
46

Load balancing for distribuited databases access using a random heuristic algorithm

Load balancing for distribuited databases access using
a random heuristic algorithm

Algoritmo de balanceo de carga para Sistemas homogéneos distribuidos

R-D Sánchez Dams.1, J-L. Simancas García2

1Research Teacher GIACUC group assigned to Electronic Engineering Program at the Universidad de la Costa. E-mail: rsanchez5@cuc.edu.co.
2Research Teacher GIACUC group assigned to Electronic Engineering Program at the Universidad de la Costa. Email: jsimanca3@cuc.edu.co

Recibido 29/10/13, aceptado 30/01/2014

Abstract

In this paper, the RanHeurist load balance algorithm is proposed, for homogeneous client-server distributed sys-
tems with a large number of requests. As a measure parameter the time response and the loss packets rate were
used, comparing them with the Even Distribution for distributed systems. With RanHeuristic algorithm further
information was processed in the same time period, improving delay rates in data reception, through a load dis-
tribution among two or more host processing, using randomness and a heuristic based on the best response time.

Keywords: Heuristics, random, load balancing, response time, distributed databases, concurrency access.

Resumen

En este artículo se propone el algoritmo RanHeurist de balanceo de carga para sistemas homogéneos distribuidos
cliente servidor con gran cantidad de peticiones. Como parámetro de medición se utilizó el tiempo de respuesta y
el números de paquetes perdidos, comparándolo con the Even Distribution for distributed systems. Se logró con
RanHeurist procesar mayor información en un mismo periodo de tiempo mejorando los retrasos en la recepción
de datos, utilizando una distribución de carga inteligente entre dos o más host de procesamiento, empleando
aleatoriedad y una heurística basada en el mejor tiempo de respuesta.

Palabras clave: Heurístico, aleatorio, balanceo de carga, tiempo de respuesta, bases de datos distribuidas, acceso
concurrente.

1. INTRODUCTION

Computer services are common nowadays to implement
them, a widely archiecture is the client-server architec-
ture, used for users’ access to WEB services, or concurrent
access to the same information system. In a client-server
network, all the clients are connected to a server sending
requests constantly, which are desirables to be answered
in the shortest time [1, 2, 3].

On this architecture might happen that a large numbers of
clients are performing requests to a server. If this doesn’t
have enough capacity to answer, this one might be satu-
rated, by reducing the system performance, increasing
response times, causing delays on information’s delivery,
by difficult the requests answers or causing that some cli-
ent’s requests won’t be solved. To swap the requirement

capacity, the load balancing emerges, which is responsible
for divide the number of requests among two or more net-
work host, in order to process higher information in the
same period of time and thus optimizing the whole sys-
tem performance [4, 5, 6].

Parallel to client’s traffic must be remembered that man-
agement database systems are increasingly used to de-
velop solutions in applications that handle large amounts
of data, doing the sizes of the databases and the complex-
ity of queries on it increase [6]. From this perspective, the
load balancing shouldn’t only be seen from the number of
clients accessing the system also by the response time of it,
because the more complex the query, the larger response
time. In consequence, it should be keep in mind the host
load and its setting, being relevant distribute the system
workload in accordance to individual capacities and time

47

Prospect. Vol. 12, No. 1, Enero - Junio de 2014, págs. 46-54

responses of the host that constitute the system [4]. More-
over it’s necessary make a load balancing capable to be
optimized itself, establishing a proper load balancing.

According the above and [5], can be stated that load dis-
tribution is a key activity for an effective implementation,
noticing that load balancing lies on the access speed in-
creasing, improving the system accessibility, the failure
tolerance, getting higher management and availability of
service. To performance optimal load balancing, all the in-
put traffic is distributed in several host, so the host perfor-
mance is improve by using all the available resources, in
other words, the load balancing ensures that an host won’t
be overloaded by a higher traffic influence [4].

Due to the importance of the topic, many people have
done studies on this [7 - 12], to evoke there is the work
made by Saneyasu Yamaguchi and Katsumi Maruyama
whom implemented an autonomous load balancing sys-
tem of distributed servers, using the active object model.
This system consists of distributed servers where each
server has a balancer that checks the load of the server
and controls it, communicating with others load balanc-
ers. Additionally they implemented a Java library “CAPE”
for Peer-to-Peer applications based on distributed active
object systems [13].

Other work is done by J. Douglas Birdwell, Zhong Tang,
and others, whom captured in their paper, the experimen-
tal results of a nonlinear dynamic system to equilibrate the
load of a cluster of computer nodes used for parallel calcu-
lations, in the presence of delays and resource limitations.
Also, “this model accounts for the trade - off between us-
ing processor resources to process tasks and the advan-
tage of distributing the load evenly between the nodes to
reduce overall processing time” [5].

Finally, the proposed solution is mentioned in [14], be-
ing the current work an independent alternative, using
the same proof architecture for distribution and the same
physical computational characteristics. These approaches
differ

These two approaches differ in the proposed algorithms,
which contrasts with the Even Distribution autonomous-
ly. In this paper two different load balance algorithm are
compared, organized as follows: Section II describes all
those fundamental concepts related to the approach made.
Section III presents the heuristic algorithms and Even-
Random Distribution proposed for solving the problem.
In the IV section shows general features of the experiment
setup. V in section details the results obtained as its analy-
sis. Finally, in section VI concludes about this work and
indicates the pending and / or consider for future work.

2. CONCEPTS

A. Client-Server Architecture and Distributed Systems

Client-server systems has its functionality split between
server system and multiple client systems, i.e. this is a cli-
ent making requests to another program (server) which
gives answers. Depending on the type of architecture
specifies the processing capacity is distributed between
clients and servers to a greater or lesser extent. This type
of architecture is of interest, mainly because provides or-
ganizational advantages, such as the centralization of in-
formation management and separation of responsibilities
in systems, which facilitates and clarifies the system de-
sign [15].

A distributed system provides user access to the resources
offered by the system. The access to a shared resource can
be provided through data migration, calculations or pro-
cesses mechanisms [16]. Could be say that, a distributed
system is a loosely coupled processors collection intercon-
nected by a communication network, that is, each has its
own local memory and processors that communicate with
each other through various communication lines, like high
speed buses or networks [17].

Most distributed systems are based on the client-server
model, which works as mentioned above. Due of this
character sequential, in a distributed system can be imple-
mented by RPC (remote procedure call) scheme, finding
that most of tools for object distributed developing are
based on RPC scheme [18]. The distributed programs [19]
are another way of distribute responsibilities among host,
using layers to concentrate functionality in each node, see
Figure 1.

B. Distributed Databases DDB

Distributed database systems are a set of independent da-
tabases (ideally) sharing a common schema and coordi-
nate the processing transactions that access remote data.
Systems communicate each other through a communica-
tion network which handles the routing and connection
strategies [20].

Database Distributed systems consist of a hosts set, each
of which keeps a local database. Each host is able to pro-
cess local transactions (transactions that only access data
from the same host). Moreover, each host can participate
in the performance of global transactions (access to data
from multiple sites), and these are complied by communi-
cation among hosts is required [21].

The distributed databases implementation can be two
types, homogeneous, in which all sites have a common

48

Load balancing for distribuited databases access using a random heuristic algorithm

databases schema and code systems, or heterogeneous,
which the schema and code systems can be different [22].
According the setting for this work is homogeneous dis-
tributed databases.

C. Load Balancing and Availability.

A load balancer is basically a hardware device or software
that is put in front of a set of hosts that serve an applica-
tion, and assigns or balances the requests arriving from
the clients to the hosts using some algorithm. The load bal-
ancing solutions allow splitting the tasks would have to
endure a single machine in order to maximize the capabil-
ities of data processing and task execution. Additionally,
this solution allows availability; no host is vital part of the
service offered [23]. In this way you can avoid suffering a
service interruption due to a stop of one of the machines.

It’s understood that load balancing in the computer con-
text, consists on distribute some processing among hosts
available for it. This concept applies to response time ob-
served in the system [24]. On the other hand, availability
can define as ability that a computer system has in order
to serve users that are using it. This concept applies to loss
generated in the system [25].

For ensuring that load balancing and system availability is
successful it is important take into account the following
characteristics.

Avoid an host overloading. In this way, we avoid that ac-
cess peaks affect the application performance.
Manage the resources in smart way. Allows manage and
optimize all the available resources, resulting a faster ac-
cess and stability for clients.

D. Heuristics.

Heuristics is about explorative methods during prob-
lems solving, whose solutions are revealed by a progress
evaluation achieved in a final outcome result. Heuristics
characterize techniques by which the solving problems
task result is improved. In computer systems, heuristic al-
gorithms are used to obtain successful solutions without
need to obtain exact solutions through calculus processes.
However using heuristics it is likely incur in non-optimal
results [26].

3. EVEN DISTRIBUTION AND RANDOM HEURIS-
TIC ALGORITHMS PROPOSAL

In this section we present the two algorithms to compare,
starting with the Odd-Even algorithm, which is a first ap-
proach to load balancing, where the queries made are dis-
tributed in an orderly and cyclical way. For example starts

by sending a request to the remote host first, then the sec-
ond, and so on until the last, and then repeated beginning
again with the first. The following pseudocode represents
described.

Host local recibe petición
If (host remoto actual == ultimo host remoto)
sendTo(primer host remoto)
Else
sendTo(siguiente host remoto)
EndIf

The second algorithm is called RanHeurist which had
as design guideline introduces the least amount of pro-
cessing, in order to generate lower computational load
on the host that distributes the load, as recommended in
[14]. To accomplish this comparison, simple instructions
and assignments that consume fewer resources were cho-
sen. Overall RanHeurist is based on identifying the best
response time and associated remote host. This host is
assigned a higher priority of occurrence, so that is most
likely to be chosen. Due to this remote host is privileged to
lower long it takes to perform the last query. Following is
pseudocode and then a brief explanation of the algorithm:

Host local recibe petición
Aleatorio entre 0 y 1
If (numero aleatorio =< porcentaje privilegio me-

jor host remoto)
 sendTo(mejor host remoto)
Else
 Aleatorio entre hosts remoto disponibles
 sendTo(host remoto aleatorio)
EndIF

Host local recibe respuesta remota
If (respuesta host remoto == mejor host remoto)
 Actualizo tiempo de mejor host
Else if (tiempo respuesta host remoto < tiempo

mejor host remoto)
	 Mejor	host	remoto	←	host	remoto
	 Tiempo	mejor	host	remoto	←	tiempo	respuesta	

host remoto
EndIf

As shown in the pseudocode, the algorithm makes a pitch
for a pseudorandom number, if the result falls within the
probability of choosing the best host, he is sent to it, oth-
erwise it returns to make the launch random among all
available remote hosts, holding everyone the same possi-
bility. On the other hand when it is returned the result of
the consultation made to last remote host, compares the
processing time of this with you have registered as a better
remote host. If obtained in the last query is better than we
have, the best remote host is replaced.

According to the above heuristics is most likely to give a
higher occurrence of probability to the last host with a bet-

49

Prospect. Vol. 12, No. 1, Enero - Junio de 2014, págs. 46-54

ter processing time, giving it the chance to pick a different
remote host due to the random component of the algo-
rithm. The random component to calculate time responses
from other host, allowing find a better remote host and
avoiding overload host with a better performance.

4. EXPERIMENTAL SETTINGS

The metrics used in the tests of this study were twofold:
response time and number of lost customers [27]. As men-
tioned earlier response times, measure load balancing and
system availability measure lost. To implement the test,
we used a transaction server client system. In this architec-
ture, clients send the request to the server system, for he
executes, or data sending results back to the clients so that
they are displayed. Alternatives load balancing hardware
or software, we used the logical approach, by installing
the algorithms that run in back end in the host and were
distributed computational burden.

The experiment was conducted in laboratory facilities
at the Universidad del Norte in the city of Barranquilla,
with the same configuration proposed in [14]. We used
machines with Intel Core (TM) 2 CPU 6600 2.4 GHz, 2GB
RAM, running NetBeans 6.9.1 and MySql Database over

Windows XP, connected by an Ethernet switch with band-
width of 100Mbps. The algorithms were implemented
in Java, using a distributed system with distributed pro-
grams sokets communicated by using a layer for receiv-
ing requests (Front), one for the business logic, and a final
layer for data. Moreover, in the sending algorithm, the
metrics acquisition was implemented.

To perform the test, 16 computers were required distrib-
uted as follows: five (5) tester, responsible for sending
requests to one (1) front load, balancing load to five (5)
business logic, which in once they do so with five (5) data-
bases. To verify controlled behavior under different condi-
tions of the experiment was divided into three topologies
using different numbers of business logic and data bases,
as shown in Figure 1. Each tested separately.

The figure above shows the logical architecture of the ex-
periment; the A part, shows the experiment made with
three business logical and its database, the B part, it shows
made with four, and last, the C part with five logical busi-
ness and its five database. Additionally, is observed the
front host, which was the same during the entire test. The
IP address setting used is showed in the figure 2.

Figure 1. Hosts architecture of the experiment
Figura 1. Arquitectura de Hosts del experimento

A. Three business logical B. Four business logical C. Five business logical

Figure 2. IP address used in the tests
Figura 2. Direccionamiento IP utilizado en las pruebas

A. Three business logical B. Four business logical C. Five business logical

50

Load balancing for distribuited databases access using a random heuristic algorithm

For each of the settings were made 300, 500 and 1000 re-
quest, in order to observe the load balancing algorithms’
behaviors against a different numbers of requests made
concurrently by tester clients, equitably distributing the
requests made among them, as is showed in the following
table.

Table 1. Numbers of requests made concurrently by tester
clients
Tabla 1. Número de solicitudes realizadas concurrente-
mente por los tester clients

Requests total Request by computer
(5 testers Clients)

300 60
500 100
800 180
1000 200

Below is the physical location of the host within the laboratory network.

Figure 3. Computers physical location
Figura 3. Ubicación Física De Los Equipos

For conducting the test it took four (4) people which were
distributed as illustrated. A person (number 1) in charge
of the front and a tester, two (numbers 2 and 3) in charge
of two testers, completing the five testers, people respon-
sible for recording the information gathered from the test.
The fourth person was in charge of the business logic and
databases, with the work of being aware of unexpected
failures and restart services before each test.

For each experiment configuration (number of request
and amount of business logic and databases) was release
a test. The release could be repeated a second time if for
some reason the test was suspended for crashing the sys-
tem, choosing the best of the results obtained between
releases.

5. RESULTS

A. Drawbacks with loss metrics.

Although the metrics losses were taken into account in the
tests, was not used in the analysis of results. The reason for
losses excluding, lies in behavior observed during RanHeurist
algorithm testing, which was done under different network
conditions. The condition changes are attributed to the testing
was performed one day after the Even Distribution, having
to rewire the network again. In tests of the second day were
observed anomalous behavior with request excessive losses
the previous day were not presented in preliminary tests with
RanHeurist, to check the correct operation of the algorithm
performance, was monitored through messages on console,
sensing that computers without reason and under low load
request conditions lose connection among the front and the
the business logic. Similarly again tested under the same con-
ditions Even Distribution Algorithm getting excessive losses
compared with the data (presented here) taken the day be-
fore. Despite the above tests were made under the same con-
ditions of two attempts explained in the previous item.

It was also observed that under equal conditions in the ex-
periment, if the same test with moderate to high load was
repeated several times, different results were obtained
with more than 30% variation between tests, finding that
the system sometimes simply crashed, worsening the sec-
ond day situation as described.

Figure 4. Time series of even distribution; RanHeuristic,
500 requests, 3 business logical per tester
Figura 4. Series de tiempos de Even Distribution; Ran-
Heurist, 500 Request, 3 lógicas del negocio, por tester

In the figure showed, the data are not organized, each lobe
corresponding to data received by each of the five testers
where the information was gathered. In this figure it is not
clear which of the two algorithms has a better answer, in
parts Even Distribution curve (black dots) is better than
RanHeurist (red squares) and vice versa. Because the

51

Prospect. Vol. 12, No. 1, Enero - Junio de 2014, págs. 46-54

above is preferred to reorder data Ascending independent
tester, simply observing the behavior of the system which
is more suitable for analysis.

Figure 5. Time series of even distribution, RanHeuristic,
500 requests, 3 business logical
Figura 5. Series de tiempos de Even Distribution; Ran-
Heurist, 500 Request, 3 lógicas del negocio

Below are a series of graphs representing the tests conducted in the ex-
periment.

Figure 6. Time series representations of Even Distribution;
RanHeurist
Figura 6. Series de Representativas de series de tiempos de
Even Distribution; RanHeurist

A.300 requests, 3 logics

B:800 requests, 4 logics

C. 1000 requests, 5 logics.

D. 800 requests, 5 logics

Analyzing visually the resulting curves is noted that
RanHeuristic algorithm in most of graphs obtained has
an improved performance over the entire test; however
have asymptotic behavior at the end of each test release,
with a rising slope steeper than that of Even Distribution.
This asymptotic behavior is responsible for a significant
deterioration in the average response time of the Ran-
Heuristic algorithm. It also shows that at the beginning
of a test or a request with few RanHeuristic algorithm
behaves much like the Even Distribution, the latter being
in these conditions and as noted in the graphs, a slightly
better.

Below is a Table 2 which summarizes all tests in the exper-
iment, observing in the last column the average response
times. This table shows that in the twelve runs the Ran-
Heurist algorithm releases 7 lower averages than the Even
Distribution. Additionally raised a hypothesis test where
the Even Distribution algorithm is better than RanHeurist,
to which it was found that for all the statistical tests turned
out to be less than the P-value (5%), so that for all cases,
the initial hypothesis is rejected, finding that statistically
RanHeurist algorithm gives better response times. Final-
ly it is noteworthy that we observed the RanHeurist al-
gorithm were remote host of business logic that process
more requests over the rest.

52

Load balancing for distribuited databases access using a random heuristic algorithm

Table 2. Averages with truncated data with lower number
of requests
Tabla 2. Promedios con los datos truncados al menor
número de request

Averages with truncated data with lower number of requests
Number of

logics
Numbers of

clients Algorithm Average
time ns

Three (3) logics 300 Pair - Odd 3746920937
RanHeurist 3957345689

500 Pair - Odd 6047718938
RanHeurist 4976262397

800 Pair - Odd 6922225030
RanHeurist 7148378593

1000 Pair - Odd 6305264984
RanHeurist 6507325684

Four (4) logics 300 Pair - Odd 3717717077
RanHeurist 3792965005

500 Pair - Odd 4560593670
RanHeurist 4316906615

800 Pair - Odd 4563335257
RanHeurist 3914769288

1000 Pair - Odd 6346990202
RanHeurist 3081528799

Five (5) logics 300 Pair - Odd 2977645743
RanHeurist 2882842373

500 Pair - Odd 4019191660
RanHeurist 3926049928

800 Pair - Odd 5245547878
RanHeurist 6001844617

1000 Pair - Odd 5626091481
RanHeurist 3499735904

6. CONCLUSIONS

• Given the observed network conditions cannot draw
definitive conclusions with respect to the metric of
loss or that the experiments are comparable due to
the change in conditions among the two experiments
of the algorithms. Initially, and that observed in the
tests is excluded that the use of the RanHeurist algo-
rithm, is the predominant factor for excessive losses
in test scores, given that by repeating the experiment
in the same conditions with the Even Distribution,
more requests were lost that tests originally made
tests where data were taken for the present work.
According to the above we propose the following
hypothesis, that will be tested in future work done:
The network played a dominant role in causing the

observed communication problem, generating addi-
tional losses and an adverse environment for the
experiment with RanHeurist, and introducing noise
the tests conducted with the exposed load balancing
algorithms.

• It is proposed as a future work, try RanHeurist with
DEPRO algorithm and other load balancing propo-
sals. For this experiment recommend debug in a con-
trolled environment where the possible disturbances
keeps restricted introduced in the experiment. These
could be: to ensure that the test computers have the
same software installed, without changing the roles
of the host between tests, control the use of additional
applications running on computers, monitor network
traffic by restricting to only the test generated by iso-
lating the test host with a router just for the experi-
ment. Additionally it is recommended to establish
additional protocols for the experiment and restart
the computers before performing a test set for a speci-
fic algorithm. According to observations we conclude
that the experiment has a large dispersion for the two
metrics being raised from 20% to 30%, so it is recom-
mended for future work to improve the conditions
of the experiment according to the recommendations
made.

• Another important aspect to take into account the
decrease in the dispersion of the results is to focus
on random queries that are performed in the expe-
riment. To achieve this, two alternatives are posed;
the first is to generate several releases for each test
condition thus ensuring that the average consultation
rate is similar for both tests. A second alternative is
chose in a random way the queries to be used in each
test, store them in an array and use exactly the same
sequence of queries to the same conditions in the two
algorithms. If this is not done in this manner is proba-
bly the same conditions for one of the two algorithms
are working with queries to databases significantly
more complex than the other. This could be a cause
that has contributed to the observed inspired blocka-
ges in the system.

• The explanation for the better performance of Even
Distribution algorithm, regarding RanHeuristic to
the beginning of each test, or tests with low proces-
sing load is explained on the fact that in these condi-
tions the remote hosts are not saturated, and because
Distribution Even the algorithm is simpler uses less
processing time which is reflected in slightly shorter
answers. From this we conclude that the load ba-
lancing algorithm RanHeurist that react to a load, it
makes greater improvements on performance if the
remote hosts are not under stress. However, in cases

53

Prospect. Vol. 12, No. 1, Enero - Junio de 2014, págs. 46-54

where they undergo stress or remote hosts where the-
se have different processing capacity, the RanHeurist
algorithm has a better performance than Even Distri-
bution, because this best advantage of remote hosts
that have lower response time, despite the unfavora-
ble conditions outlined above.

• So it is concluded that the RanHerustic about load
balancing (response times) has a better performance
than the Even Distribution, this claim is based on all
the aspects evaluated (curve shapes, average respon-
se times, and hypothesis testing), the RanHerustic
had a best performance than Even Distribution. Fi-
nally it is recommended that to improve operating
conditions RanHeurist algorithm, taking into account
the asymptotic behavior according as the system is
saturated, the shooting should be defined according
to the expected load on it, placing the maximum no-
minal load below the inflection point where the slope
increases.

REFERENCES

[1] Edward Giovanni Arteaga Osorio, «Sistema Cliente
Servidor para Visión de un Robot Móvil Usando Una
Wireless Lan», Pontificia Universidad Católica del Peru,
2006.

[2] Ludwik Czaja, «On Deadlock and Fairness Decision
Problems for Computations on Client-server Systems».
2011.

[3] Shinsuke Satake, Hiroshi Inai, Y Tsuyoshi Arai, «Ef-
fectiveness of Server Load Estimation by Using Requested
File Size for Web Server Clusters», Electronics and Commu-
nications in Japan, vol. Vol. 94, n.o No. 2, 2011.

[4] Y.-T. Liu, T.-Y. Liang, C.-T. Huang, y C.-K. Shieh,
«Memory resource considerations in the load balancing of
software dsm systems», en Parallel Processing Workshops,
2003. Proceedings. 2003 International Conference on, 2003, pp.
71-78.

[5] Z. Tang, J. D. Birdwell, J. Chiasson, C. T. Abdallah, y M.
Hayat, «Resource-constrained load balancing controller
for a parallel database», Control Systems Technology, IEEE
Transactions on, vol. 16, n.o 4, pp. 834-840, 2008.

[6] O. Dikenelli, M. O. Unalir, A. Ozerdim, y E. Ozkara-
han, «A load balancing approach for parallel database
machines», en Parallel and Distributed Processing, 1995. Pro-
ceedings. Euromicro Workshop on, 1995, pp. 51-58.

[7] J. L. Bosque, O. D. Robles, y L. Pastor, «Load balancing
algorithms for CBIR environments», en Computer Architec-

tures for Machine Perception, 2003 IEEE International Work-
shop on, 2003, p. 11 pp.-80.

[8] C. A. Yfoulis y A. Gounaris, «Online Load Balancing
in Parallel Database Queries with Model Predictive Con-
trol», Data Engineering Workshops (ICDEW), 2012 IEEE 28th
International Conference on, pp. 269-274, abr. 2012.

[9] L. Zhou, Y.-C. Wang, J.-L. Zhang, J. Wan, y Y.-J. Ren,
«Optimize Block-Level Cloud Storage System with Load-
Balance Strategy», en Parallel and Distributed Processing
Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE
26th International, 2012, pp. 2162-2167.

[10] A. Khanna, Load balancing algorithm. Google Patents,
2012.

[11] B. Janhavi, S. Surve, y S. Prabhu, «Comparison of load
balancing algorithms in a grid», en Data Storage and Data
Engineering (DSDE), 2010 International Conference on, 2010,
pp. 20-23.

[12] M. Randles, D. Lamb, y A. Taleb-Bendiab, «A com-
parative study into distributed load balancing algorithms
for cloud computing», en Advanced Information Networking
and Applications Workshops (WAINA), 2010 IEEE 24th Inter-
national Conference on, 2010, pp. 551-556.

[13] S. Yamaguchi y K. Maruyama, «Autonomous load bal-
ance system for distributed servers using active objects»,
en Database and Expert Systems Applications, 2001. Proceed-
ings. 12th International Workshop on, 2001, pp. 167-171.

[14] E. D. Nino, C. Tamara, y K. Gomez, «Load Balancing
Optimization Using the Algorithm DEPRO in a Distribut-
ed Environment», en P2P, Parallel, Grid, Cloud and Internet
Computing (3PGCIC), 2012 Seventh International Conference
on, 2012, pp. 1-4.

[15] A. S. Tanenbaum y M. Van Steen, Distributed Systems:
Principles and Paradigms. Pearson Prentice Hall, 2007.

[16] Bertocco, M, Ferraris, F., Offelli, C., y Parvis, M., «A
client-server architecture for distributed measurement
systems», presentado en Instrumentation and Measure-
ment Technology Conference, 1998. IMTC/98. Conference
Proceedings. IEEE, St. Paul, MN, 1998, vol. Vol. 1, pp. 67
- 72.

[17] Pianegiani, F., Macii, D., y Carbone, P., «Open dis-
tributed control and measurement system based on an
abstract client-server architecture», presentado en Virtual
and Intelligent Measurement Systems, 2002. VIMS ’02.
2002 IEEE International Symposium on, 2002, pp. 63-67.

54

Load balancing for distribuited databases access using a random heuristic algorithm

[18] Shaodong Ying y Shanan Zhu, «Remote laboratory
based on client-server-controller architecture», presentado
en Control, Automation, Robotics and Vision Conference,
2004. ICARCV 2004 8th, 2004, vol. Vol. 3, pp. 2194 - 2198.

[19] T. Elrad y N. Francez, «Decomposition of distributed
programs into communication-closed layers», Science of
Computer Programming, vol. 2, n.o 3, pp. 155-173, dic. 1982.

[20] Carlos Coronel, Steven Morris, y Peter Rob, Bases de
Datos, Diseño, Implementacion y Administracion. Cengage
Learning Editores, 2011.

[21] Laura Cruz Reyes, «Automatización del Diseño de
la Fragmentación Vertical y Ubicación en Bases de Datos
Distribuidas Usando Métodos Heurísticos y Exactos»,
Universidad Virtual Del Instituto Tecnológico Y De Estu-
dios Superiores De Monterrey, 1999.

[22] Francisco Corbera Navas y Alejandro Delgado Gal-
lego, «Modelos Avanzados de Bases de Datos». 01-abr-
2008.

[23] Kermia O. y Sorel Y., «Load Balancing and Efficient
Memory Usage for Homogeneous Distributed Real-Time

Embedded Systems», presentado en Parallel Processing -
Workshops, 2008. ICPP-W ’08. International Conference
on, Portland, OR, 2008, pp. 39 - 46.

[24] Li Jianxiang, Chuang Lin, y Fenglin Shi, «Availability
Analysis of Web-Server Clusters with QoS-Aware Load
Balancing», presentado en Computational Intelligence
and Design (ISCID), 2010 International Symposium on,
2010, vol. Vol. 2, pp. 156 - 159.

[25] Chao-Tung Yang y Ko-Tzu Wang, «A VOD system on
high-availability and load balancing Linux servers», pre-
sentado en Multimedia and Expo, 2004. ICME ’04. 2004
IEEE International Conference on, Taipei, 2004, vol. Vol.
1, pp. 499 - 502.

[26] Carlos Rodríguez Ortiz, Abraham Duarte Muñoz, y
Juan José Pantrigo Fernández, «Algoritmos heurísticos y
metaheurísticos para el problema de localización de re-
generadores.», Universidad Rey Juan Carlos, 2009.

[27] K. Abani, K. Akingbehin, y A. Shaout, «Fuzzy deci-
sion making for load balancing in a distributed system»,
en Circuits and Systems, 1993., Proceedings of the 36th Mid-
west Symposium on, 1993, pp. 500-502.

