagonal eigenvalues matrix (with λ1 ≥
λ2 ≥ · · · ≥ λk), and P = (p1,p2, . . . ,pk) the corresponding orthogonal
eigenvectors matrix.

By the orthogonality of P (i.e., PP⊤ = P⊤P = I), the regression
model (2) can be re-parameterized as

y = β01+XPP⊤β + v − u

= β01+Zθ + v − u,
(3)

where Z = XP = (z1, z2, . . . , zk) is the matrix of principal components
zj = Xpj with the property z⊤

j zj = λj , ∀j, and θ = P⊤β.
From the theory of principal component analysis –PCA– (see, e.g., Jol-

liffe, 2002), it is well known that the principal components zj = Xpj are
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orthogonal, where the first principal component z1 has the maximal variance
(i.e., the largest amount of information) of the original variables, the second
principal component z2 has the next maximal variance after the first prin-
cipal component, and so on. Note that if the jth characteristic root λj is
approximately equal to zero, then zj ≈ 0.

Additionally, if all k principal components are used, the same parameter
vector β is obtained, which is unreliable under collinearity among the exoge-
nous variables as was pointed out in the introduction. In other words, fairly
small eigenvalues of theX⊤X matrix generate imprecisions in the OLS esti-
mator β̂. Therefore, the strategy consists in preventing that the estimate goes
in directions λipj associated to fairly small λj (see Fomby, Johnson & Hill,
1984; Groß, 2003).

Thus, to deploy the strategy, we restrict β into the subspace spanned by
the columns λ1p1, λ2p2, . . . , λrpr, where λ1 ≥ λ2 ≥ · · · ≥ λr > 0 are the
r < k largest eigenvalues of X⊤X and λr+1 ≈ λr+2 ≈ · · · ≈ λk ≈ 0. This
means that range(X) = r. Hence, in order to eliminate imprecisions, Massy
(1965), Jolliffe (1982), Mason and Gunst (1985), and Hwang and Nettleton
(2003) suggest using (i) the first principal components with the largest vari-
ance and highly correlated with output y, and (ii) those principal components
of low variance but with high output correlation.

Therefore, the model (3) can be re-expressed using the subdivision of the
eigenvalues into groups λ1 ≥ λ2 ≥ · · · ≥ λr > 0 and λr+1 ≈ λr+2 ≈
· · · ≈ λk ≈ 0 and defining the corresponding partition Z = (Z1,Z2) =
(XP 1,XP 2), where Z1 is the n× r matrix with principal components as-
sociated to the nonzero eigenvalues and Z2 the n× (k − r) matrix with the
rest of the principal components associated to the eigenvalues approximately
equal to zero. Then, assuming that the first r principal components are highly
correlated with y in order to simplify the notation, and using Z2 ≈ 0, the re-
parameterized model (3) can be expressed as

y = β01+Z1θ1 +Z2θ2 + v − u

= β01+Z1θ1 + v − u,
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where θ =
(
θ⊤1 ,θ

⊤
2

)⊤
, with θ1 = P⊤

1 β1 and θ2 = P⊤
2 β2. The constraint

Z2 ≈ 0 is equivalent to θ2 ≈ 0.

Finally, the least squares estimator of θ1 is θ̂1 =
(
Z⊤

1 Z1

)−1
Z⊤

1 y. Thus,
the principal component estimator of β in (2) is given by

β̂ = P 1θ̂1, (4)

with covariance matrix Cov(β̂) = P 1Cov(θ̂1)P⊤
1 .

II. Simulation study

To evaluate the performance of the proposed principal-component-based
method, we carried out a Monte Carlo simulation experiment with 20,000
replications on the stochastic frontier model

log(yi) = β0+β1 log(xi1)+β2 log(xi2)+vi−ui, i = 1, . . . , n(= 100), (5)

with a half-normal/normal specification, ui
iid∼ N+(0, σ2u) and vi

iid∼ N (0, σ2v),
where σu = 3, σv = 2.5, σ2 = σ2u + σ2v = 15.25, γ = σ2u/σ

2 = 0.59,
(β0, β1, β2) = (1, 0.8, 0.7); and (x1, x2) ∼ N (µ,Σ) with µ = (20, 25) and
Σ = DRD, where D = diag(σx1 , σx2) = diag(1, 2); and R =

(
1 ρ
ρ 1

)
with

ρ = Corr(x1, x2) = 0.7, 0.8, 0.9. For the most severe multicollinearity prob-
lem, where ρ = 0.9, we performed the simulations with n = 1000 to study
the large sample properties of the estimator. We used the frontier: Stochastic
Frontier Analysis R package version 1.1-0 by Coelli and Henningsen (2013).

Tables 1-3 show the means, biases, and mean squared errors −MSE−
of estimators of β1 and β2 approximated by the principal-component-based
(β̂pc

1 and β̂pc
2 ) and the usual stochastic frontier analysis (β̂sfa

1 and β̂sfa
2 ) methods

for the assumed values of ρ. Results indicate that, in general, the coefficient
estimators obtained with the principal-component-based method are biased,
as these biases do not decrease asymptotically. However, the estimators have
less MSE with respect to the ones obtained by the traditional method, even in
large samples. The usual estimators are biased for finite samples with greater
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biases than for the proposed method, although these decrease asymptotically.
The estimations for γ and σ2 remain unaffected if the principal components
are chosen correctly. Finally, when keeping fixed the number of principal
components, the biases increase as the linear relationship among variables
decreases.

Table 1. ρ = 0.7

n β̂
pc
1 β̂sfa

1 β̂
pc
2 β̂sfa

2 σ̂2
pc σ̂2

sfa γ̂pc γ̂sfa

Mean

100 0.991 0.851 0.618 0.717 15.341 15.320 0.525 0.531

Bias

100 0.191 0.051 −0.082 0.017 0.091 0.070 −0.065 −0.059

MSE

100 3.400 8.829 2.113 5.502 5.053 5.127 0.315 0.315

Source: author’s elaboration.

Table 2. ρ = 0.8

n β̂
pc
1 β̂sfa

1 β̂
pc
2 β̂sfa

2 σ̂2
pc σ̂2

sfa γ̂pc γ̂sfa

Mean

100 0.983 0.901 0.611 0.677 15.502 15.492 0.537 0.544

Bias

100 0.183 0.101 −0.089 −0.023 0.252 0.242 −0.053 −0.046

MSE

100 3.312 10.542 2.062 6.523 5.014 5.079 0.306 0.305

Source: author’s elaboration.
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Table 3. ρ = 0.9

n β̂
pc
1 β̂sfa

1 β̂
pc
2 β̂sfa

2 σ̂2
pc σ̂2

sfa γ̂pc γ̂sfa

Mean

100 0.974 0.600 0.606 0.853 15.574 15.563 0.542 0.549

1000 0.953 0.791 0.593 0.695 15.153 15.143 0.574 0.574

Bias

100 0.174 −0.200 −0.094 0.153 0.324 0.313 −0.049 −0.041

1000 0.153 −0.009 −0.107 −0.005 −0.097 −0.107 −0.016 −0.016

MSE

100 3.211 14.525 1.997 9.048 5.037 5.094 0.302 0.300

1000 1.005 4.449 0.627 2.763 1.791 1.793 0.111 0.112

Source: author’s elaboration.

III. Application

To see how the proposed solution behaves with real data, we use the
production data of the agricultural and livestock sector with a sample of n =
23 livestock farms. The output variable is the total income, and inputs are
labor, capital and other inputs; all have been measured in nominal Colombian
−COL− pesos.

Then, a stochastic frontier production model was fitted assuming a
Cobb-Douglas functional form with normal-exponential specification,
vi

iid∼ N(0, σ2v) and ui
iid∼ Exp(λ), λ > 0. Estimations were carried out us-

ing the LIMited DEPendent−LIMDEP− econometric software (version
10). As can be seen in Table 4 the only statistically significant parameter
is the input corresponding to log(Other inputs2). Although the variable
log(Capital) is insignificant, its estimated coefficient has an unexpected
opposite sign, indicating a signal of possible multicollinearity.
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Table 4. Estimated Stochastic Frontier Production Function

Variable β̂j
̂s.e.(β̂j) β̂j/

̂s.e.(β̂j) P(|Z| ≥ z) Xj

Constant 4.30 2.42 1.77 0.076

log(Labor) 0.25 0.36 0.68 0.498 17.92

log(Other inputs1) 0.11 0.17 0.62 0.534 14.89

log(Other inputs2) 0.53 0.22 2.38 0.018 17.83

log(Capital) −0.10 0.15 −0.62 0.53 5.60

Variance parameters for compound error

γ 3.33 2.07 1.60 0.11

σu 0.26 0.13 2.05 0.04

Source: author’s elaboration.

To detect multicollinearity, we computed the scaled condition in-
dexes. Table 5 shows there are two harmful condition indexes (with
values greater than 30), indicating two possible near-linear dependencies
among inputs. Thus, under the multicollinearity problem, we applied the
proposed principal-component-based solution. The proportion of vari-
ance explained by the first principal component was 88.6%. Therefore,
we applied the solution using this principal component. Table 6 displays
the corresponding results. Based on these results, the estimates of the
principal-component-based stochastic frontier using the equation (4) are
in Table 7. Results show that all inputs are statistically significant with
correct signs in accordance to production theory.
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Table 5. Condition Indexes

Condition Index
1.000

12.829
42.981
101.730

Source: author’s elaboration.

Table 6. Estimated Principal Component Model

Variable β̂j
̂s.e.(β̂j) β̂j/

̂s.e.(β̂j) P(|Z| ≥ z) Xj

Constant 19.33 0.18 107.2 0.000

PC1 0.39 0.05 7.23 0.000 0.15e-12

Variance parameters for compound error

γ 2.75 0.98 2.82 0.005

σu 0.29 0.07 3.90 0.00

Source: author’s elaboration.

Table 7. Estimated Principal-Component-Based Stochastic Frontier Model

Variable β̂j
̂s.e.(β̂j) β̂j/

̂s.e.(β̂j)

log(Labor) 0.1658 0.0229 7.2335

log(Capital) 0.1969 0.0272 7.2321

log(Other inputs1) 0.1914 0.0264 7.2336

log(Other inputs2) 0.2182 0.0301 7.2331

Scale returns 0.7723

Source: author’s elaboration.
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Conclusions

Based on simulation results, the estimators for inputs obtained under
the proposed principal-component-based solution are biased, and such
biases do not decrease asymptotically. Besides, the estimators have less
MSE with respect to the usual ones even in large samples. For finite sam-
ples, the estimators are biased, and seem to have greater biases than the
principal-component-based estimators. Also, the bias diminishes when
the sample size increases. If the principal components are correct, the
estimation of γ = σ2u/σ

2 and σ2 = σ2u + σ2v remains unaffected with the
proposed method. Furthermore, when keeping fixed the number of prin-
cipal components, the biases of the proposed estimator increase as the
linear relation between covariates decreases. The choice of the number
of principal components is critical to the estimation of β, γ and σ2, as well
as for the efficiency component. After applying the proposed method on
real data from the agricultural and livestock sectors to evaluate its tech-
nical inefficiency, our method seems to provide better estimation results
for the coefficients, as well as for the scale returns, in comparison with
the traditional method.
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