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Abstract

In this paper we establish the existence of periodic travelling waves for a 2D Boussinesq type system in three-
dimensional water-wave dynamics in the weakly nonlinear long-wave regime. For wave speed |c| > 1 and large
surface tension, we are able to characterize these solutions through spatial dynamics by reducing a linearly ill-posed
mixed type initial value problem to a center manifold of finite dimension and infinite codimension. We will see that
this center manifold contains all globally defined small-amplitude solutions of the travelling wave equation for the
Boussinesq system that are periodic in the direction of propagation.
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Un problema de ondas de agua de tipo mixto: la existencia de ondas viajeras periódicas para un sistema
Boussinesq 2D

Resumen

En este artículo establecemos un resultado de existencia de ondas periódicas para un sistema 2D del tipo Boussinesq
que describe la evolución de ondas de agua de gran elongación y pequeña ampitud que son débilmente lineales.
Para velocidad de onda |c| > 1 y tensión superficial suficientemente grande, estas soluciones son caracterizadas a
través de dinámica espacial al reducir el problema de valor inicial (mal puesto a nivel lineal) a una variedad central
de dimensión finita y codimensión infinita. Se mostrará que dicha variedad central contiene todas las soluciones
de onda viajera de pequenã amplitud para el sistema tipo Boussinesq que son periódicas en la dirección de propa-
gación de la onda.

Palabras clave: ondas viajeras periódicas, método de variedad central, estabilidad.

1. Introduction
This paper presents an existence result of nonlinear trav-
elling water waves which are periodic in their direction
of propagation and have a pulse structure in the un-
bounded transverse spatial direction. As done for a wide
range of applications, we use spatial dynamics and cen-
ter manifold reduction to obtain such a result in a model
related with the water-wave problem. Here the expres-
sion “spatial dynamics" means to perform a method in
which a system of partial differential equations govern-
ing a physical problem is formulated as a evolutionary
equation (in general ill-posed)

uζ = A(u) + G(u). (1.1)

in which an unbounded spatial coordinate plays the role
of the timelike variable ζ (see Kirchgässner (1982)). In
this paper the method is applied to studying the ex-
istence of non trivial periodic travelling wave for the
Boussinesq type system related with the water wave
problem

⎧
⎪⎪⎨
⎪⎪⎩

ηt + �∇ ·
�

η
�

Φp
x , Φp

y
��

+ ΔΦ − μ
6 Δ2Φ = 0,

Φt + η − μ
�

σ − 1
2

�
Δη + �

p+1

�
Φp+1

x + Φp+1
y

�
= 0,

(1.2)
where

√
μ = h0/L is the ratio of undisturbed fluid depth

to typical wave length (long-wave parameter or disper-
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sion coefficient), and � is the ratio of typical wave am-
plitude to fluid depth (amplitude parameter or nonlin-
earity coefficient), σ−1 is the Bond number (associated
with the surface tension), Φ is the rescale nondimen-
sional velocity potential on the bottom z = 0, and η is the
rescaled free surface elevation. We consider waves which
are periodic in a moving frame of reference, so that they
are periodic in the variable x − ct, where t denotes the
temporal variable. For this physical problem, we have
a bounded spacelike coordinates (the vertical direction),
which is bounded because the fluid has finite depth, and
the coordinate x − ct which is considered bounded be-
cause we are looking for periodic wave in this variable.
So, since there is not any restriction upon the behav-
ior of the waves in the spatial direction y transverse to
their direction of propagation, we are allowed to use it
as timelike variable. We apply spatial dynamics to the
problem by formulating this as an evolutionary system
of the form (1.1) with ζ = y in an infinite-dimensional
phase space consisting of periodic functions of x− ct (see
Grover & Schneider (2001), Sandstede & Scheel (1999),
Sandstede & Scheel (2004), and Haragus-Courcelle &
Schneider (1999) for applications to respectively non-
linear wave equations, reaction-diffusion equations, and
Taylor-Couette problems, and Quintero & Pego (2002)
for periodic nonlinear travelling for the Benney–Luke
model).
In the case of wave speed |c| > 1 and bond number
σ > 1

2 , the Boussinesq system (1.2) under considera-
tion in this paper has a very close relationship with
the Benney–Luke model derived in Quintero & Pego
(1999) when a > b and also with the KP-II model
(σ > 1

3 ), in the sense that travelling waves for the Boussi-
nesq system (1.2) can generate travelling waves for the
Benney–Luke model and the KP-II model, up to some
order. Event tough this fact, in the regime of wave
speed |c| > 1 and bond number σ > 1

2 , the Boussi-
nesq system (1.2) seems to be closer to the linearized
system of the exact water wave problem with surface ten-
sion (see Grover (2001), Grover & Mielke (2001)) since
both models share ill-posed spatial evolution equations
with finite-dimensional center manifolds, while for the
Benney–Luke model in the same regime and also for the
KP-II model there are ill-posed spatial evolution equa-
tions with infinite-dimensional center manifolds.
It is well known that a finite-dimensional dynamical sys-
tem whose linear part has purely imaginary eigenval-
ues admits an invariant manifold called the center mani-
fold which contains all its small, bounded solutions. The
dimension of the center manifold is determined by the
number of purely imaginary eigenvalues (e.g., see Van-
derbauwhede (1989)). This type of results under special
hypotheses has been extended for infinite-dimensional

evolutionary systems whose linear part has either finite
or even infinite number of purely imaginary eigenvalues,
showing in particular that the original problem is locally
equivalent to a system of ordinary differential equations
whose solutions can be expressed in terms of the solution
on the center space (tangent to the center manifold). A
generalization regarding invariant manifolds of infinite
dimension and codimension in nonautonomous systems
was obtained by Scarpellini (1990), but his hypotheses
require that the operator A1 (A restricted to the hyper-
bolic space) be bounded from H to H. We also have some
works by Mielke (1991) and Vanderbauwhede & Iooss
(1982), Quintero & Pego (2002), among others. The gen-
eral strategy of our proof will follow closely the lines
of Vanderbauwhede (1989) (also see Quintero & Pego
(2002), Kirchgässner (1982), Mielke (1988), Mielke
(1992) for the case of a finite-dimensional center mani-
fold in an ill-posed system for which the spectrum of A1
is unbounded on both sides of the imaginary axis. In
order to accomplish this, we need to transform the trav-
elling wave system into an integral equation that must
contain all small bounded solutions. By modifying the
nonlinearity f outside a neighborhood of 0 using a cutoff
function, we are able to obtain an invariant local mani-
fold as a consequence of the contraction mapping argu-
ment.

The main differences between our results and those in
Vanderbauwhede & Iooss (1982) are that our cutoff oc-
curs in a space with less regularity than the space regu-
larity and also that the nonlinear part has a smoothing
property. This facts are clever to control the norm of
solutions in the right space using an indefinite energy
which turns out to be ”definite” on the center manifold.
The stronger assumption on the nonlinear term f im-
posed in the present work is completely natural for the
present application to the Boussinesq system.

In this paper we describe all small travelling waves that
translate steadily for σ > 1

2 with supercritical speed
|c| > 1, which are periodic in the direction of transla-
tion (or orthogonal to it). In this regime, after rescaling �
and μ, the traveling-wave system for (1.2) takes the form
⎛
⎝ Δv − 1

6 Δ2v +∇ ·
�

u
�

vp
x , vp

y
��

− cux

u −
�

σ − 1
2

�
Δu + 1

p+1

�
vp+1

x + vp+1
y

�
− cvx

⎞
⎠ =

�
0
0

�
.

(1.3)
Existence of periodic travelling waves follows by consid-

ering the system (1.3) as an evolution equation where y
acts as the “time” variable. In this case when we seek
for x-periodic travelling wave solutions, the initial-value
problem for the system (1.3) considered as an evolution
equation in the variable y has mixed type due to the fact
that the Cauchy problem turns out to be linearly ill-posed
for wave speed |c| large enough and large bond number
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(σ > 1
2 ). To be more precise, at the linear level there

are finite many central modes (pure imaginary eigenval-
ues) and infinitely many hyperbolic modes. As a conse-
quence of this fact, the existence result of x-periodic trav-
elling wave solutions involves using an invariant center
manifold of finite dimension and infinite codimension.
This center manifold contains all globally defined small-
amplitude solutions of the travelling wave equation for
the Boussinesq system that are x-periodic in the direction
of propagation.

2. Periodic travelling waves for |c| > 1 and
σ > 1

2

Recall that x-periodic travelling-wave profile (u, v)
should satisfy the system (1.3). In order to look for the
existence of x-periodic travelling waves of period 2π, we
set the new variables

u1 = ∂xv, u2 = ∂yv,

u3 = ∂yyv, u4 = ∂yyyv,

u5 = u, u6 = ∂yu,

then we have for γ
�

σ − 1
2

�
= 1 that

∂yu1 = ∂xu2, ∂yu2 = u3, ∂yu2 = u4 (2.4)

∂yu4 = 6∂xu1∂3
xu1 + 6u3 − 2∂2

xu3 − 6c∂xu5+

6∂x(u5up
1 ) + 6u6up

2 + 6pu5up−1
2 u3 (2.5)

∂yu5 = u6 (2.6)

∂yu6 = −cγu1 + γu5 − ∂2
xu5+

+
γ

p + 1

�
up+1

1 + up+1
2

�
(2.7)

In terms of the new variable Ut = (u1, u2, u3, u4, u5, u6),
we see that this system can be rewritten as an evolution
in which y is considered as the time variable

∂yU = AU + G(U), (2.8)

where we have that

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 ∂x 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0

6∂x − ∂3
x 0 6I − ∂2

x 0 −6c∂x 0
0 0 0 0 0 I

−cγ 0 0 0 γ − 2∂2
x 0

⎞
⎟⎟⎟⎟⎟⎟⎠

and also

G(U) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

6∂x(u5up
1 ) + 6u6up

2 + 6pu5up−1
2 u3

0
γ

p+1

�
up+1

1 + up+1
2

�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now, for a given integer r ≥ 0, let H̃r denote the Sobolev
space of 2π-periodic functions on R whose weak deriva-
tives up to order k are square-integrable. Then H̃r is a
Hilbert space with norm given by

�u�2
H̃k =

k
∑
j=0

� 2π

0
|∂j

xu|2 dx

We will study the existence of x-periodic solutions for
(2.8) in the Hilbert spaces H and X defined by

H = H̃1 × H̃1 × H̃0 × H̃−1, (2.9)

X = H̃2 × H̃2 × H̃1 × H̃0. (2.10)

Note that X is densely embedded in H. If we assume
that U(x; y) = ∑

n∈Z

�U(n, y)einx, then we see that

∂y �U(n) = �A(n) �U(n, y) + �Gn(U),

where the matrix �A(n) has the form

�A(n) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 in 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

6in + in3 0 6 + 2n2 0 −6icn 0
0 0 0 0 0 1

−cγ 0 0 0 γ + 2n2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

It is straightforward to see that the characteristic polyno-
mial P(n, β) of �A(n) is given by

P(n, β) = β6 − (6 + 3n2 + γ)β4 + [(6+ 2n2)(n2 + γ)

+ n2(6+ n2)]β2 + n2[6γc2 − (6 + n2)(n2 + γ)],
(2.11)

where γ > 0, |c| > 0 and n ∈ Z. We note that the eigen-
values for �A(n) are roots of the cubic polynomial pn in
the variable λ = β2 given by

pn(λ) = λ3 + a2(n)λ2 + a1(n)λ + a0(n), (2.12)

where a0(n), a1(n) and a2(n) are defined as

a2(n) = −(3n2 + 6 + γ) (2.13)

a1(n) = (6+ 2n2)(n2 + γ) + n2(6+ n2)

= 3n4 + 2(6+ γ)n2 + 6γ (2.14)

a0(n) = n2[6γc2 − (6 + n2)(n2 + γ)] (2.15)

= −n2[n4 + (6+ γ)n2 + 6γ(1− c2)]
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Eigenvalues of Â(n)

We want to compute the eigenvalues of Â(n). For
n = 0, we have that a0(0) = 0, a1(0) = 6γ > 0,
a2(0) = −(6 + γ) < 0 and the cubic equation (2.12) can
be easily solve since

λ3 − (6+ γ)λ2 + 6γλ = λ(λ2 − (6+ γ)λ + 6γ)

= λ(λ − γ)(λ − 6) = 0.

In other words, we have the existence of six eigenvalues
for Â(0) given by,

β1(0) = β2(0) = 0,

β3(0) =
√

γ = −β4(0),

β5(0) =
√

6 = −β6(0).

Assume now that n �= 0. We will see that for γ > 0
and c2 > 1 large enough, the polynomial pn has a real
root λ1(n) which is negative for a finite number of n’s
and positive for infinitely many n’s. To do this we need
somehow to localize the roots of the polynomial p�n for
n �= 0. Note that

p�n(λ) = 3λ2 + 2a2(n)λ + a1(n)

has real roots given by

ρ+(n) = − a2(n)
3

+

√
a2

2(n)− 3a1(n)
3

,

ρ−(n) = − a2(n)
3

−
√

a2
2(n)− 3a1(n)

3

since

a2
2(n)− 3a1(n) = γ2 − 6γ + 36 = (γ − 3)2 + 27 > 0.

Moreover, a direct computation shows that

pn(ρ±) =
2a3

2(n)
27

− a1(n)a2(n)
3

+ a0(n)± 2
27

(3a1(n)

− a2
2(n))

√
a2

2(n)− 3a1(n)

=
2a3

2(n)
27

− a1(n)a2(n)
3

+ a0(n)

∓ 2
27

(γ2 − 6γ + 36)
3
2

From this, we conclude for any n �= 0 that

pn(ρ−)− pn(ρ+) =
4
27

(γ2 − 6γ + 36)
3
2 > 0.

On the other hand, we have that

2a3
2(n)
27

− a1(n)a2(n)
3

+ a0(n)

=
1
27

(
162γc2n2 + 54γ(6+ γ)− 2(6+ γ)3

)

=
1
27

(
162γc2n2 − 2(6+ γ)(γ − 3)(γ − 12)

)
.

(2.16)

Using this we have that

pn(ρ±) =
1

27

(
162γc2n2 − 2(6+ γ)(γ − 3)(γ − 12)

∓2(γ2 − 6γ + 36)
3
2

)

We set f (γ) = (γ2 − 6γ + 36)3 −
((6+ γ)(γ − 3)(γ − 12))2 . We see that f (0) = f (6) = 0
and that f �(0) = f �(6) = 0, so we have that

f (γ) = 35γ2
(

γ2 − 6
)2

> 0,

which implies that

(γ2 − 6γ + 36)
3
2 > (6+ γ)(γ − 3)(γ − 12)

and so, we have for γ > 0 that

pn(ρ−) =
1

27

(
162γc2n2 + 2(γ2 − 6γ + 36)

3
2

−2(6+ γ)(γ − 3)(γ − 12)) >
162
27

γc2n2 > 0.

Now we note that

pn(ρ+) =
1

27

(
162γc2n2 − 2 ((6+ γ)(γ − 3)(γ − 12)

+(γ2 − 6γ + 36)
3
2

))
,

so, we have that pn(ρ+) is positive for |n| large and could
be negative for a finite number of n’s. As a consequence
of this, for n �= 0 the polynomial pn has a real root λ1(n),
whose sign depends on the sign of a0(n). In the case
pn(ρ+) > 0, there are two conjugate complex roots λ2(n)
and λ3(n) = λ2(n), and in the case pn(ρ+) < 0 there are
two positive real root λ2(n) ≥ λ3(n) > 0. Finally, we
want to determine the sign of λ1(n) for γ > 0. We first
observe for c2 > 1 large enough and γ > 0 that there is
n0 �= 0 such that

a0(n) > 0 for 0 < n ≤ n0, and a0(n) < 0 for n > n0.

From this fact, we conclude for c2 > 1 large enough and
γ > 0 that

λ1(n) < 0 for 0 < n ≤ n0, and λ1(n) > 0 for n > n0.

9
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Right and left eigenvectors of �A(n)

As we established above, β1(0) = β2(0) = 0 is an eigen-
value. We see directly that the eigenvectors are

v1(0) = (1, 0, 0, 0, c, 0) t, v2(0) = (0, 1, 0, 0, 0, 0) t.

and left eigenvectors

z1(0) = (1, 0, 0, 0, c, 0) t, z2(0) = ((0, 1, 0,−1/6, 0, 0)t.

The eigenvalue β3(0) =
√

γ = −β4(0) are single eigen-
values with right eigenvectors

v3(0) = (0, 0, 0, 0, 1,
√

γ)t, v4(0) = (0, 0, 0, 0, 1,−√
γ)t.

and left eigenvectors

z3(0) =
1

2
√

γ
(c
√

γ, 0, 0, 0,
√

γ, 1)t,

z4(0) =
−1

2
√

γ
(c
√

γ, 0, 0, 0,−√
γ, 1)t.

On the other hand, the eigenvalue β5(0) =
√

6 = −β6(0)
are single eigenvalues with right eigenvectors

v5(0) = (0, 1,
√

6, 0, 1, 0)t, v6(0) = ((0, 1,−√
6, 0, 1, 0)t.

and left eigenvectors

z5(0) =
1
12

(0, 0,
√

6, 1, 0, 0)t,

z6(0) =
1
12

(0, 0,−√
6, 1, 0, 0)t.

Now, we will describe the form of the eigenvalues for
�A(n) for n �= 0. In this case, we have that

β3(n) = −β4(n) =
�

λ2(n) ∈ C,

β5(n) = −β6(n) =
�

λ3(n) ∈ C

and for γ > 0 we have that

β1(n) = −β2(n) =
�

λ1(n) ∈ iR, 0 ≤| n |≤ n0,

β1(n) = −β2(n) =
�

λ1(n) ∈ R, | n |> n0.

A direct computation shows for 1 ≤ m ≤ 6 that βm(n) is
a single eigenvalue with right eigenvector

vm(n) =
�

in, βm(n), β2
m(n), β3

m(n),

− cnγi
Θm(n)

,− cnγβm(n)i
Θm(n)

�t
,

where Θm(n) = β2
m(n)− (γ + n2). It is also straightfor-

ward to show that left eigenvector zm(n) is given by

zm(n) = Q(m, n)
�

qm(n)
inβm(n)

,
qm(n)
β2

m(n)
, βm(n), 1,

− cnβm(n)i
Θm(n)

,− 6cni
Θm(n)

�
,

where qm(n) = β2
m(n)(β2

m(n)− (6 + n2)) and Q(m, n) is
taken such that

zm(n)vl(n) = δl
m.

If we introduce the matrices Z(n) and V(n) given by

Z(n) =

⎛
⎜⎜⎜⎜⎜⎜⎝

z1(n)
z2(n)
z3(n)
z4(n)
z5(n)
z6(n)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

V(n) = (v1(n), v2(n), v3(n), v4(n), v5(n), v6(n)),

we have Z(n) · V(n) = I6 and

Z(n) �A(k)V(k) = diag (β1(n), β2(n), β3(n),
β4(n), β5(n), β6(n)) , n ∈ Z.

Now, we observe that given any vector �U(n) ∈ R6, we
may write

�U(n) = V(n) · Z(n) �U(n) = V(n)U#(n),

where

U#(n) = Z(n)�U(n) =

⎛
⎜⎜⎜⎜⎝

U#
1(n)U#

2(n)
U#

3(n)
U#

4(n)
U#

5(n)
U#

6(n)

⎞
⎟⎟⎟⎟⎠

.

Using this representation, we have for U = ∑
n∈Z

�U(n)einx

that
⎧
⎪⎨
⎪⎩

U = ∑n∈Z ∑6
m=1 vm(n)U#

m(k)einx,

AU = ∑n∈Z ∑6
m=1 βm(n)vm(n)U#

m(n)eikx.

(2.17)

We define the projections π0 and π1 for γ > 0 by

π0U = ∑
0≤|n|≤n0

2

∑
m=1

vm(n)U#
m(k)einx (2.18)

π1U = ∑
0≤|n|≤n0

6

∑
m=3

vm(n)U#
m(k)einx

+ ∑
|n|>n0

6

∑
m=1

vm(n)U#
m(k)einx. (2.19)
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We see directly from the explicit form of the roots of
the polynomial pn that |βm(n)| grows asymptotically lin-
early in |n|. In fact, we must recall that the roots λm(n)
of �A(n) for 1 ≤ m ≤ 3 depend on the discriminant D(n)
of pn defined as

D(n) = Q3(n) + R2(n).

where Q and R are defined by

Q(n) =
3a1(n)− a2

2(n)
9

R(n) =
9a1(n)a2(n)− 27a0(n)− 2a3

2(n)
54

More concretely, we have the following known result that
characterizes the roots for a cubic polynomial

1. if D(n) is positive, then pn has one real root
(λ1(n)) and two are complex conjugates (λ2(n) and
λ3(n) = λ2(n)).

2. if D(n) is negative, then pn has three different real
roots, and

3. if D(n) = 0, then pn has three real roots, with two
of them are equal (λ2(n) = λ3(n)).

Moreover, the roots of the polynomial pn defined in
(2.12) are explicitly given by

λ1 = −1
3

a2(n) + (S(n) + T(n)) (2.20)

λ2 = −1
3

a2(n)− 1
2
(S(n) + T(n)) + i

√
3

2
(S(n) + T(n))

(2.21)

λ3 = −1
3

a2(n)− 1
2
(S(n) + T(n))− i

√
3

2
(S(n) + T(n))

(2.22)

where S(n) and R(n) are numbers defined as

S(n) = 3

�
R(n) +

�
D(n), T(n) = 3

�
R(n)−

�
D(n),

such that S(n) + T(n) ∈ R and that S(n)− T(n) ∈ R for
D(n) ≥ 0, and S(n) + T(n) ∈ R and that S(n)− T(n) ∈
iR for D(n) < 0. In this particular case, we have for
n �= 0 that

Q(n) = γ2 − 6γ + 36
9

= − (γ − 3)2 + 27
9

< 0

R(n) = −81γc2n2 + (6+ γ)(γ2 − 15γ + 36)
27

.

Using this we see that Q(n) = O(1) and R(n) = O(n2)
for |n| large enough, meaning that D(n) = O(n4) for |n|

large enough, and that |S(n)| = |T(n)| = O(n2) for |n|
large enough. Using previous facts and formulas (2.20)-
(2.22) for |n| large enough, we conclude for 1 ≤ m ≤ 3
and |n| large enough

|λm(n)| � O(n2), (2.23)

and so, for |n| large enough and 1 ≤ m ≤ 6, we have that

|βm(n)| � O(|n|). (2.24)

Using this fact it is not difficult to verify that in terms
of the coefficient vectors U#(n) we have the following
equivalence of norms:

⎧
⎪⎨
⎪⎩

�U�2
H ∼ ∑n∈Z(1+ n2)2|U#(n)|2,

�U�2
X ∼ ∑n∈Z(1+ n2)3|U#(n)|2.

(2.25)

From the equivalences in (2.25) it is evident that π0 and
π1 are bounded on H and on X with π0 + π1 = I, and
it is clear that AXj ⊂ Hj where Xj = πjX and Hj = πj H
for j = 0, 1. This yields the spectral decompositions
H = H0 ⊕ H1 and X = X0 ⊕ X1.

2.1. Center manifolds of finite dimension and infinite
codimension

Here we consider an abstract differential equations of the
form

du
dy (y) = Au(y) + f (u(y)). (2.26)

where X and H are Banach spaces with X densely em-
bedded in H, A ∈ L(X, H), the space of bounded linear
operators from X to H, and f is continuously differen-
tiable from H into H with f (0) = 0 and D f (0) = 0.
We will assume that the nonlinear part f has the reg-
ularizing effect: f (H) ⊂ X. This hypothesis on f is a
stronger condition than those imposed in many works
related with the existence center manifolds, but this com-
pletely natural for the Boussinesq type system consid-
ered in this paper. Existence of a local finite dimensional
center manifold can be established in the same fashion
as the approach used in Quintero & Pego (2002) in the
case of having a center space with infinite dimension and
infinite codimension for the Benney–Luke model. As in
the later model, we must observe that the cutoff will be
performed in the H norm, and not in the X norm as
in Quintero & Pego (2002). This is important since we
need to use an energy functional which is defined on H,
which is conserved in time for classical solutions (taking
values in X), but is indefinite in general. Fortunately for
us, this energy controls the H norm for solutions on the
center manifold. So, we require obtaining a center mani-
fold that contains solutions with large X norm but small
H norm. This is a consequence that the nonlinearity f
has a smoothing property, mapping H into X.

11
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We will state the result for the existence of a locally in-
variant center manifold of classical solutions for the sys-
tem (2.26) under certain conditions which allow the cen-
ter subspace (that associated with the purely imaginary
spectrum of A) to have finite dimension and infinite codi-
mension. We start with some basic definitions and some
hypotheses:

Definition 2.1. Let J ⊂ R be an open interval and u : R →
H be a function. We say that u is a classical solution of (2.26)
on J if the mapping y �→ u(y) is continuous from J into X, is
differentiable from J into H and (2.26) holds for all y ∈ J.

Let β > 0, let Y and Z be Banach spaces and U be an
open set in Y. We define the Banach spaces Cb(U, Z),
Lip(U, Z) and Yβ by

Cb(U, Z) :=

{
f ∈ C(U, Z) : sup

u∈Z
� f (u)�Z < ∞

}

Lip(U, Z) := { f ∈ C(U, Z) : � f (u)− f (v)�Z

≤ Mf �u − v�Y for all u, v ∈ U}
Yβ := {u ∈ C(R, Y) : ||u||Yβ := sup

t
e−β|t|�u(t)�Y < ∞}.

Throughout this section we assume that there are
bounded projections π0 and π1 on H such that

(i) (i) H = H0 ⊕ H1 with Hi := πi(H),

(ii) πi|X is bounded from X to X, and

(iii) AXi ⊆ Hi where Xi := πi(X), for i = 0, 1.

We see that equation (2.26) can be rewritten as the first
order system

d
dy u0(y) = A0u0(y) + π0 f (u(y)),

d
dy u1(y) = A1u1(y) + π1 f (u(y)),

(2.27)

where Ai ∈ L(Xi, Hi) with Aiy = πi Ay for y ∈ Xi.
We assume the following splitting properties for the op-
erator A1, associated with the linear evolution equation
du/dy = Au.

(H1) There exists α > 0 and a positive function M1
on [0, α) such that for any β ∈ [0, α) and for any
g1 ∈ C(R, X1) ∩ Hβ

1 the equation

d
dy u1 = A1u1 + g1 (2.28)

has a unique solution in Hβ
1 given by u1 = K1g1,

where K1 ∈ L(Hβ
1 ) with �K1�L(Hβ

1 )
≤ M1(β). Fur-

thermore �K1�L(Xβ
1 )

≤ M1(β).

As done by J. Quintero and R. Pego in the case of the
Benney–Luke model (see Quintero & Pego (2002)), we
easily have that

Theorem 2.1 (Local Center Manifold Theorem). Let H,
X, A, π0, π1 and f be as above, and let

B(δ) = {y ∈ H0 : �y�H < δ}.

Then for all sufficiently small δ > 0 there exists φδ : H0 → X1
such that

(i) φδ(0) = 0 and Dφδ(0) = 0.

(ii) φδ ∈ Cb(H0, X1)∩Lip(H0, X1), and on any ball B(δ�),
φδ has Lipschitz constant L(δ�) satisfying L(δ�) < 1

2
and L(δ�) → 0 as δ� → 0+.

(iii) The manifold Mδ ⊂ X given by

Mδ := {ξ + φδ(ξ) : ξ ∈ X0} (2.29)

is a local integral manifold for (2.26) over B(δ) ∩ X0.
That is, given any y ∈ Mδ there is a continuous map
u : R → Mδ with u(0) = y, such that for any open
interval J containing 0 with π0u(J) ⊂ B(δ) it follows
that u is a classical solution of (2.26) on J. Moreover,
u0 := π0u is the unique classical solution on J with
u0(0) = π0y to the reduced equation

d
dy u0(y) = A0u0(y) + Fδ(u0(y)), (2.30)

where Fδ : H0 → X0 is locally Lipschitz and is given by
Fδ(w) := π0 f (w + φδ(w)).

(iv) For any open interval J ⊂ R, every classical solu-
tion u0 ∈ C1(J, H0) ∩ C(J, X0) of the reduced equation
(2.30) such that u0(y) ∈ B(δ) for all y ∈ J yields, via
u = u0 + φδ(u0), a classical solution u of the full equa-
tion (2.26) on J.

(v) The manifold Mδ contains all classical solutions on R

that satisfy �u(y)�H ≤ δ for all y.

2.2. Linear dynamics analysis.

Now we are interested in establishing the solvability
conditions to the linear level. First we consider the
center subspace H0. We define the bounded C0-group
{S0(y)}y∈R on H0 with infinitesimal generator A0 =
A |X0 by

S0(y)U = ∑
0≤|n|≤n0

2

∑
m=1

vm(n)U#
m(n)eβm(n)yeinx. (2.31)

12
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Now, we want to determine the Green function to solve
the problem in the hyperbolic subspace H1. Let us con-
sider the inhomogeneous linear equation

d
dy U(t) = A1U(y) + G(y) (2.32)

where A1 = A|X1 . We need to observe that |�(λm(n)| ≥
α > 0 for all n ∈ Z, except for m = 1, 2 when n �= 0.
Let 0 ≤ � < α and let G ∈ C(R, X1) ∩ H�

1 , where for any
Banach space Y,

Y� = {u ∈ C(R, Y) | �u�Y� := sup
y

e−�|y|�u�Y < ∞}.

(2.33)
Hereafter we will assume m and n are such that 1 ≤ m ≤
6 and n ∈ Z \ {0}, or m = 5, 6 for n = 0. Suppose
U ∈ C1(R, H1) ∩ C(R, X1) is a solution belonging to H�

1 .
Then using the Fourier series expansion in x and multi-
plying by the matrix Z(n) yields the differential equation

d
dy U#

m(n, y) = βm(n)U#
m(n, y) + G#

m(n, y) (2.34)

The functions G#
m(n, ·) and U#

m(n, ·) belong to R� (Y = R

in (2.33)). From the fact that |βm(n)| ≥ α > �, we con-
clude necessarily that

⎧
⎪⎨
⎪⎩

U#
u(n, y) =

� y
∞ eβu(k)(y−τ)G#

u(n, τ) dτ,

U#
s (n, y) =

� y
−∞ eβs(n)(y−τ)G#

s (n, τ) dτ.

(2.35)

where for 0 <| n |≤ n0 we have u = 3, 5 and s = 4, 6,
and for | n |> n0 we have u = 1, 3, 5 and s = 2, 4, 6.
As a direct consequence any solution of (2.32) in H�

1 is
unique. We will see that the formulas (2.35) together
with the representation for U = π1U in (2.19) allow us
to establish the existence of a solution in H1

� . To see this,
we decompose equation (2.32) using projections into the
“unstable" and “stable" subspaces. The projections for
U ∈ H are

πuU = ∑
0≤|n|≤n0

∑
m=3,5

vm(n)U#
m(n)einx

+ ∑
|n|>n0

∑
m=1,3,5

vm(n)U#
m(n)einx. (2.36)

πsU = ∑
0≤|n|≤n0

∑
m=4,6

vm(n)U#
m(n)einx

+ ∑
|n|>n0

∑
m=2,4,6

vm(n)U#
m(n)einx. (2.37)

Clearly πu and πs are bounded on H and X and πu +
πs = π1. Now, we introduce a Green’s function operator

S(y) defined for nonzero y ∈ R by

S(y)U=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∑
0≤|n|≤n0

∑
m=3,5

vm(n)U#
m(n)eβm(n)yeinx

− ∑
|n|>n0

∑
m=1,3,5

vm(n)U#
m(n)eβm(n)yeinx, y < 0,

∑
0≤|n|≤n0

∑
m=4,6

vm(n)U#
m(n)eβm(n)yeinx

+ ∑
|n|>n0

∑
m=2,4,6

vm(n)U#
m(n)eβm(n)yeinx, y > 0.

(2.38)
By the definition of the norm in H and X (see (2.25)), we
have that

�π1U�2
X = ∑

0≤|n|≤n0

6

∑
m=3

|U#
m(n)|2

+ ∑
|n|>n0

6

∑
m=1

(1 + n2)|3U#
m(n)|2,

�π1U�2
H = ∑

0≤|n|≤n0

6

∑
m=3

|U#
m(n)|2

+ ∑
|n|>n0

6

∑
m=1

(1 + n2)|3U#
m(n)|3.

On the other hand, for 1 ≤ m ≤ 6 and y �= 0 and n �= 0,
we have that

|eβm(n)y| = e�(βm(n))y ≤ e−α|y|.

Using this fact, we see directly for Y = H or X that,

�S(y)U�Y ≤
�
|U#

5(0)|2 + |U#
6(0)|2

�
e�(β5(0))y

+ ∑
n∈Z\{0}

∑
l
|U#

l (n)|2e−2�(βl(n))y

≤ e−2α|y|�U�2
Y.

We also have for y > 0 that

sup
λ≥α

λ−1|e−λy − 1| ≤ t,

sup
λ≥α

λe−λy =

�
αe−αy, αy ≥ 1,
1/ey, αy ≤ 1.

Following the same type of calculation and using previ-
ous facts, one can easily verify that for some constant C
(independent of y) we have the following norm bounds:

�S(y)�L(Y) ≤ Ce−α|y| (Y = H or X), (2.39)

�S(y)�L(H,X) ≤
�

Ce−αy, α|t| ≥ 1,
C|y|−1, α|y| ≤ 1,

(2.40)
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�S(y)− πs�L(X,H) + �S(−y) + πu�L(X,H) ≤ Cy, y > 0,
(2.41)

where L(Y) and L(H, X) respectively denote the space
of bounded operators on Y, and from H to X. Clearly,
we have that S(y) → πs (resp. −πu) strongly as y →
0+ (resp. 0−). Therefore the families {S(y)}y>0 and
{−S(−y)}y>0 are analytic semigroups in πs H and πuH
respectively (?, p.62). Moreover, we also have that S is C1

from R \ {0} to L(H) with dS(y)/dy = A1S(y). There-
fore, we conclude that equation (2.35) yield the formula

U(y) =
∫ ∞

−∞
S(y − τ)G(τ) dτ (2.42)

for the solution of (2.32). Finally, we need to establish
that U ∈ C(R, X), U ∈ H�

1 , and dU/dy exists in H and
satisfies (2.32). The computations in this case follows as
those done for the Benney–Luke equation in ?, but for
completeness we include the details. First observe that

U(y) =
∫

|s|≤α−1
S(s)G(y− s) ds+

∫

|s|≥α−1
S(s)G(y− s) ds.

The first term is in C(R, X) since G ∈ C(R, X) and we
have the estimate (2.39). Now, since G ∈ H�, the we
may use (2.40) to see that the second integral converges
in X uniformly on compact sets in y. Then we have that
U ∈ C(R, X).
On the other hand, using (2.39) we have for Y = H or X
that U ∈ Y�. In fact, if G ∈ Y� then

e−�|y|�U(y)�Y ≤ C�G�Y�

∫ ∞

−∞
e−α|s|+�(|y−s|−|y|) ds

≤ C�G�Y�

∫ ∞

−∞
e−(α−�)|s| ds

≤ 2C
α − �

�G�Y� . (2.43)

Moreover, we have that

�U(y)�Y� ≤ 2C
α − �

�G�Y� .

It remains to show U = πsU +πuU is differentiable in H
and satisfies (2.32). We check in a standard fashion that
πsU is differentiable. For h > 0 we compute

πsU(y + h)− πsU(y)
h =

(
S(h)− πs

h

)
πsU(y)

+
1
h

∫ h

0
(S(τ)− πs)G(t + h − τ) dτ

+
1
h

∫ y+h

y
πsG(τ) dτ.

Using (2.41) and G ∈ C(R, X), as h → 0+ we deduce that

lim
h→0+

(
S(h)− πs

h

)
πsU(y) = A1πsU(y),

lim
h→0+

1
h

∫ y+h

y
πsG(τ) dτ = πsG(y).

Since we have that S(y) → πs strongly as y → 0+, the
we have that

lim
h→0+

1
h

∫ h

0
(S(τ)− πs)G(t + h − τ) dτ = 0.

Hence the right derivative exists and satisfies
D+πsU(t) = A1πsU(t) + πsG(t), so is continuous
into H. It follows that πsU is differentiable. We may
treat πuU in a similar way, and conclude that U is
differentiable and satisfies (2.32). So, from the Theorem
2.1, we have established that system (2.8) admits a local
center manifold having the properties stated in the
Theorem.

2.3. Global existence and stability for γ > 0 and |c| > 1
(large enough)

We are now interested in proving global existence of clas-
sical solutions on the local center manifold, for initial
data that is small in H-norm, which follows from the
fact that the zero solution is stable on the center manifold
characterized by the graph of a function φδ : H0 → X1.
We use strongly the existence an energy functional that
is conserved in time for classical solutions. We define the
energy functional E : H → R by E (U) = E0(U) + E1(U),
where the quadratic part is

E0(U) =
1

2π

∫ 2π

0

(
−|u1|2 − 1

6
|∂xu1|2 + |u2|2+

1
3
|∂xu2|2 + 1

6
|u3|2 − |u5|2 − 1

γ
|∂xu5|2

1
γ
|u6|2 + 2cu5u1

)
dx − 1

6π
(u4, u2)−1,1 , (2.44)

where (·, ·)−1,1 represents the pairing between H̃−1 and
H̃1, and the remaining part is

E1(U) =
1

π(p + 1)

∫ 2π

0
u5(pup+2

2 − up+2
1 ) dx. (2.45)

From the definition, E is a smooth function from H to
R. After multiplying appropriately the equation (2.6) by
u2 and equation (2.7) by u6, one can easily verify that
if U ∈ C1(R, H) is a classical solution of the first order
equation (2.8), then for all y ∈ R

d
dyE (U(y)) = 0.
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Even though previous property, this energy can not be
used to obtain a solution throughout the variational
method since neither E nor E0 is not positive define in
the space H. We will see that energy E0 is positive on the
center space H0, and also that this controls the norm of
U in H, via the center manifold result. We note that from
the definition of the variable U = (u1, u2, u3, u4, u5, u6),
we have a priori that u1 = ∂xv has mean zero on [0, 2π],
meaning that �U1(0) = 0.

Lemma 2.1. Let |c| > 1 large enough and γ > 0. Then there
is a positive constant M0 > 1 such that for any U ∈ H0 with
�U1(0) = 0,

M−1
0 �U�2

H ≤ E0(U) ≤ M0�U�2
H. (2.46)

Proof. From the Fourier series representation of U ∈ H0
given with �U1(0) = 0, we have that

U =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
U#

2(0)
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

+ ∑
0≤|n|≤n0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

in(U#
1(n) + U#

2(n))
β1(n)(U#

1(n)− U#
2(n))

β2
1(n)(U

#
1(n) + U#

2(n))
β3

1(n)(U
#
1(n)− U#

2(n))
− cnγi

Θ1(n) (U
#
1(n) + U#

2(n))
− cnγβ1(n)i

Θ1(n) (U#
1(n)− U#

2(n))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

einx

= �U(0) + ∑
0≤|n|≤n0

�U(n)einx.

We also have that E0(U) = ∑
0≤|n|≤n0

E0

� �U(n)einx
�

. We

note that
E0(Û(0)) = |U#

2(0)|2,

On the other hand, for β1(n) = β we have that

E0

� �U(n)einx
�
= Γ1(n)|U#

1(n) + U#
2(n)|2

+ Γ2(n)|U#
1(n)− U#

2(n)|2

where

Γ1(n) = −n2 − n4

6
+

β4

6
− c2n2γ

Θ2
1(n)

(n2 + γ)− 2c2n2γ

Θ1(n)

Γ2(n) = |β|2
�

1 +
n2

3
+

c2n2γ

Θ2
1(n)

(n2 + γ)− β2

3

�

Since for |c| > 1 (large enough) we have that β2
1(n) =

λ1(n) < 0 for 0 < n ≤ n0, then we have the right side of

the second term is positive. Now, for the first term, we
use the polynomial equation for β1(n) given in (2.11).
First note that

−n2 − n4

6
+

β4

6
− c2n2γ

Θ2
1(n)

(n2 + γ)− 2c2n2γ

Θ1(n)
=

L1 + L2

6Θ2
1(n)

where L1 and L2 are given by

L1 = (β4 − n2(n2 + 6))Θ2
1(n),

L2 = −12c2n2γΘ1(n)− 6c2n2γ(n2 + γ) .

But we have that

L1 = β8 − 2(n2 + γ)β6 + [(n2 + γ)2 − n2(n2 + 6)]β4

+ 2n2(n2 + γ)(n2 + 6)β2 − n2(n2 + γ)2(n2 + 6)

L2 = −12c2n2γβ2 + 6c2n2(n2 + γ) .

Using this, we get that

L1 + L2 = β8 − 2(n2 + γ)β6

+ [(n2 + γ)2 − n2(n2 + 6)]β4

+ (2β2 − (n2 + γ))[(n2 + γ)(n2 + 6)− 6c2n2]n2.

But from (2.11), we have that

β6−(6 + 3n2 + γ)β4

+ [(6+ 2n2)(n2 + γ) + n2(6+ n2)]β2

= n2[(6+ n2)(n2 + γ)− 6γc2].

Then using that β2
1(n) < 0 for 0 < n ≤ n0, we finally get

that

L1 + L2 = 3β8 − [2(6+ 3n2 + γ)

+ 3(n2 + γ)]β6+

[2(n2 + γ)(4n2 + γ + 9) + n2(n2 + 6)]β4

− (n2 + γ)(n4 + 2n2 + 6γ)β2 ≥ 0.

This fact implies that

min
0<n≤n0

(Γ1(n), Γ2(n))(|U#
1(n) + U#

2(n)|2

+ |U#
1(n)− U#

2(n)|2) ≤ E0

� �U(n)einx
�

≤ max
0<n≤n0

(Γ1(n), Γ2(n))(|U#
1(n) + U#

2(n)|2

+ |U#
1(n)− U#

2(n)|2),
which implies that

min
0≤n≤n0

(Γ1(n), Γ2(n))(|U#
1(n)|2

+ |U#
2(n)|2) ≤ E0

� �U(n)einx
�

≤ max
0≤n≤n0

(Γ1(n), Γ2(n))(|U#
1(n)|2 + |U#

2(n)|2),
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In other words, we have shown that

E (U) ∼ ∑
0≤n≤n0

(1 + n2)2
(
|U#

1(n)|2 + |U#
2(n)|2

)
∼ �U�2

H .

The first consequence of this fact is the following result:

Corollary 2.1. Let |c| > 1 large enough and γ > 0. Then
there are δ1 > 0 and M1 > 1 such that for any U ∈ H0 with
Û1(0) = 0 and �U�H < δ1 ,

1
M1

�U�2
H ≤ |E (U)| ≤ M1�U�2

H.

Proof. First note that from the Hölder inequality with
q = p + 2, there is some positive constant C = C(p) (in-
dependent of U) such that

|E1(U)| =
∣∣∣∣

1
π(p + 1)

∫ 2π

0
u5(pup+2

2 − up+2
1 ) dx

∣∣∣∣
≤ C�u5�H̃1

(
�u2�p+1

H̃1 + �u1�p+1
H̃1

)

≤ C�U�p+2
H

Moreover for some constants C0 and C1 = C1(p) (inde-
pendent of U), we conclude that

|E (U)| ≥ |E0(U)| − |E1(U)|
≥ C0�U�2

H − C1�U�p+2
H

≥ �U�2
H

(
C0 − C1�U�p

H

)
.

Let δ1 > 0 be such that C0 − δ
p
1 C1 > 0. Then for

�U�H ≤ δ1 with U ∈ H0 \ {0} we have that

|E (U)| ≥ �U�2
H

(
C0 − C1δ

p
1

)
.

The second claim of this lemma follows directly. In fact,
for U ∈ H we have that

|E (U)| ≤ C
(
�U�2

H + �U�p+2
H

)

≤ C�U�2
H

(
1 + �U�p

H

)
.

Now, we are interested in estimating the energy E on the
center manifold. In other words, we want to obtain a
similar estimates for the lift of E to the center manifold
Mδ.

Lemma 2.2. sl Let φδ as in Theorem 2.1. Then there exist
constants δ2 > 0 and C2 > 1 such that for all ξ ∈ H0 with
�ξ�H < δ2 we have

1
C2

�ξ�2
H ≤ E (ξ + φδ(ξ)) ≤ C2�ξ�2

H .

Proof. Let us define the functional Ẽ : H0 → R by

Ẽ(ξ) := E (ξ + φδ(ξ)),

where the function φδ is defined in Theorem (2.1). First
note that �φδ(ξ)�H = o(�ξ�H). Since E is smooth and
E (0) = 0, then E �(ξ) = O(�ξ�H). As a consequence

of this fact and that E1(U) = O
(
�U�p+2

H

)
, we have for

ξ ∈ H0 that

E (ξ + φδ(ξ)) = E0(ξ)

+ O(�ξ�H�φδ(ξ)�H) + E1(ξ + φδ(ξ))

= E0(ξ) + o(�ξ�2
H).

as �ξ�H → 0. Then by the previous result, we get the
conclusion.
We first establish that solutions starting in the center
manifold are appropriately bounded.

Lemma 2.3. Let ξ ∈ X0 be such that ξ̂1(0) = 0 and that
�ξ�X ≤ δ2. There exists a unique classical solution U(ξ, ·)
for the full problem (without cutoff) (2.8) on R with initial
condition π0 ◦ U(ξ, 0) = ξ such that on any open interval J
containing 0,

�U0(ξ, y)�H ≤ C2�ξ�H for any y ∈ J.

Proof. We may assume that δ2 small enough such that
δ2 << δ. Let ξ ∈ X0 be such that �ξ�X ≤ δ2. Now,
from Theorem 2.1, there exists a unique continuous func-
tion U form R to the local center manifold Mδ such that
π0(U(0)) = ξ, which turns out to be a classical solution
of the equation (2.8) on any open interval J ⊂ R contain-
ing 0 such that �π0(U(y))�H ≤ δ for any y ∈ J. On the
other hand, since U is a classical solution and the energy
E is conserved, then we have for any y ∈ J that

1
C2

�|π0(U(y))�2
H ≤ E (π0(U(y))) = E (U(0)) ≤ C2�ξ�2

H ,

meaning ||π0(U(y))�H ≤ C2�ξ�H , for any y ∈ J as de-
sired. A continuation argument shows that U is a classi-
cal solution for the full problem (without cutoff) (2.8) on
R.
Now we are in position to state the main result on the
existence and the stability on the center manifold. The
proof of this result follows in the same fashion as the
Benney–Luke equation done by Quintero and Pego in ?.

Theorem 2.2. (Global Existence and stability on the
center manifold) Let φδ be given by applying Theorem 2.1
to (2.8). There exist positive constants δ3 and C3 such that, for
any ξ ∈ X0 with ξ̂1(0) = 0 and �ξ�H ≤ δ3, there is a unique
classical solution U on R to (2.8) such that π0U(0) = ξ and
�U(y)�H ≤ 2C2�ξ�H for all y ∈ R. Moreover, for any
T > 0 the map taking ξ to U is Lipschitz continuous from H0
to C([−T, T], H).
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