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RESUMEN 

In this article a control analysis in state variables is presented, applied to the nonlinear Magnetic Levi-
tation System (MLS), which consists in keeping objects suspended in the air without any mechanical 
contact through the interaction of magnetic force. The design of Linear Quadratic Regulator (LQR) and 
Linear Feedback in State Variables (LFSV) controllers is implemented with the aim of comparing the re-
sults which guarantee a better stability performance in the system. The mathematical representation of 
the nonlinear and linearized model of the MLS plant is examined through the design of algorithms and 
simulation in Simulink-Matlad. In this way, the behavior of the system when there are perturbations 
and input changes is contrasted, with the priority of exerting a low control action as parameter of the 
system to be optimized.
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ABSTRACT 

En este artículo se presenta un análisis de control de variables de estado, aplicada al Sistema no Lineal 
de Levitación Magnética (SLM), que consiste en mantener objetos suspendidos en el aire sin ningún tipo 
de contacto mecánico, a través de la interacción de la fuerza magnética. El diseño de los controladores 
Regulador Lineal Cuadrático, por sus siglas en inglés (LQR) y la Realimentación Lineal en Variables 
de Estado (RLVE), permiten modelar y simular la dinámica de control, con el objetivo de comparar los 
resultados que garantizan un mejor funcionamiento de la estabilidad en el sistema. La representación 
matemática del modelo no lineal y linealizado de la planta SLM se examina mediante el diseño de algo-
ritmos y simulación en Simulink-Matlad. De esta manera, se contrasta el comportamiento del sistema 
ante perturbaciones y cambios en las variables de entrada, con la prioridad de ejercer una mínima ac-
ción de control como parámetro del sistema a optimizar.
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1. INTRODUCTION

With the aim of applying concepts and knowledge 
from control engineering, this work focuses on a Mag-
netic Levitation System (MLS), which consists in kee-
ping objects suspended in the air without any mecha-
nical contact thanks to magnetic force (figure 1). This 
is a nonlinear and unstable system by nature, which 
imposes a greater difficulty with respect to systems 
dealt with in other control subject areas already dis-
cussed [1][2].

Figure 1. Magnetic Levitation System (MLS).
Figura 1. Sistema Levitador Magnético (SLM).

Currently expectations about these systems are espe-
cially high in the field of engineering and the main 
interest in using magnetic levitation in applied engi-
neering lies in the fact that they do not require lubri-
cation because of their lack of contact, and that their 
maintenance costs are very low.

This lack of contact avoids friction and its derived pro-
blems (wear, heating). This feature makes magnetic le-
vitation ideal to be used in magnetic bearings and as 
part of windmill turbines. Its best known application 
is probably its use in the suspension of magnetic levi-
tation trains, as in the case of Japan, allowing for tra-
ins to reach speeds of up to 580km/h. There are other 
important applications, not as popular as the former, 
and thus our interest to familiarize ourselves with this 
topic.

Thus the Magnetic Levitation System, modeling and 
mainly control design is very difficult, because the 
Magnetic levitation system is an example of nonli-
near, open loop unstable system with fast dynamics 
[3], however, Magnetic Levitation System has wide 
application in various industries than high-speed tra-
ins, frictionless bearing, etc and therefore this field of 
research is devoted significant effort in recent years.

2. MAGNETIC LEVITATING MODEL

2.1 Model development

To obtain the model two laws are used; one for the 
movement and one for the energy balance. These are 
Newton’s second law and Kirchhoff’s voltage law, res-
pectively [4].

Equation 1 refers to Newton’s second law where, “m” 
is the ball’s mass, “y” is the vertical position (y>0), 
“k” is the viscous friction coefficient, “g” is gravity 
acceleration and F(y, i) is the electromagnetic force. 
Electromagnet’s inductance depends on the ball’s po-
sition, and its model is presented in equation 2 as:

Taking the energy stored in the coil as shown in equa-
tion 3, the electromagnetic force is represented by 
equation 4.

By Kirchhoff’s voltage law (equation 5), “R” is the cir-
cuit resistance and “φ” is the magnetic flow (equation 
6), as shown below:

Replacing the above equations and taking a x_1=y,  
x_2=y ̇ and x_3=i as state variables, and u=v as input, 
the system is defined by:

2.2 Linearization

The procedure consists first in finding the equilibrium 
point and then in doing a linearization of the form     

 (1)

 (2)

 (3)

 (4)

 (5)
 (6)

 (7)

 (8)

 (9)
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Linearization is proposed around an equilibrium po-
sition y_e=0.05m. Replacing the operating point in 
equations 13 and 14, it is defined as:

Finally, linearization around the previously found 
equilibrium point is expressed as:

From equation 16 we evaluate stability, finding A’s 
proper values, which are S1=13.9,  S2=-14.11  and  S3=-
399.9. As it has a positive value, this means that the 
system has a pole on the right-hand semi-plane and 
thus it is unstable [8].

2.3 Comparison of linear and nonlinear models

Using Matlab-Simulink is made the comparison of 
models non-linear and the linearized with changes at 
the entrance, in order to check the response of the sys-
tem with an excited initial state (figure 2) [9][10].

Figure 2. Comparison of the non-linear and linearized 
model.
Figura 2. Comparación del modelo no lineal y linea-
lizado.
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x ̇=Ax+Bu [5][6].

 Operating point:

An operating point is established at a position of x1e=ye 
and taking into account the definition of equilibrium 
point 

Evaluating x2e and x1e in equation 8, it is found that x3e  
is equal to:

Doing the analogous procedure in equation 9, that is 
to say, evaluating x1e, x2e and x3e and expanding u, we 
arrive at:

In summary, our operating point is defined by equa-
tions 13 and 14 shown below:

- Linearization:

Below the system’s parameters are presented, then an 
equilibrium point is chosen and, finally, linearization 
is done.

Table 1. System’s parameters [7].
Tabla 1. Parámetros del sistema [7].

df(x1e)
dt

 =0). ( Replacing this in equation 7, 
we find:

 (10)

 (11)

 (12)

 (13)

 (14)

 (15)

 (16)

 (17)

 (18)

 (19)

Parameter Value Units
m 0.01 kg  

g 9.81 m/s^2 
L_0 0.01 H 
L_1 0.02 H 
a 0.05 m 
R 10 Ω 

k 0.001
N

(m/s)



31

Prospect. Vol. 14, No. 1, Enero - Junio de 2016, págs. 

In conclusion, with respect to linearization, it can be 
observed that in the three figures shown above (figu-
res 3, 4 and 5) the linear model follows the nonlinear 
one for small changes in input. For this reason, linea-
rization is the right choice and it represents the nonli-
near model correctly.

3. CONTROLLABILITY AND OBSERVABILITY

Since our system is unstable, a K for LFSV must be 
found such that it stabilizes the system. For this, an 
establishing time (Et) of 0.28 seconds and an over-per-
centage level (Op) of 0.02 % are proposed [11]. Accor-
ding to the system (MLS) the measured variables are 
related to the state variables; the current (i), the height 
and the speed (y), the controlled variable is the voltage 
source that powers the system.

3.1 Controllability

  Controllability verification

For this, the controllability matrix and its respective 
row range are presented.

Since the controllability matrix range is equal to the 
plant order, it can be concluded that the system is con-
trollable.

- Desired polynomial

For this, the relationship of over-percentage level and 
establishing time is presented below:

From the equations above ((21) and (22)) we find the 
value ξ y wn which meets the establishing time (Et) 
and the desired over-impulse (Oi). Thus, the polyno-
mial will have the following structure:

Since the order of the plant is 3 and we have an order 2 
polynomial (equation 23), a pole must be added which 
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 (20)

 (21)

 (22)

 (23)

To verify this and the other points, the Simulink tool 
provided by Matlab software is used. The responses 
presented below are given in a 10% change (increase) 
of the input from its nominal value.

Figure 3. Nonlinear model vs linearized model with 
respect to the first variable of state.
Figura 3. Modelo no lineal vs modelo linealizado con 
la primera variable de estado.

Figure 4. Nonlinear model vs linearized model with 
respect to the second variable of state.
Figura 4. Modelo no lineal vs modelo linealizado con 
la segunda variable de estado.

Figure 5. Nonlinear model vs linearized model with 
respect to the third variable of state.
Figura 5. Modelo no lineal vs modelo linealizado con 
la tercera variable de estado.



32

Modelling and simulation of LQR and LFSV controllers in the Magnetic Levitation System (MLS)

has the following structure:

Where ξwn is the real part of the desired polynomial’s 
poles in equation 23, and Ds is the distance where the 
additional pole will be placed, such that the desired 
behavior is not modified. Thus, the desired polyno-
mial will be as follows:

 K and Ak of LFSV

Finally we need to find K such that the proper values 
of the matrix Ak=(A-KB) are negative. For this, the Ac-
kerman formula was used [12]:

With the help of Matlab, equation 26 is resolved, which 
yields K of LFSV, and subsequently Ak is calculated, 
which results in:

Since Ak defines the system’s dynamics with LFSV, 
we find the proper values, which are: S1= -57.1429, S2= 
-14.2857 + 5.2693i and S3= - 14.2857 -5.2693i. As can 
be observed, the proper values of Ak are lower than 
zero, by which it is demonstrated that linear feedback 
in state variables makes the system stable.

 LFSV’s graphic verification

The LSFV controller (Linear Feedback in State Varia-
bles) required information for each of the states of the 
plant or system, to determine the control action as a 
linear combination of the states.

The response in LFSV for both the linear and nonlinear 
system is presented. According to this, it is clear that 
the LFSV stabilized the system. For the linear system, 
the proposed behavior is met, but this is not the case 
for the nonlinear one, in which a greater over impulse 
and a longer establishing time can be seen [13]. Never-
theless, the controller by LFSV is acceptable (figure 6).

 (24)

 (25)

 (26)

 (29)

 (27)

 (28)

Figure 6. Response LFSV for the system linear and 
non-linear.
Figura 6. Respuesta RLVE para el sistema lineal y no 
lineal.

The initial undershoot observed, refers to the control 
effort required to place the ball in the equilibrium po-
sition (figures 7 and 11). Control action used for LFSV, 
both from linear and non linear systems, is presented. 
As can be observed, the nonlinear system has a greater 
over-impulse than the linear one (figure 7).

Figure. 7. Control action for the linear system and 
non-linear controller using the LSFV.
Figura. 7. Acción de control para el sistema lineal y no 
lineal usando el controlador RLVE.

3.2 Observability

For the observer calculation, an analogous procedure 
to the one carried out for the calculation of the con-
troller by LFSV is used. A dynamics faster than LFSV 
must be established and thus an establishing time (Et) 
of 0.15 seconds, an over-percentage level (Op) of 0.1 % 
and a distance of 8 where the additional pole will be 
placed, are chosen.

  Observability verification

For this, the observability matrix and its column range 
are found:
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Since the matrix range is equal to the system’s order, 
then it is observable [14].

- Ke calculation

Proposing a desired polynomial as in equation 25 and 
resolving Akerman equation, we obtain:

Finally, the observer’s form is defined as:

- Observer verification

To verify the observer two methods are used: an 
analytical and a graphic one. For the former, Ake is 
proposed, in which it must be checked that the error is 
asymptotically stable.

For the error to be asymptotically stable, Ake must be 
Hurwis (all the proper values with negative real part).

As shown in the above equation, all Ake’s proper va-
lues have negative real part, which indicates that the 
error is asymptotically stable and our observer is sui-
table.

Next we continue with graphic verification, which is 
performed in open-loop and for LFSV. 

The comparison of linear model output with open-
loop observer. As can be observed, one is above the 
other, so it is a good state estimator (figure 8). The 
comparison of nonlinear model output with open-
loop observer. They are very similar and only at the 
end it can be seen how they separate; but for small 
changes it is a good state estimator (figure 9).
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 (30)

 (31)

 (32)

 (33)

 (34)

 (35)

Figure 8. Comparison of output of the linear model 
with observer for open-loop.
Figura 8. Comparación de salida del modelo lineal con 
observador de lazo abierto.

Figure 9. Comparison of the output of the nonlinear 
model with the observer in open loop.
Figura 9. Comparación de la salida del modelo no li-
neal con el observador en lazo abierto.

It compares the observer with LFSV for both linear 
and nonlinear systems. For the former, it can be obser-
ved that the response is similar to the LFSV without 
observer. For the nonlinear, greater error and establis-
hing time can be seen. Nevertheless, the observer is 
considered to be suitable for the magnetic levitator 
(figure 10).

Figure 10. Comparison of the observer with RLVE sys-
tem, with the linear and non linear.
Figura 10. Comparación del observador con RLVE, 
con el sistema lineal y no lineal.

Control action of LFSV, with and without observer, in 
which it can be seen that both signals are very similar. 
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The only difference is that the observer’s control effort 
takes longer to reach the stationary state (or nominal 
value), (figure 11).

Figure 11. Control action with RLVE observer without 
observer.
Figura 11. Acción de control, de la RLVE con observa-
dor y sin observador.

It represents the observer’s estimation error. As can 
be seen, it is greater at the beginning because the 
observer’s initial conditions are different from zero, 
but at the end this error approaches zero and thus 
theory and simulation coincide; the error is zero as-
ymptotically (figure 12).

Figure 12. Error of estimation of the observer.
Figure 12. Error de estimación del observador.

3.3 Optimal Linear Quadratic Regulator (LQR)

The LQR controller (linear quadratic regulator) con-
troller seeks to minimize the energy present in the sys-
tem, and the control that is obtained by minimizing 
this criterion is linear.

The method consists in finding a K for feedback in 
state variables such that it minimizes the following 
functional cost [15]:

 (36)

 (37)

 (38)

For this, the following Q and R are proposed:

To find an optimal K, Riccati equation must be resol-
ved (equation 38).

Finally, the optimal K will be equal to:

Using Matlab optimal K is equal to:

Finally, let us analyse optimal Ak’s proper values, 
which are: S1= -13.5, S2= -14.5 and S3= -399.9; as they 
all are on the left-hand semi-plane, the system is stable 
for this optimal K.

Figure 13. Comparison of the LQR controller with 
non-linear and linear system.
Figura 13. Comparación del controlador LQR con sis-
tema lineal y no lineal.

4. RESULTS AND DISCUSSION

The results are presented through the comparison of 
the response of the linear system and non-linear, both 
for the driver as to the LQR LSFV, which allows you to 
analyze the behavior of the system obtained through 
the influence of each controller.

Figure 14 compares the behavior of the system con-
trolled by the LFSV and the LQR, both applied to the 
non-linear model. I could see was noted that the con-
trolled system with the LQR presents a minor on im-
pulse that RLVE. In this outcome the LQR controller 
ensures a positioning of stabilization of the more soft 
magnetic levitator and with the same time that the es-
tablishment LFSV.

 (39)

 (40)
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tema no lineal controlado por el LFSV y el LQR.

The result obtained in figure 17, presents a similar be-
havior in the sub-impulse as explained in the figure 
16, although it does not feature an on momentum as 
evidenced in the above figure, such behavior exposes 
that the sub-impulse is present in the linear model and 
non-linear without the driver, therefore it is a behavior 
of the system itself.

Figure 17. Comparison of the control action of the li-
near system controlled by the LFSV and the LQR.
Figura 17. Comparación de la acción de control del sis-
tema lineal controlado por el LFSV y el LQR.

- LQR with observer:

In this section, the answer with the LQR by applying 
the previously calculated observer is analyzed [16]. 
In the figure 18, a better answer is obtained with the 
controller LQR, which presents an establishment time 
between (0,4 to 0,5) seconds, while the system contro-
lled by LFSV presents an establishment time in 0,8 se-
conds, which is late too much to stabilize the system. 
This way the behavior of the system controlled with 
the LQR and observer of the state presents a better 
performance.

Figure 14. Comparison of the non-linear system con-
trolled by the LFSV and the LQR.
Figura 14. Comparación del sistema no lineal contro-
lado por el LFSV y el LQR.

Unlike the previous result presented in figure 14, whe-
re there is a outcome in favor for the controlled system 
with the LQR. In figure 15 the linear system is not a 
significant difference between the behavior of the sys-
tem compared by the drivers and LFSV LQR, it should 
be noted that the non-linear system is more closer to 
the actual behavior of the system.

Figure 15. Comparison of the linear system controlled 
by the LFSV and the LQR.
Figura 15. Comparación del sistema lineal controlado 
por el LFSV y el LQR.

In figure 16 you can see a sub-impulse, before spen-
ding the 0.2 seconds, in which the sub-impulse of grea-
ter magnitude and presents the system controlled by 
LQR, this is reflected in a higher cost of energy, that’s 
costing you more to the controller, but is subsequently 
offset with the on momentum between the (0.4 to 0.6) 
seconds less pronounced in front of the driver LFSV.

Figure 16. Comparison of the control action of the non-
linear system controlled by the LFSV and the LQR.
Figura 16. Comparación de la acción de control del sis-

28-38
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Figure 18. Comparison of the non-linear system with 
observer, controlled by the LFSV and the LQR.
Figura 18. Comparación del sistema no lineal con ob-
servador, controlado por el LFSV y el LQR.

With respect to the control action that is presented in fi-
gure 19, the non-linear system with observer responds 
faster before the sub-impulse, with a time less than 0.1 
seconds, and with an energy expenditure 10 times less 
than the submitted to the same system without obser-
ver. In this way, the system with observer presents a 
better behavior before the sub-impulse.

Figure 19. Comparison of the control action of the 
non-linear system with observer, controlled by the 
LFSV and the LQR.
Figura 19. Comparación de la acción de control del sis-
tema no lineal con observador, controlado por el LFSV 
y el LQR.

In this way, the results for the non-linear system, when 
you enter a measurement noise variance of 1x10-15, 
where it is possible to verify the behavior of the sys-
tem with regard to its position. In figure 20, this noise 
is negligible for the LQR controller, but you can ob-
serve a large variability in the response of the driver 
RLVE, which dramatically affects its stability.

In addition, it may become evident in the figure 21, 
the variability, the effort to control that you must have 
the driver LFSV to keep the system stable, something 
that is transformed to a large amount of energy used 

to control the system.
Figure 20. Response of the non-linear system with ob-
server in a noise measurement.
Figura 20. Respuesta del sistema no lineal con obser-
vador ante un ruido de medición.

Figure 21. Control action of the non-linear system 
with observer in a noise measurement.
Figura 21. Acción de control del sistema no lineal con 
observador ante un ruido de medición.

Finally, in the table 2 is a summary of the analysis of 
results, in which engage system parameters such as 
sub-impulse, time of establishment, over-percentage, 
Noise measurement and control action. With the aim 
to highlight the behavior of the system that characte-
rizes the system magnetic levitator and also provide 
important tools, which are taken as starting points for 
the design, modeling, control and implementation of 
the non-linear system of magnetic levitator. To charac-
terize the table 2, identifies three points of measure-
ment: Insufficient, acceptable and excellent (I, A and 
E), according to the behavior of the drivers submitted 
with respect to the parameters in this table.
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Table 2. Analysis of results
Tabla 2. Análisis de resultados

4. CONCLUSIONS

• Some difficulties arose in the simulation because de-
viated variables were not easily identified from non 
deviated variables.

• There were difficulties with the state observer be-
cause initial conditions must be very close to zero; 
otherwise, the observer’s error with respect to the ori-
ginal will be so big as to make the system unstable, 
and by the time the error is zero it would be too late for 
the controller to do anything. A clear example would 
be: if the ball is levitating and the controller reduces 
the intensity of the magnetic force, due to an error in 
the observer until a point when gravity force is higher, 
the ball will fall to the ground, and by the time the 
observer’s error is zero, there is no way the levitator 
can lift the ball from the ground.

• When analyzing the differences between the con-
troller by LFSV and by LQR, not much difference is 
perceived between them. Only when measurement 
noise is added, the LQR tolerates noise with greater 
variability than the LFSV. The latter becomes unstable 
from a certain value, while the LQR does not.

The theory about control in state variables applied 

Parameter

Sub-impulse

Establishing time 

Over-percentage

Noise measurement

Control action, 

Control action, 
Noise measurement

The non-linear system controlled by the LQR presents a minor on 
impulse that RLVE (figure 13), plus this improved for the two contro-
llers, adding the observer to the system (figure 19).

The time of establishment of the system became similar in the two 
controllers, but with the observer added to the system the LQR con-
trol showed a better result compared to LFSV (figure 18).

On the percentage level, was presented in a similar manner for the 
two controllers, with a slight difference in favor of the LQR controller 
(figure 13).

The noise of measurement became chaotic LFSV in the control, and 
null for the LQR controller, therefore the LQR control presents the 
quality of noise immunity (figure 20).

The control action showed two important results, the first in figure 
19, the LQR control presents greater consumption of energy to stabi-
lize the system.

The control action showed two important results, in second place 
when introduces noise measurement of the LQR control shows bet-
ter performance than the LFSV (figure 21).

LQR

E

E

A

E

A

E

LFSV

A

I

A

I

E

I

Observation

in this magnetic levitator is very interesting since an 
unstable system can easily become stable and different 
controllers can be used.

REFERENCES

[1] S. Kumar, R. Singh, Nonlinear Control of a Mag-
netic Levitation System using Feedback Linearization, 
Advanced Communication Control and Computing 
Technologies (ICACCCT), 2014 International Confe-
rence on. 152-156, 2014.

[2] R. Morales, V. Feliu, H. Sira-Ramírez, “Nonlinear 
Control for Magnetic Levitation Systems Based on Fast 
Online Algebraic Identification of the Input Gain”, 
Control Systems Technology, IEEE Transactions on, 
19(4), 757-771, 2011.

[3] P. Suster, A. Jadlovska, Modeling and control de-
sign of Magnetic levitation system, Applied Machine 
Intelligence and Informatics (SAMI), 2012 IEEE 10th 
International Symposium on, 295-299, 2012.

[4] E. Kofman, F. Fontenla, H. Haimovich, M. Seron, 
Control design with guaranteed ultimate bound for 
feedback linearizable systems, Proceedings of the 17th 
World Congress The International Federation of Auto-



38

Modelling and simulation of LQR and LFSV controllers in the Magnetic Levitation System (MLS)

matic Control Seoul, Korea, 242-247, 2008.

[5] P. Suster and A. Jadlovska, Modeling and Control 
Design of Magnetic Levitation System, Applied Ma-
chine Intelligence and Informatics (SAMI), 2012 IEEE 
10th International Symposium on, 295-299, 2012.

[6] R. Uswarman, A. Cahyadi, O. Wahyunggoro, Con-
trol of a magnetic levitation system using feedback 
linearization, Computer, Control, Informatics and Its 
Applications (IC3INA), 2013 International Conference 
on, 95-98, 2013.

[7] M. Seron, (2001) Nonlinear Systems - Laboratory 
of Dynamical Systems and Signal Processing (LSD), 
[Internet], National University of Rosario. Disponible 
desde: <http://www.fceia.unr.edu.ar/control/snl/
Apunte.pdf> [Acceso 1 de agosto 2014].

[8] R. Dorf, R. Bishop, Modelos en variables de estado. 
En: Sistemas de Control Moderno. New Jersey: Prenti-
ce Hall Editores, pp.79–129.

[9] P. Shiakolas, S.Van-Schenck, D. Piyabongkarn, I. 
Frangeskou, “Magnetic levitation hardware-in-the-
loop and MATLAB-based experiments for reinforce-
ment of neural network control concepts”, Education, 
IEEE Transactions on, 47(1), 33-41, 2004.

[10] T. Kumar, S. Shimi, D. Karanjkar, S. Rana, Mode-
ling, simulation and control of single actuator magne-
tic levitation system”, Engineering and Computatio-

nal Sciences (RAECS), 2014 Recent Advances in, 1-6, 
2014.

[11] K. Ogata, Modern control engineering. New Jer-
sey: Prentice Hall Editors, 2010, pp. 912.

[12] Oishi, (2010) State Feedback - Ackermann’s For-
mula, [Internet], University of British Columbia. Dis-
ponible desde: <http://doctord.dyndns.org/cour-
ses/bei/mc300/oishi/lecture28.pdf> [Acceso 1 de 
junio 2015].

[13] E. Kumar, J. Jerome, K. Srikanth, Algebraic ap-
proach for selecting the weighting matrices of linear 
quadratic regulator, Green Computing Communica-
tion and Electrical Engineering (ICGCCEE), 2014 In-
ternational Conference on., 1-6, 2014.

[14] A. Romero, A. Marín, A. Jiménez, “Modelado, si-
mulación e implementación de controladores LQR y 
RLVE al sistema péndulo invertido rotacional usando 
la plataforma NI ELVIS II”, Revista Científica Guiller-
mo de Ockham, 11(1), 67-78, 2013.

[15] P. Yadav, R. Mitra, Real time implementation of 
hybrid fuzzy logic controller with linear quadratic 
regulator on magnetic levitation, Computational Inte-
lligence and Computing Research (ICCIC), 2013 IEEE 
International Conference on, 1-4, 2013.

[16] C. Chen, Linear system theory and design. Oxford 
University Press, 2012, pp. 400.


