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Abstract

In this work we explore a Holographic Dark Energy Model
in a flat Friedmann-Lemâıtre-Robertson-Walker Universe,
which contains baryons, radiation, cold dark matter and
dark energy within the framework of General Relativity.
Furthermore, we consider three types of phenomenological
interactions in the dark sector. With the proposed model
we obtained the algebraic expressions for the cosmological
parameters of our interest: the deceleration and coincidence
parameters. Likewise, we graphically compare the proposed
model with the ΛCDM model.

Keywords: Holographic dark energy, general relativity,
Friedmann-Lemâıtre-Robertson-Walker Universe, ΛCDM model.

Resumen

En este trabajo exploramos un modelo de enerǵıa
oscura holográfica en un universo plano de
Friedmann-Lemâıtre-Robertson-Walker, que contiene
bariones, radiación, materia oscura fŕıa y enerǵıa oscura en
el marco de la relatividad general. Además, consideramos
tres tipos de interacciones fenomenológicas en el sector
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oscuro. Con el modelo propuesto obtuvimos las expresiones
algebraicas para los parámetros cosmológicos de nuestro
interés: los parámetros de desaceleración y coincidencia.
Del mismo modo, comparamos gráficamente el modelo
propuesto con el modelo ΛCDM.

Palabras clave: Enerǵıa oscura holográfica, relatividad general,

Universo Friedmann-Lemâıtre-Robertson-Walker, modelo ΛCDM.

Introduction

Nowadays it is well known that cosmological models must describe
an accelerated expansion of the Universe at the present era [1–3].
To achieve this, sources of matter capable of generating this
acceleration are considered, which are commonly dubbed dark
energy [4].
A cosmological constant Λ is an important candidate for dark
energy providing a good explanation for the current acceleration.
But the cosmological constant faces some problems [5, 6] such as,
the mismatch between the expected value of the vacuum energy
density and the energy density of the cosmological constant, and
the lock of an explanation of why densities of dark energy and dark
matter are of same order at present while they evolve in rather
different ways. So, as an alternative, dynamic dark energy models
have been proposed and analyzed in the literature, highlighting the
Holographic Dark Energy Models [7–12], these originate from the
holographic principle in Cosmology [13]. The holographic principle
asserts that the number of relevant degrees of freedom of a system
dominated by gravity must vary along with the area of the surface
bounding the system [14]. According to this principle, the vacuum
energy density can be bounded [15] as ρx ≤ M2

pL
−2, where ρx is

the dark energy density (the vacuum energy density), Mp is the
reduced Planck mass, and L is the size of the region (i.e IR cutoff).
This bound implies that, the total energy inside a region of size L,
should not exceed the mass of a black hole of the same size. From
effective quantum field theory, an effective IR cutoff can saturate
the length scale, so that the dark energy density can be written
as ρx = 3c2M2

pL
−2 [16], where c is a dimensionless parameter, and

the factor 3 is for mathematical convenience. In the Holographic
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Ricci Dark Energy Model, L is given by the average radius of
the Ricci scalar curvature |R|−1/2, so in this case the density of
the Holographic Dark Energy (hereafter, abbreviated as HDE) is
ρx ∝ R.
In a spatially flat Friedmann-Lemâıtre-Robertson-Walker (FLRW)
universe, the Ricci scalar of the spacetime is given by R = 6(Ḣ +
2H2), where H(t) = ȧ(t)/a(t) is the Hubble expansion rate of the
universe in terms of the scale factor a, where the dot denotes the
derivative with respect to the cosmic time t. In this sense, the
authors of reference [7] introduced the following generalization:

ρx = 3(αH2 + βḢ) (1)

where α and β are constants to be determined. This model works
fairly well in fitting the observational data, and it is a good
candidate to alleviate the cosmic coincidence problem [8–11, 17].

Basic Equations

In the framework of General Relativity we consider a homogeneous,
isotropic and flat universe scenario through the FLRW metric [18]

ds2 = dt2 − a2(t)[dr2 + r2(dθ2 + sin2 θdφ2)] (2)

where (t, r, θ, φ) are comoving coordinates. Friedmann’s equations
in this context are written as

3H2 = ρ (3)

2 Ḣ + 3H2 = − p (4)

where ρ is the total energy density, p is the total pressure and
8πG = c = 1 is assumed. Also, the conservation of the total
energy-momentum tensor is given by [18]

ρ̇+ 3H(ρ+ p) = 0 (5)

Holographic Dark Energy Model

We studied a scenario that contains baryons, radiation, cold
dark matter and HDE, i.e. ρ = ρb + ρr + ρc + ρx
and p = pb + pr + pc + px. In addition, we consider a barotropic
equation of state for the fluids, pi = ωi ρi with ωb = 0, ωr = 1/3,
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ωc = 0 and ωx = ω. By including a phenomenological interaction
in the dark sector, we split the conservation equation (5) in the
following equations.

ρ′c + ρc = −Γ and ρ′x + (1 + ω) ρx = Γ (6)

where prime denotes a derivative with respect to ln a3 and Γ
represents the interaction function between cold dark matter and
the HDE. From Eqs. (1) and (3) we obtain

ρx = α ρ+
3β

2
ρ′ (7)

Given that radiation and baryons are separately conserved, we
have ρr ∝ a−4 and ρb ∝ a−3. From here it is easy to realize that
ρ′′b = −ρ′b = ρb and ρ′′r = −4

3
ρ′r = 16

9
ρr.

On the other hand, in the study of HDE scenarios usually it is
only considered the dark sector, since these predominate in the
current universe. Also, it is possible to analyze a HDE scenario
with two different approaches, the first one considers a variable
state parameter for the HDE or assuming a parameterization as
shown in [11], while the second approach considers an interaction
term between the dark components [8, 12, 19]. We work in the last
approach.

For convenience, we denote the energy density of the dark sector as
ρd := ρc + ρx. Then, by combining equations (6) - (7) we obtain

3β

2
ρ′′d+

(
α +

3β

2
− 1

)
ρ′d+(α−1) ρd+

1

3
(2β−α) ρr0 a

−4 = Γ (8)

where the submipt 0 denotes a current value. Notice that the
Eq. (8) can be easily solve when Γ = Γ(ρd, ρ

′
d, ρ, ρ

′). In the literature
(see [20, 21] and its references) scenarios have been studied where
only the dark components of the Universe are considered and a
phenomenological interaction between them is included. It is usual
to choose scenarios of interaction with a linear term, or linear
combinations of the dark components [22]. For example, terms of
interaction of the form were studied: Γa = αρc+βρx, Γb = αρ′c+βρ

′
x,

Γc = αρcρx/ρ, Γd = ρ2
c/ρ, Γe = ρ2

x/ρ, among others [20, 21].
Scenarios with linear interaction of type Γ ∝ ρc and Γ ∝ ρx, are
particular cases studied in [22–24]. In the reference [23], the authors
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studied the interaction between dark matter and holographic dark
energy, with an interaction term of the form Γ ∝ ρ, con ρ = ρx, ρ =
ρc and ρ = ρx+ρc, and obtained a second order differential equation
for H. While that in [24], the authors studied the interaction of
dark matter and holographic dark energy with ω = ω(r), where
r = ρc/ρx. Then, they obtained the interaction term Γ = Γ(ρ, ρ′),
and finally, ρi = ρi(a) and ω = ω(a). It is so that in this
work we consider the following types of linear interactions [20–22]:
Γ1 = α1ρc + β1ρx, Γ2 = α2ρ

′
c + β2ρ

′
x, and Γ3 = α3ρd + β3ρ

′
d.

The energy density of the dark sector

We can convenient rewrite Eq. (8) as

ρ′′d + b1 ρ
′
d + b2 ρd + b3 a

−3 + b4 a
−4 = 0 (9)

including the three interaction types of our interest where the values
of the constants b1, b2, b3 and b4 are shown in Table 1. The general
solution of Eq. (9) is:

ρd(a) = Aa−3 +B a−4 + C1 a
3λ1 + C2 a

3λ2 (10)

where the integration constants C1 and C2 are given by

C1 =
3Aβ(1 + λ2) +Bβ(4 + 3λ2) + 3H2

0 (−2α+ 2Ωx0 + β(3Ωb0 + 4Ωr0 − 3λ2(Ωc0 + Ωx0)))

3β(λ1 − λ2)

C2 = −A−B + 3H2
0 (Ωc0 + Ωx0)− C1 (11)

where H0, Ωc0, and Ωx0 are the current values of the Hubble
parameter, the density parameters for dark matter and HDE (i.e.)
Ωi0 = ρi0/3H

2
0 with i = {c, x}), respectively. The coefficients

in eq. (10) are A = b3
b1−b2−1

and B = 9b4
12b1−9b2−16

, as well as

λ1,2 = −1
2

(
b1 ±

√
b2

1 − 4b2

)
.

The state parameter of the HDE

The state parameter of the HDE corresponds to the ratio ω = px
ρx

.

Using the expression (7) in Eq. (6), and the linear interactions Γi,
we find

ω(a) =
D1 a

−3 +D2 a
−4 +D3 a

3λ1 +D4 a
3λ2

Ã a−3 + B̃ a−4 + C̃1 a3λ1 + C̃2 a3λ2
(12)
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where Ã = (2α − 3β)(A + ρb0), B̃ = 2(α − 2β)(B + ρr0), C̃1,2 =
C1,2(3βλ1,2 + 2α) and the constant coefficients Di are shown in
table 2.

In the limit to the future, a → ∞, the expression (12) remains as
ω = D3

C1(3βλ1+2α)
for λ1 > λ2 > 0, while for λ2 > λ1 > 0, we have

ω = D4

C2(3βλ2+2α)
.

The coincidence and deceleration parameters

To examine the problem of cosmological coincidence, we define
r ≡ ρc/ρx. Then, using ρc = ρd − ρx, together with the
expression (7), we find

r =
ρd(

α− 3β
2

)
ρb + (α− 2β)ρr + αρd + 3β

2
ρ′d
− 1 (13)

Then, for all our interactions we get
r(a → ∞) = 2

2α+3βλi
− 1, a constant that depends on the

interaction parameters, where λi = max{λ1, λ2} for λi > 0.

On the other hand, the deceleration parameter q is a dimensionless
measure of the cosmic acceleration in the evolution of the universe.
It is defined by q ≡ −

(
1 + Ḣ

H2

)
= −

(
1 + 3ρ′

2ρ

)
[18]. Using (10), we

obtain

q(a) = −
(

1 +
−3(ρb0 +A)a−3 − 4(ρr0 +B)a−4 + 3(C1λ1a3λ1 + C2λ2a3λ2 )

2(ρb0 +A)a−3 + 2(ρr0 +B)a−4 + 2(C1a3λ1 + C2a3λ2 )

)
(14)

Given the expressions (12)-(14), hereinafter we use the following
values for the parameters [3]: Ωb0 = 0,0484, Ωr0 = 1,25 × 10−3,
Ωc0 = 0,258, Ωx0 = 0,692, H0 = 67,8 km s−1 Mpc−1,
and ωΛCDM = −1. In addition, (α1, β1) = (−0,0076, 0) and
(α2, β2) = (0,0074, 0) [20, 21] are considered. It is very important
to emphasize that the interaction models between dark energy
and dark matter [20, 21, 25] are based on the premise that no
known symmetry in Nature prevents or suppresses a non-minimal
coupling between these components, therefore, this possibility
should be investigated in the light of observational data (see, for
example [26]). In some classes of these interaction models, the
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coincidence problem can be greatly alleviated when compared to
ΛCDM. Thus, several interaction models have been proposed with
both analytical and numerical solutions [20, 21, 25–27].

Note that in equation (6), Γ > 0 indicates a transfer of dark matter
to dark energy and Γ < 0 indicates otherwise. It is so, that in the
Fig. 1, we analyze the behavior of the interaction terms for each
model. It is shown that model 1 and 2 undergo a sign change in
that function, while model 3 does not. The change of sign in the
interaction term highlights the domain of one of the different types
of matter in each epoch of evolution of the universe (fundamentally
late universe). Thus, models 1 and 2 are useful for our study of the
evolution of the universe.

Figura 1. Evolution of interaction term without dimensions for holographic
interaction models. The orange, green and brown lines represent Models 1, 2

and 3, respectively.

In Fig. 2 we show the evolution of the coincidence and deceleration
parameters in term of the redshift z, where a(z) = (1 + z)−1.
The blue line represents ΛCDM, the orange line the model Γ1 with
(α, β) = (0,86, 0,46) and the green line the model Γ2 with
(α, β) = (1,01, 0,45). In the cases shown for the HDE
models with interaction Γ1 and Γ2, the problem of
cosmological coincidence is alleviated, given that the
coincidence parameter r tend asymptotically to a positive
constant. Besides, we note that the HDE models resemble
the ΛCDM model, in the evolution of both parameters,
noting only differences in quickness of falling of deceleration
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parameter value. However contrasting this with figure 1, i.e.,
taking into account the characteristics of interaction model,
model 2 is the one that best describes the evolution of the late
universe, the last two stages being dominated by dark components.
It goes from a time dominated by matter (Γ < 0) to a dominated by
dark energy (Γ > 0), in our case this dark energy is of holographic
type.

Figura 2. (a) Evolution of coincidence parameter r as a function of redshift
z. (b) Evolution of deceleration parameter q as a function of redshift z. In the

figures, z = 0 represents current time.

Final Remarks

A theoretical model was developed according to the current
components of the Universe, such as baryons, radiation, cold dark
dark and HDE, with interaction in the dark sector, obtaining for
the HDE, the functions ω(z), r(z) and q(z). The proposed model
was compared graphically with ΛCDM, using referential values for
the HDE parameters and the given interactions.

In the near future we expect to contrast the present scenarios with
the observational data (SNe Ia, CC, BAO, CMB), using Bayesian
statistics.
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