
momento Revista de F́ısica, No 57, Jul - Dic / 2018 41

IMPLEMENTATION OF AN ALGORITHM FOR
SQUARE ROOT COMPUTATION IN AN FPGA

ARRAY BY USING FIXED POINT
REPRESENTATION

IMPLEMENTACIÓN DEL ALGORITMO PARA EL
CÁLCULO DE LA RAÍZ CUADRADA EN UN

ARREGLO FPGA USANDO REPRESENTACIÓN DE
PUNTO FIJO

Jorge H. López1, Johans Restrepo2, Jorge E. Tobón3

1 Group of Scientific Instrumentation and Microelectronics. Institute of Physics, University
of Antioquia, A.A. 1226, Medelĺın, Colombia.

2Group of Magnetism and Simulation. Institute of Physics, University of Antioquia, A.A.
1226, Medelĺın, Colombia.

3 Group of Solid State Physics. Institute of Physics, University of Antioquia, A.A. 1226,
Medelĺın, Colombia.

(Recibido: 01/2018. Aceptado: 05/2018)

Abstract

The implementation of the square root computation in an
FPGA device is presented in this work. The calculation is
not one of convergence type, so the accuracy is very high and
there are no conditions or restrictions for the operation to be
fulfilled. It also consumes much less hardware surface than
other algorithms for calculating the square root of a number.
The number entered is of fixed-point representation, it is
parameterizable, that is, two constants N and M can define
the size of the number, where N defines the number of bits
in the integer part of the number and M defines the number
of bits of the fractional part.

Keywords: VHDL, FPGA, Operation, Square root, VLSI.

Jorge H. López: jhernan.lopez@udea.edu.co doi: 10.15446/mo.n57.70377



42 Jorge H. López et al.

Resumen

En este trabajo se presenta la implementación de la ráız
cuadrada de un número en un dispositivo FPGA. El
algoritmo usado no es un algoritmo de convergencia, por
tanto, la exactitud del cálculo es muy alta, además no
existen restricciones de ningún tipo para que la operación
sea llevada a cabo. El uso de hardware en la FPGA es
mucho menor que el usado por otros algoritmos que también
calculan la ráız cuadrada de un número. Para representar
el número se usa la representación de punto fijo, para ello se
usan dos parámetros, N y M, donde N define el número de
bits que representan la parte entera y M define el número
de bits de la parte fraccional. M y N son definidos en la
śıntesis del módulo.

Palabras clave: VHDL, FPGA, Operación, Ráız Cuadrada, VLSI

1 Introduction

Square root is a very common mathematical function, used in
statistical calculations, numerical analysis, digital processing of
data, etc. However, in Hardware Description Language (HDL),
it is not an easy function to implement, so the Field Programmable
Gate Arrays (FPGAs) do not bring this function as a primitive or
a built-in function.

However, there are modules capable of calculating the square
root of a number. These modules are based on convergence
algorithms such as the Newton Raphson method [1–4], redundant
and non-redundant algorithms [5], some of them are based on
Taylor series expansions [6] and other less common methods [7].
In particular, the convergence algorithms are approximations that
depend on the number of iterations to minimize the error in the
calculation, which implies longer processing time. Methods, such as
the Taylor series expansion, allow to perform the calculation much
faster, but a greater amount of logical resources or hardware surface
are required. Besides, these algorithms use to include divisions,
another operation that is also difficult to implement and which
demands a larger area within the logical device [8].



Implementation of an algorithm for square root... 43

In this paper we present a virtual HDL (or VHDL) language module
that calculates the square root of a number. The computation
method does not use convergence criteria or approximation
algorithms, so it does not depend on how often the iteration is done
to obtain a result with more accuracy. In the method presented we
use the division by two, which in the binary system only consists
of doing a binary shift to the right, therefore it is not necessary
the implementation of another module responsible for division.
Hence, our method requires much less computational cost and
logical resources than other algorithms [9]. In addition, the result
is almost exact with variation only in the last binary number.

Since we are dealing with HDL language, the number for which the
square root operation is performed, it is a binary one in the fixed
point representation [10], where the number of bits corresponding
to the integer part is 2(N − 1) whereas the fractional part is
M , and where in turn the numbers N and M stand for integer
numbers previously determined as inputs of the algorithm. Such a
parameterization allow to the developer or user to tune the module
according to the needs. Thus, the maximum number to which the
square root can be determined is therefore:

22(N−1) − 1 (1)

and the associated error, whenever is not the case of an integer
root, is given by:

2−M (2)

Even though the module we introduce does not perform the square
root operation with numbers under the float point representation,
it is simple to carry out such a translation from the fixed point
representation. To do so, first, the square root of the mantissa
must be estimated (fractional part) and after that, to divide by
two the part standing for the power. This last step simply means
to move one bit to the left.



44 Jorge H. López et al.

2 Algorithm

Basically, the algorithm consists of taking a number and subtracting
or adding its half, always trying to reach that number for which,
when being squared, it results in the number entered. In order to
realize how the algorithm works, suppose that we enter the positive
integer S to which we want to calculate the square root. Steps in
the algorithm read as follows:

1. We initialize a variable Y with the largest possible number
allowed by the module.

2. We square the variable Y and compare it with the input value
S. Three cases may occur.

(a) If Y 2 = S, the calculation ends and the result is the
number assigned to the variable Y .

(b) If Y 2 > S, we assign Y = Y − Y
2

.

(c) If Y 2 < S, we assign Y = Y + Y
2

. Iteration over the
last step is performed until the exact solution is reached
or until the highest resolution allowed by the module is
achieved.

At the end of the calculation we obtain:

√
S = Y (3)

The reason for which each step is done by adding or subtracting
the half of the number is because in binary representation, dividing
by two represents simply a shift to the left. If the cycle is repeated
P times, the error, in case of not having an integer root, is 2−P , i.e.

√
S = Y ± 2−p (4)

2.1 VHDL Description

The constants N and M are part of the generic description of the
module allowing to define the size in bits of the number involved in
the operation. More concretely, N is used to represent the positive



Implementation of an algorithm for square root... 45

integer part of the number and M its fractional part. Let S be the
number entered into the module, then 2(N − 1) bits represent its
integer part and M bits its fractional part, i.e.

S = 011...101︸ ︷︷ ︸
integer part (2(N−1))

fractional part M︷ ︸︸ ︷
011...101 (5)

The constants M and N are not dynamic variables, so they can not
be changed after the module is already implemented in the FPGA.
The N constant, that defines the size of the integer part, also limits
the maximum value that the input number can take. Thus, the
largest number to which the square root can be calculated using
this module is:

Smax = 22N−2 − 1 (6)

If S is equal to zero, the value zero is assigned to the result and the
operation is terminated. If that’s not the case, the following steps
are carried out: first we consider a new pair of variables X and Y
as well as an integer index i to be used as counter. Second, to the
most significant bit of the variable Y a logical one is assigned, the
other bits are set to logical zeros whereas the value 2(N − 1) + M
is initially recorded for the counter i. The calculation of the square
number is then performed and the result is assigned to the variable
X:

X ⇐ Y ∗ Y (7)

We compare X with the input value S. If X = S, the calculation
is terminated and the result is the value of X. If X > S, then
Y (i) ⇐′ 0′ and Y (i − 1) ⇐′ 1′, the counter is then decreased by
one, i.e. i⇐ (i− 1) and the cycle is repeated.

On the contrary, if X < S, then Y (i − 1) ⇐′ 1′, the counter
is decreased by one i ⇐ (i − 1) and the cycle is repeated. The
calculation ends when i = 0, and the result is the value contained
in the variable Y . The error associated to the operation depends
on the number of bits represented by the fractional part M of the



46 Jorge H. López et al.

number. Thus,

√
S = Y ± 2−M (8)

The latency time of the module to perform the operation depends
on the N and M parameters, and it is given by N + M + 3 clock
cycles. This is a shorter time than that of most algorithms used [1]
. Although the module is not of pipeline type, it is easily adaptable.
In that way, we want to stress that in order to convert the module
to pipeline, the use of area on the FPGA device becomes greater as
long a it would be necessary to create two (N +M) square matrices
for the S and Y variables. This fact in turns would multiply the
resources in (N +M) times. Thus, in each clock cycle there will be
a new result with a latency of (M +N + 3) clock cycles, increasing
therefore the calculation speed considerably.

3 Implementation

The square root operation was implemented in a FPGA Spartan
3E of Xilinx. Because it is a parametrizable module, the resources
used change depending on the size of the parameters M and N
(they define the number of bits of the operands). On this respect,
the dependence of the max frequency with the number of bits is
shown in Figure 1.
As can be observed, such a dependence is not linear at all, and as
the number of bits increases, the frequency at which the module
works tends to be 40 MHz. It is necessary to clarify that what
is shown in Figure 1 is the result of the synthesis of the module
and has not used any of the time optimization tools of the XILINX
software, therefore it is possible to make the module to operate at
a higher frequency.
On the other hand, the dependence of hardware resources measured
in Look-Up Tables (LUT) units with the number of bits is shown in
Figure 2. The number of bits is that corresponding to the number
for which the square root operation was performed. As can be
observed, the relationship is closely linear and increasing. As in
the analysis of time, the graph shows the result of the synthesis in
a Spartan FPGA without any extra processing.



Implementation of an algorithm for square root... 47

Figure 1. Max frequency as a function of the number of bits. Square root
operation implemented in a FPGA Spartan 3E.

Figure 2. Dependence of logical resources measured in Look-Up Tables (LUT)
units with the number of bits.

Conclusions

The described module performs the square root of a number
with a high precision without requiring more execution time or
compromising more hardware resources compared to other modules
based on algorithms of approximation such as Newton-Raphson,



48 Jorge H. López et al.

redundant and non-redundant methods, etc. These last ones use
division as part of the operations necessary to obtain the result of
the square root, which requires a different module and it is not
trivial to implement in VHDL language. The designed module was
made in such a way that the operations involved are divisions by
two or powers of two, which simplifies the process as long as such
divisions simply imply a binary shift to the right.

Since the system is parametric, it can easily be adapted to the
needs of the user or developer, without using more resources than
necessary. Converting the system to a pipeline module is not
difficult neither, although it is little used. In a pipeline system,
the increase in hardware resources increases also in a closely linear
fashion with the number of bits used, but with a slope much larger
than that of our module shown in Figure 2. It is also concluded
that the frequency of operation tends to stabilize reaching a plateau
near the 40 MHz as the number of bits increases. Finally, a linear
relationship of the latency of the calculus with the number of bits
is also concluded.

Acknowledgements

Support provided by the CODI-UdeA project 2016-10085 and the
exclusive dedication UdeA program to one of the authors (J. R) is
greatly acknowledged.

References

[1] Y. Li and W. Chu, in Proceedings. The 5th Annual
IEEE Symposium on Field-Programmable Custom Computing
Machines Cat. No.97TB100186) (1997) pp. 226–232.

[2] J. Kaur and N. Grewal, Int. J. Inf. Comp. Tech. 4, 1131 (2014).

[3] T.-J. Kwon and J. Draper, in 2008 51st Midwest Symposium
on Circuits and Systems (2008) pp. 954–957.

[4] C. V. Ramamoorthy, J. R. Goodman, and K. H. Kim, IEEE
Transactions on Computers C-21, 837 (1972).

http://dx.doi.org/10.1109/FPGA.1997.624623
http://dx.doi.org/10.1109/FPGA.1997.624623
http://dx.doi.org/10.1109/FPGA.1997.624623
https://pdfs.semanticscholar.org/76d4/32a72f0a671638cd2977f9a531618e50938e.pdf
http://dx.doi.org/10.1109/MWSCAS.2008.4616959
http://dx.doi.org/10.1109/MWSCAS.2008.4616959
http://dx.doi.org/10.1109/TC.1972.5009039
http://dx.doi.org/10.1109/TC.1972.5009039


Implementation of an algorithm for square root... 49

[5] J. Bannur and A. Varma, in 1985 IEEE 7th Symposium on
Computer Arithmetic (ARITH) (1985) pp. 159–165.

[6] P. Soderquist and M. Leeser, IEEE Micro 17, 56 (1997).

[7] E. Oberstar, Fixed-Point Representation and Fractional Math,
Report Oberstar Consulting (Oberstar Consulting, 2007).

[8] H. Kabuo, T. Taniguchi, A. Miyoshi, H. Yamashita, M. Urano,
H. Edamatsu, and S. Kuninobu, IEEE Transactions on
Computers 43, 43 (1994).

[9] W. Chu and Y. Li, in Proceedings 5th Australasian Computer
Architecture Conference. ACAC 2000 (Cat. No.PR00512)
(2000) pp. 9–16.

[10] K. Piromsopa, C. Aporntewan, and P. Chogsatitvataa, “An
fpga implementation of a fixed-point square root operation,”
(2002).

http://dx.doi.org/10.1109/ARITH.1985.6158929
http://dx.doi.org/10.1109/ARITH.1985.6158929
http://dx.doi.org/10.1109/40.612224
http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/FixedPointRepresentationFractionalMath.pdf
http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/FixedPointRepresentationFractionalMath.pdf
http://dx.doi.org/10.1109/12.250608
http://dx.doi.org/10.1109/12.250608
http://dx.doi.org/10.1109/ACAC.2000.824317
http://dx.doi.org/10.1109/ACAC.2000.824317
http://pioneer.netserv.chula.ac.th/~achatcha/Publications/0012.pdf
http://pioneer.netserv.chula.ac.th/~achatcha/Publications/0012.pdf

	Introduction
	Algorithm
	VHDL Description

	Implementation

