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Abstract
The production of oil palm is a major agricultural activity in Colombia. Lethal wilt (LW) of 
the oil palm is one of the most devastating diseases in the Eastern zone of the country. Several 
epidemiological models used in epidemic analyses assume that there is a constant area where the 
host will become diseased at the end of the epidemic (maximum incidence of disease = 100%). 
Based on the analysis of three different epidemics, we demonstrated the error in the application of the 
model that best fits the observed data when the maximum incidence of the disease (Kmax) is below 
the assumed. We assessed the fit of the monomolecular, logistic, and Gompertz models at different 
final incidence values of the disease including the maximum observed (y

1
 + 0.1). We analyzed the 

data with linear regression and residuals variance and distribution. We measured the relative quality 
level of fit of the model for each Kmax by determining coefficients (R2) and the Akaike and Bayesian 
information criteria (AIC & BIC). The monomolecular model showed a tendency to increase the 
level of adjustment when Kmax assumed values were close to 1 while the logistic and Gompertz 
models remained stable regardless of the evaluated Kmax values. The consequences of assuming a 
Kmax with values equal to 1 reflected not only the erroneous estimation of parameters such as y

0
 and 

r but also gave rise to a misinterpretation of the temporal behavior of the epidemic.
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Resumen
La producción de palma de aceite es muy importante en Colombia. La marchitez letal  de la palma de 
aceite es una enfermedad muy limitante en la zona oriental colombiana. Algunos modelos empleados 
en el análisis de estas epidemias se basan en el supuesto de que existe un área constante donde el 
hospedante llega a enfermarse al final de ellas (incidencia máxima de la enfermedad = 100 %). El 
análisis de tres epidemias diferentes demostró el error que se comete en la aplicación del modelo que 
mejor se ajusta a los datos observados, con una máxima incidencia de la enfermedad (Kmax) por 
debajo de la asumida. El ajuste de los modelos monomolecular, logístico y Gompertz se hizo con 
diferentes incidencias, incluida la máxima observada (y

1
 + 0,1). Los datos se sometieron a análisis de 

regresión lineal y de varianza y distribución de los residuales. La calidad del ajuste se midió mediante 
los coeficientes de determinación (R2), el análisis de regresión lineal y los criterios de información 
Akaike (CIA) y bayesiano (CIB). Se evidenció la sensibilidad del modelo monomolecular cuando la 
incidencia máxima de la enfermedad se asumió por encima del valor real, contrario a lo observado 
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en los modelos logístico y Gompertz, cuyos valores se mantuvieron estables independientemente 
del aumento de la Kmax evaluada. Las consecuencias de asumir una Kmax con valores igual a 1 
no solamente se reflejan en la estimación errónea de parámetros como el y

0
 y el r, sino que también 

conduce a una mala interpretación del comportamiento de la epidemia.

Palabras clave: Marchitez letal; Elaeis guineensis; Epidemiología; Modelo monomolecular; Modelo 
logístico; Gompertz.

Introduction
The current lack of understanding of the causal agent of LW leads to uncertainty about 
the influence of various factors on the dynamics of the disease, which makes it difficult 
to develop a management plan. In this context, it has been necessary to largely resort to 
plantations history and basic management practices such as the reduction of the inoculum 
starting from the early elimination of diseased palms, which implies a strict follow-up, to 
the appearance of cases through weekly phytosanitary censuses (Cenipalma, 2019). Thus, 
those who have to deal with the disease have extensive records of historical data. However, 
there are few methodological tools that allow converting these data into information and, 
from there, into knowledge about the behavior of the disease on a time scale. 

An epidemic in a crop can be regarded as a change in the incidence of the disease in 
a host population over time and space. The characterization of the progression of those 
changes over time can provide valuable epidemiological insights. This characterization 
is important to understand how diseases develop in plant populations and how manage-
ment measures affect epidemics (Campbell & Madden, 1990; Van der Plank, 1963). 
The graphical representation of the incidence of a disease (y) versus time (t) is known as 
disease progression or development curve. For many purposes, this is the main description 
of an epidemic and focuses on the interactions occurring among the host, the pathogen, 
and the biological and physical environment in the development of the disease whose 
main objective is to understand the complex interactions occurring. This information can 
be used, for example, to predict the incidence of the disease at a given time, quantify the 
effects of management strategies on epidemics, or, ultimately, to develop a theoretical basis 
for determining whether an epidemic might occur, and, if it does, to identify the factors 
affecting both the disease development rate (r) and its final incidence (y

1
) (Madden, et al., 

2007; Xu, 2006). 
In principle, plant disease epidemics can be classified into two basic types, mono-

cyclic and polycyclic, depending on the source of the inoculum that comes into contact 
with the host over the course of the disease and the number of infection cycles per crop 
cycle (Madden, et al., 2007). Therefore, the classification of an epidemic as monocyclic 
or polycyclic depends on the type of behavior over time as measured by the level of adjust-
ment of the different growth models to the values observed in the field. Thus, a monocyclic 
epidemic can be described quite well using a monomolecular model while a polycyclic 
epidemic can be described with a logistic or Gompertz model (Arneson, 2001). Epide-
miological processes are characterized by using growth models with varying degrees of 
complexity. The selection of an appropriate model allows the characterization of an entire 
epidemic with few parameters. It is, therefore, relatively easy to compare epidemics and 
assess the effects of biological and environmental factors, as well as the possible manage-
ments for implementing more effective, efficient, and sustainable strategies in integrated 
disease management (Forrest, 2007; Madden, 1986). The resulting disease development 
curves are graphical representations of the development dynamics of the epidemics and 
their parameters can be fitted to the obtained data using any standard statistical package 
(Van Maanen & Xu, 2003; Neher, et al., 1997). In this line, multiple fully functional 
applications have been developed in different programming languages such as Java, with 
the EpiModel software (Nutter & Parker, 1997) and Excel spreadsheets (Bowen, 2015), 
and R packages such as epiphy (Gigot, 2018) and epifitter (Alves & Del Ponte, 2021).
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Most of the mathematical models used for determining disease progression curves 
can be estimated using only two parameters such as y

0
 (initial disease or constant of 

integration) and r (rate of disease development). Using these two, two or more epidemics 
can be compared and a considerable understanding of disease dynamics is achieved. 
However, not all epidemics can be described by two-parameter models (Madden, et 
al., 2007). The values observed over time in the development of a disease do not often 
fit any specific model, which most probably reflects the fact that the biological basis of 
the models is only a simple approximation to a much more complex pathosystem and, 
consequently, the model lacks the necessary flexibility to be adapted to various aspects 
of the development of the disease (Park & Lim, 1985). The classical growth-curve 
models for epidemics analysis include several implicit assumptions, which may lead 
to misinterpretations about the progression of the disease if they are not considered 
(Neher & Campbell, 1992). Many of those models, such as the monomolecular, 
logistic, and Gompertz, assume a constant host area that becomes diseased by the 
end of the epidemic implying a maximum disease incidence of 100%. Consequently, 
the models used to describe epidemics assume an asymptote or a maximum disease 
incidence (Kmax) equal to 1 (Campbell & Madden, 1990; Seem, 1988). However, 
this assumption is not valid for many diseases and the mathematical description of the 
epidemic is thus inaccurate, imprecise, and inappropriate. Besides, in some epidemics, 
such as rusts, powdery mildews, and viral diseases caused by obligate parasites, it is 
only possible to visualize a maximum disease intensity between 25 and 40%, far below 
the expected 100% (Jeger, 1982; Campbell & Madden, 1990; Gilligan, 1990; Kranz, 
2003; Madden, et al., 2007). This has resulted in the ongoing use of growth models 
for epidemiological analysis that do not consider the maximum disease intensity. 
Consequently, important parameters, such as the growth or disease development rate, 
are not properly estimated, or, simply, a given disease is analyzed in a model with 
different behavior.

Several researchers have reported this type of error in the description of epidemics. 
For example, Turner, et al. (1969), Kiyosawa (1972), and Analytis (1973, 1979) agreed 
that the value of the asymptote or the Kmax could affect the calculation of r in generalized 
Logistic models in the description of epidemics. Kushalappa & Ludwing (1982) indicate 
that empirically determining the value of the asymptote (Kmax) greatly improves the 
goodness of fit of disease development models. Park & Lim (1985) mathematically 
illustrate how disease development rates (r) are underestimated when calculated with 
traditional models under the assumption that the maximum disease incidence is 1 (Kmax 
= 1) when really the maximum incidence is below this value (Kmax <1). Neher & 
Campbell (1992) quantified the magnitude of underestimation in r when values above a 
real incidence are assumed in models such as the monomolecular, logistic, and Gompertz. 
Since Kmax affects rates of disease development, Neher & Campbell (1992) suggested 
for Kmax <1 shape parameters m with the values 0, 1, and 2 for the monomolecular, 
Gompertz and logistic functions, respectively, to use weighted mean absolute rates ρ = 
r K/(2m + 2) with K = Kmax and the rate disease progress r calculated by the function 
used to fit the curve. This approach introduces the shape parameter m as a measurement 
term and descriptor. Parameter K can be dropped from the equation (if different with the 
same m) and then rK could be calculated as an overall (mean) measure of the absolute rate 
of disease development (Neher & Campbell, 1992). Although this approach manages 
to correct the underestimation of parameters such as the rate (r) of development of the 
disease, it fails to improve the classification of the model that best fits, which still leads 
to generating erroneous or biased interpretations of pathosystems with monocyclic or 
polycyclic behaviors completely different from the real one. The objective of the following 
study is to demonstrate the error committed in the classification of the model that best fits 
the data when Kmax is lower based on the temporal analysis of three epidemics caused by 
lethal wilt (LW) in oil palm (Elaeis guineensis Jacq.) plantations.
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Methodology
Plot selection 

We obtained the historical disease monitoring records for three plots sowed with 
susceptible cultivars of E. guineensis between January 2015 and December 2017 (36 
months) at the Luker Agrícola (4°35’N, 72°49’W, 198 m. a.s.l.) and Palmar de Oriente 
plantations (4°29’N, 72°50’W, 195 m. a.s.l.) located in the municipality of Villanueva 
(Casanare), Colombia, an area with a high incidence of the disease. The three plots we 
selected satisfied the following characteristics (listed from highest to lowest importance): 
(i) final incidence with the highest record (y

1
); (ii) known initial incidence (y

0
), and (iii) 

records with the longest follow-up time (t). All historical disease-monitoring records were 
done palm by palm by personnel trained in the detection of plants with initial symptoms 
of the disease at 30-day intervals. The total population of plants evaluated from plots 1, 2, 
and 3 corresponded to 1,315 (8.5 ha), 2,842 (17.8 ha), and 2,835 (17.7 ha), respectively.

Models used when Kmax is a parameter 

Given that the monomolecular, logistic, and Gompertz models generally assume that the 
maximum disease incidence is 1, we modified the mathematical equations of the traditional 
models in terms of proportion to the differential, nonlinear, and linearized versions in 
which the maximum disease incidence was a parameter (Table 1).

Assessment of goodness of fit of the models 
We assessed the goodness of fit of the monomolecular, logistic, and Gompertz models at 
different final incidences including the maximum observed (y

1
 + 0.1), which were 0.43, 

0.28, and 0.25, respectively (Table 2). Then, we subjected the data to linear regression 
analysis, analysis of variance, and distribution of residuals using R v1.1.463 (R Core 
Team, 2018) and the statistical package ‘nlme’ v3.1-144 (Pinheiro, et al., 2004). We 
calculated the F-test on the estimated parameters as the ratio between each of them and the 
asymptotic standard error to determine whether the parameters contributed to fit the model. 
Higher F-values are associated with higher contributions of the estimated parameters to fit 
the model (Hosmer & Lemeshow, 2000). The asymptotic standard error is used to assess 
the goodness of fit of the models to the real points of the epidemic using the least-squares 
regression associated with the coefficients estimated by each model. It is accepted that 
small standard errors indicate more accurate estimates (McCullagh & Nelder, 1992).

Comparison of the goodness of fit of the models 
We used the statistical package ‘AICcmodavg’ v2.2-2 (Mazerolle, 2019) to compare the 
goodness of fit of the models for each Kmax while the relative goodness of fit of the 
three models was determined from the estimated coefficients of determination (R2) and the 
implementation of the Akaike (AIC) and Bayesian (BIC) information criteria.

The R2 of the linear regression analyses determines the ability of the model to replicate 
the results and the proportion of variation of the results that the model can explain. A 
coefficient value closer to 1 means less variation in the estimate. The AIC uses a relative 

Table 1. Differential, nonlinear, and linearized equations of the models used to analyze the disease progression data when the maximum 
disease incidence (Kmax) is a parameter

Model dy⁄dt y = Linearized form

Monomolecular r
M
 * (K - y) K{1-[((K - y

0
) ⁄ K)  exp(-r

M
 t)]} ln[K ⁄ (K - y)] = ln[K ⁄ (K - y

0
)] + r

M
 t

Logistic r
L
 y(1 - y/K) K ⁄ [1 + exp (-{ln[y

0 
⁄ (K - y

0
)] + r

L
 t})] ln[y ⁄ (K - y)] = ln [y

0 
⁄ (K - y

0
)] + r

L
 t

Gompertz r
G
 y[ln(K) - ln(y)] K{exp[ln(y

0
 ⁄ K)  exp(-r

G
 t)]} -ln[-ln(y⁄K)] = -ln[-ln(y

0 
⁄ K)] + r

G
 t

Source: Campbell, 1998
K: Kmax: maximum disease incidence (y) or asymptote of the disease progression curve; Y: disease in proportion at the time of observation; y

0
: disease in 

proportion at the first observation; r*: disease growth rate of a sPecific model; t: considered time interval
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value between the goodness of fit of the model and its complexity calculated by the 
formula AIC = -2 log(]L(θ|y)) + 2K, where log(L(θ|y)) is the numerical value of the log-
likelihood function at its maximum point and K is the number of estimated parameters in 
the function. The BIC applies a higher penalty for the number of parameters in the model 
calculated by the formula BIC = -2 log(L(θ|y)) +K log n; as in the previous formula, 
log(L(θ|y)) is the numerical value of the log-likelihood function at its maximum point, K is 
the number of estimated parameters in the function, and n is the number of parameters in 
the model. The farther the AIC and BIC values are from zero, the higher the goodness of fit 
of the model to the observed values (Burnham & Anderson, 2002).

Results and discussion
After 36 months of observations in the three epidemics evaluated, 15, 22, and 18 plants 
died on average per month, respectively, for a total of 2,001 plants, i.e., 29% of the 
6,992 plants evaluated. We assessed all models based on their goodness of fit measured 
by linear regression tests, analysis of variance, and 95% confidence intervals. Table 
3 shows the F-test values of the least-squares method for the analysis of variance, the 
coefficient estimates, the asymptotic standard error, and the 95% confidence interval for 
the coefficients of the three models estimated at different maximum incidences of LW in 
the three analyzed epidemics, respectively (Table S1, S2, and S3, https://www.raccefyn.
co/index.php/raccefyn/article/view/1571/3188).

The F-test values indicated that the estimated parameters contributed significantly to 
the fit of the disease progression curves in the three epidemics, regardless of the maximum 
disease incidence. We also found that the estimates calculated by the three models 
contributed significantly to the fit of the coefficients y

0
 and r by confirming that the 95% 

confidence intervals did not contain a value equal to zero.
A more detailed analysis of the F-test and the asymptotic standard error per plot 

revealed variations between the models as the maximum incidence parameter was adjusted 
to a real value of the disease. In general, the monomolecular model showed higher F-test 
values and lower asymptotic standard errors when we assessed maximum asymptotes of 
1.0, 0.9, 0.8, 0.7, 0.6, and 0.5 in the epidemics. However, there were evident changes as the 
maximum incidence parameter (Kmax) was adjusted to the real observed value changing 
from the monomolecular to the Gompertz model in the analyzed epidemics with maximum 
asymptotes of 0.45 and 0.43, 0.40 and 0.28, and 0.25 (Table 3) corresponding to plots 1, 
2, and 3, respectively.

Figures 1, 2, and 3 represent the variations when the parameter Kmax changed from 
a theoretical value (Kmax = 1) to a real value and its effect on the estimates of the LW 
development rate. The R2 and the AIC and BIC applied to assess the relative goodness 
of fit of the model to the data observed showed the same trend evident in the F-test, the 
asymptotic standard error, and the graphic representations of the goodness of fit of the 
models (Figure 4).

Table 2. Parameters of maximum disease incidence (Kmax) assessed in three plots of the Luker 
Agrícola and Palmar de Oriente plantation

Plot Maximum observed disease incidence (y1 + 0.1)

 1 1.00 0.90 0.80 0.70 0.60 0.50 0.45
0.43

(y
1
 + 0.1)

2 1.00 0.90 0.80 0.70 0.60 0.50 0.40
0.28

(y
1
 + 0.1)

3 1.00 0.90 0.80 0.70 0.60 0.50 0.40
0.25

(y
1
 + 0.1)

y
1
+0.1: maximum incidence observed per plot in proportion

https://www.raccefyn.co/index.php/raccefyn/article/view/1571/3188
https://www.raccefyn.co/index.php/raccefyn/article/view/1571/3188
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Table 3. Linear regression analysis of the three growth models assessed at different asymptotes or maximum disease incidence (Kmax) of the 
records corresponding to plots 1, 2 and 3

Kmax Model F-test values Coefficients Estimates
Asymptotic 

standard error

95% confidence interval
Lower limit Upper limit

Plot 1

1.00

Monomolecular 1431.289674**
y

0
1 0.002964367 0.00937395 -0.016085792 0.022014526

r
L
2  0.016714745 0.00044181 0.015816878 0.017612612

Logistic 137.0899723**
y

0
-3.071511341 0.170775253 -3.418568411 -2.724454272

r
L

0.094241267 0.008048932 0.077883868 0.110598665

Gompertz 287.6131306**
y

0
-1.166184266 0.053913631 -1.275749946 -1.056618586

r
G

0.043093946 0.002541042 0.037929927 0.048257966

0.43

Monomolecular 365.7086095**
y

0
-0.57180627 0.116947313 -0.809471805 -0.334140735

r
M

0.105407418 0.005511929 0.094205831 0.116609004

Logistic 968.1729275**
y

0
-2.802311908 0.12473964 -3.055813357 -2.54881046

r
L

0.182933939 0.005879194 0.170985979 0.1948819

Gompertz 1054.969355**
y

0
-1.484957753 0.089138158 -1.666108285 -1.303807221

r
G

0.136457343 0.004201235 0.127919406 0.14499528

Plot 2

1.00

Monomolecular 1011.878966**
y

0
1 -0.053902304 0.006740292 -0.067600226 -0.040204383

r
M 

2 0.010105466 0.000317682 0.009459859 0.010751072

Logistic 213.335392**
y

0
-5.280915097 0.207018695 -5.701627704 -4.86020249

r
L

0.142512958 0.009757148 0.122684048 0.162341869

Gompertz 706.3612045**
y

0
-1.748302626 0.036880859 -1.823253548 -1.673351703

r
G

0.04619849 0.001738258 0.042665923 0.049731056

0.28

Monomolecular 97.77702297**
y

0
-0.75450794 0.19278383 -1.146291821 -0.362724059

r
M

0.089846744 0.009086234 0.071381294 0.108312194

Logistic 775.7687896**
y

0
-4.708555057 0.169305304 -5.052624831 -4.364485283

r
L

0.222254237 0.007979651 0.206037635 0.238470838

Gompertz 317.5515829**
y

0
-2.192142651 0.16195157 -2.521267839 -1.863017462

r
G

0.136020897 0.007633057 0.12050866 0.151533135

Plot 3

1.00

Monomolecular 1876.458036**
y

0
1 -0.035405942 0.004207057 -0.043955711 -0.026856173

r
M 

2 0.008589368 0.000198286 0.008186402 0.008992333

Logistic 111.6098686**
y

0
-5.296409667 0.282329724 -5.870172699 -4.722646636

r
L

0.140579254 0.013306687 0.113536813 0.167621696

Gompertz 305.9106851**
y

0
-1.707792134 0.052170333 -1.813815007 -1.601769261

r
G

0.043006516 0.002458878 0.038009475 0.048003557

0.25

Monomolecular 171.1757723**
y

0
-0.588192091 0.129213662 -0.850785846 -0.325598336

r
M

0.079678824 0.006090063 0.067302327 0.092055321

Logistic 385.4504086**
y

0
-4.462901455 0.228748933 -4.927775217 -3.998027693

r
L

0.211668711 0.010781332 0.189758408 0.233579013

Gompertz 700.4618084**
y

0
-1.968300076 0.099877178 -2.171274923 -1.765325229

r
G

0.124586741 0.004707384 0.115020187 0.134153296

Values in bold indicate coefficients with the highest contribution to the model fit according to the standard asymptotic error test.
** Level of significance of 1%; 1y

0
: disease in proportion in the first observation; 2r*: disease growth rate of a specific model
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As the Kmax parameter approached the theoretical maximum incidence (Kmax = 1), 
the model that best fitted the observed values in the three analyzed epidemics was the 
monomolecular. However, its goodness of fit in each of the tests did not faithfully represent 
the behavior of the disease when the actual maximum incidence was much lower than 1. 
When the Kmax was assumed as the real one, i.e., 0.43, 0.28, and 0.25 for epidemics 1, 
2, and 3, respectively, the goodness of fit measured by the R2 from the linear regression 
analyses and the AIC and BIC showed that the model that best fitted the observed values 
was the Gompertz.

These results demonstrate that the monomolecular model has high sensitivity when 
assuming a theoretical asymptote equal to 1 (Kmax = 1), which was further supported 
by the values obtained in the R2, AIC, and BIC analyses. When the asymptote was below 
0.50, the goodness of fit gradually decreased and other models with better fits acquire 
major importance as is the case of the Gompertz model given that with the maximum 

a. b. c.

d. e. f.

g. h.

Figure 1. Graphical representation of the goodness of fit of the models to the disease progression 
curves at different asymptotes or maximum disease incidences (Kmax) corresponding to the records 
collected from plot 1 
r

M
, r

L
, and r

G
 represent the growth or disease development rates in the monomolecular, logistic, and 

Gompertz models, respectively.
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observed incidences (0.43, 0.28, and 0.25 for plots 1, 2, and 3, respectively), the LW 
development curves were fitted to the development curves observed in the three epidemics 
(Figures 1, 2, and 3). It was clear from these Figures that below 0.50, the best settings 
of LW development rate were achieved when the models were fitted to the maximum 
disease incidences with low values. Consequently, the underestimation of highly relevant 
epidemiological parameters, such as the rate (r) of disease development, is extremely 
likely not only in sensitive models such as the monomolecular one but also in the logistic 
and Gompertz models when the maximum disease incidence is assumed to be higher than 
the real value.

Park & Lim (1985) initially observed that assuming an asymptote equal to 1 in logistic 
functions can lead not only to underestimate the rate (r) of disease development but also to 
incorrectly classify its values when fitting a data set with real asymptotes below 1 differing 
from each other. Neher & Campbell (1992) found that the greatest underestimation of the 

a. b. c.

d. e. f.

g. h.

Figure 2. Graphical representation of the goodness of fit of the models to the disease progression 
curves at different asymptotes or maximum disease incidences (Kmax) corresponding to the records 
collected from plot 2 
r

M
, r

L
, and r

G
 represent the growth or disease development rates in the monomolecular, logistic, and 

Gompertz models, respectively.
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rate (r) of disease development occurred most notably when they used the monomolecular 
model and the r was higher when Kmax diminished considerably, regardless of the rate 
of disease development or growth rate, which agrees with our results. Furthermore, these 
authors concluded that the extent of disease development rate underestimation depended 
on the model, the disease growth rate itself, and the proximity of the real value of Kmax 
to 1 because underestimations were more pronounced with lower real maximum incidence 
values, higher disease growth rates, and prolonged epidemics.

Recently, López-Vásquez, et al. (2021) conducted a study to identify suitable tools 
for the epidemiological analysis of the LW pathosystem and found that the exponential, 
monomolecular, logistic, Gompertz, and Richards models using a Kmax = 1 did not meet 
the assumptions of normality and constant variance, which resulted in a poor fit of the 
models to the observed values, both in linear and nonlinear models, thereby considering 
the area under the disease progression curve (AUDPC) as a descriptive alternative for this 
disease. The variation of the models best fitted to the observed data in the three epidemics 

a. b. c.

d. e. f.

g. h.

Figure 3. Graphical representation of the goodness of fit of the models to the disease progression 
curves at different asymptotes or maximum disease incidences (Kmax) corresponding to the records 
collected from plot 3 
r

M
, r

L
, and r

G
 represent the growth or disease development rates in the monomolecular, logistic, and 

Gompertz models, respectively.
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a. b. c.

d. e. f.

Figure 4. Goodness of fit measured by the Akaike (AIC) and Bayesian (BIC) information criteria (A, B, and C) and the coefficients of 
determination (R2) of the linear regression analyses (D, E, and F) for each of the three growth models analyzed at different asymptotes or 
maximum disease incidences (Kmax). A and D. Plot 1; B and E. Plot 2; C and F. Plot 3

we evaluated was influenced by the change in the maximum incidence. This variation 
in the goodness of fit associated with the maximum incidences was more evident in the 
monomolecular model than in the logistics and Gompertz models as the Kmax parameter 
approached the absolute value of 1. However, this trend changed when it was adjusted to 
the maximum real disease incidence while the Gompertz and logistic models had a better 
fit of the data to the observed values in the three epidemics.

Our results demonstrated the sensitivity of the monomolecular model when 
the maximum disease incidence was assumed as higher than the real value. Besides, 
this model was the only one that tended to an increase in the goodness of fit when 
the maximum disease incidence values were approaching 1, as opposed to the logistic 
and Gompertz models that had stable values regardless of the increase in the maximum 
incidence. All epidemiological procedures used in this study showed that assuming 
100% of the maximum disease incidence (Kmax = 1) when the final disease incidence 
was below this value had a significant effect on the epidemiological analysis producing 
inaccuracies not only by underestimating the rate of disease development but also in 
the selection of the best-fit model, which consequently led to errors in the mathematical 
description of the epidemic.

Our results also confirmed the empirical estimations made by Analytis (1973) and 
Park & Lim (1985) to conclude that calculations with Kmax = 1 affected the value of 
r in the case of an actual asymptote of disease intensity below 100%. Hence, K = 100% 
as disease intensity should not be indiscriminately used in equations to compute rates. 
In fact, Madden, et al. (2007) raised the possibility of including Kmax as an additional 
parameter in the characterization of the dynamics of the disease given the difficulty of the 
objective description of epidemics with only two parameters (y

0
: initial disease or constant 
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of integration and r: rate of disease development). Currently, R packages such as epifitter 
(Alves & Del Ponte, 2021) have a function that fits modifications of the two-parameter 
models to account for this additional parameter as the maximum asymptote.

On the other hand, if the epidemic had been characterized with the type of model that 
best fitted the data when Kmax = 1, the LW epidemic would have been classified as having 
a monocyclic behavior given that the best settings were obtained with the monomolecular 
model. However, when we adjusted the Kmax to the actual Kmax < 1, the LW epidemic 
changed from a monocyclic to a polycyclic behavior because the best-adjusted models 
were those of the Gompertz type. These types of results have epidemiological implications 
in result analyses, as well as technical implications in the strategic management of the 
disease because a significant part of the comprehensive management strategy of the disease 
is based on the type of behavior of the epidemic. It is important to note that given that WL 
is currently considered an official control disease in Colombia (Resolution 004170; ICA, 
2014), all the plots we selected were continuously subjected to phytosanitary measures for 
foci management and containment. This kind of anthropogenic event explains to a certain 
extent why this epidemic had such low final incidences in a given time period. Additionally, 
we should keep in mind that time (t) is a continuous parameter and, therefore, a 36-month-
period cannot be considered the total length of an epidemic in a crop such as oil palm 
with an eventual economic life span of up to 25 years. This could be different in a semi-
annual crop that can be harvested in less than 12 months. Therefore, it is possible that 
a longer time (more than 36 months) of evaluation may result in additional increases in 
disease incidence given the availability of healthy tissue, which could reach 100 % if no 
management practices are performed.

Conclusions
One of the main purposes of epidemiological analyses using models is to achieve a better 
understanding of how diseases develop in plant populations over time and how other 
factors influence their development. When selecting an appropriate model, one must 
have the ability to understand and explain the factors associated with the estimation of 
the parameters that describe the epidemic. However, the models often lack the necessary 
flexibility to adapt to the various changes occurring during the development of a disease. 
In this sense, the goodness of fit of a model depends on the increase in the number of 
estimated parameters and, consequently, on the flexibility of the selected model.

Although the true asymptote for the development of any disease is a function of 
the amount of susceptible tissue available, we should be aware of the risk of assuming 
a theoretical value of the maximum disease incidence in the host in a generalized and 
arbitrary manner. There are many epidemics with a maximum incidence below 100% due 
to unfavorable environments, insufficient populations of insect vectors or propagules, 
levels of host resistance, disease reduction practices focused on the early elimination of 
diseased plants, or other unspecified physical or biological factors. 

Our results demonstrate the importance of including Kmax in the description of the tem-
poral behavior of an epidemic. The consequences of using incorrect values reflect not only 
in the erroneous estimation of parameters, such as y

0
 and r but also in the risk of incorrectly 

interpreting the temporal behavior of the epidemic because of a false fit of the selected 
model. Assuming the parameter Kmax as unique and absolute may lead to inaccuracies in 
the type of epidemiological analysis and, consequently, to a biased description of reality.
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