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Resumen

Estados aislantes de espı́n selectivo surgen en sistemas compuestos de fermiones con dos
grados de libertad internos y otro tipo de portador, que puede ser fermiónico o bosónico.
Estos aislantes se caracterizan por un estado sin gap para un tipo de fermiones y un estado
aislante para los otros, donde los últimos satisfacen una relación de commensurabilidad que
involucra al otro tipo de portador. Nosotros revisamos los diferentes escenarios donde estos
particulares aislantes surgen, enfocandonos en las mezclas Bose-Fermi, que son el más re-
ciente y promisor escenario para observar estos aislantes en los montajes de átomos frı́os.

Palabras clave: Transiciones de fase cuánticas; sistemas fuertemente correlacionados;
modelo de Hubbard; modelo de red de Kondo; DMRG.

Abstract

Spin-selective insulators emerge in systems composed of fermions with two internal degrees
of freedom and another carrier, which could be fermionic or bosonic. These insulators are
characterized by a gapless state for one kind of fermion and an insulator state for the other,
with the latter satisfying a commensurability relation that involves the other carrier. We
review the different scenarios where these unique insulators arise, focusing on Bose-Fermi
mixtures, the most recent and promising scenario for observing these insulators in cold atom
setups.

Keywords: Quantum phase transitions; strongly correlated systems; Hubbard model; Kondo
lattice model; DMRG.

Introduction

The main reason that condensed matter physics exhibits such plethora of physical phenom-
ena is that it involves a great number of carriers that undergo strong interactions in various
degrees of freedom, such as charge, spin, lattice, orbital, topology, and disorder, which
generate diverse ground states and intriguing quantum phenomena. A basic description of
materials in terms of weakly interacting electron systems and the use of the filling of the
electronic bands allowed us to distinguish between metals and insulators; however, exper-
iments suggested the need to include an on-site Coulomb interaction between electrons in
order to explain some results and the metal-insulator transition (Mott, 1968). The inter-
play between the kinetic energy and the local repulsive interaction leads to a half-filling
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insulator with a charge gap, where at each site there is one electron forming a global antifer-
romagnetic state called Mott-insulator (Imada et al., 1998; Guan et al., 2013). Note that 
the bosonic counterpart also exhibits insulator states at integer densities, which has been 
experimentally observed (Cazalilla et al., 2011).

The diverse degrees of freedom of the carriers enable the emergence of other insulators, 
such as charge density waves (Grüner, 1988) and spin density waves (Grüner, 1994), 
among others. Taking into account the topology of the band structures allows us to classify 
insulators into different classes, and under the influence o f s trong s pin-orbital coupling, 
the usual ordering conduction and valence bands of an ordinary insulator can be inverted, 
allowing the appearance of metallic surface states. This illustration indicates that there 
are gapless surface states inside the bulk energy gap, which characterizes the topological 
insulators, where these surface states exhibit a Dirac cone–type dispersion (Hasan & Kane, 
2010; Qi & Zhang, 2011; Yan & Felser, 2017).

In iron chalcogenide materials, the physical properties depend on the competition between 
the electron correlation strength and the nature of the Fermi surface, which causes a sub-
set of orbitals (denoted “heavy”) to have a much larger effective mass than another group 
(denoted “light”), allowing the possibility that the heavy electrons are Mott localized and 
coexist with the itinerant light electrons, a unique insulator state called an orbital-selective 
Mott phase (Anisimov et al., 2002; Yi et al., 2015).

As mentioned before, there are many intriguing insulators with interesting properties; how-
ever, in this review, we consider the spin-selective insulators, which have emerged so far in 
two different scenarios: the Kondo lattice model and Bose-Fermi mixtures. The common 
element between the two scenarios is a system of fermions with two internal degrees of 
freedom that coexist with other systems of localized spins or bosons. The strong interac-
tions generate a state characterized by a gapless background due to one kind of fermions, 
while the other kind of fermions remains in an insulator state, fulfilling a  commensurate 
relation with the other ingredient (fermions or bosons), which is the reason it is called a 
spin-selective insulator. Although both scenarios will be discussed, special attention will be 
dedicated to mixtures, which are projected to be the most promising platform for observing 
these states.

The plan of this article is as follows: The original scenario where the spin-selective insulator 
emerges, which is the Kondo lattice model, is discussed in Sec. II. The recent Bose-Fermi 
mixture scenario will be covered extensively in Sec. III. In Sec. IV, we will suggest possible 
new scenarios for the emergence of spin-selective insulators. Finally, some conclusions will 
be put forth in Sec. V.

Two-band Fermionic models

Strong correlations between electrons generate interesting and intriguing experimental re-
sults in diverse kind of materials. For instance, in intermetallic compounds containing rare-
earth or actinide elements, the strong electron-electron correlation is crucial. In these mate-
rials, the linear coefficient of the specific heat and the Pauli spin susceptibility are extremely 
large compared to that of conventional metals, keeping the Wilson ratio around the unity and 
enabling a description in terms of the Fermi-liquid theory. To explain the experiments, it 
is common to consider a quasiparticle mass around two to three orders of magnitude larger 
than the bare electron mass, giving the name of heavy fermions to these materials (Hewson, 
1997).

Two different kind of electrons determine the physics of the heavy-fermion materials. One 
is a set of electrons in the inner f orbitals, which remains localized even in a periodic lat-
tice. The other set consists of the conduction electrons in s-, p-, or d-atomic orbitals, which
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Figura 1. Zero-temperature phase diagram of the one-dimensional Kondo lattice model,
interaction coupling (J/t) versus conduction electron density (ρF,c).

moves through a lattice. The local interaction between f and conduction electrons generates
the largest energy scale of the system, followed by the Hund’s-rule coupling (Tsunetsugu
et al., 1997). The heavy-fermion materials are modeled as strongly coupled conduction
electrons and nearly independent localized spins, which generate a variety of ground states,
such as the normal heavy-fermion state, unusual superconducting states, antiferromagneti-
cally ordered states, and topological Kondo insulators (Gegenwart et al., 2008).

Although the study of the physics of block heavy-fermion materials is still current and
offering surprises, a new impetus has emerged with the possibility of creating heterostruc-
tures based on heavy-fermion materials, for instance superlattices with a unit cell com-
posed of a two-dimensional heavy-fermion material and a different material exhibit intrigu-
ing superconducting and magnetic properties, which are tunable by changing the superlat-
tice structure, opening the possibility of creating new functional devices based on heavy-
fermions (Shishido et al., 2010; Mizukami et al., 2011; Shimozawa et al., 2016).

Recently, it was observed that the material CeCo2Ga8 exhibits a strong anisotropy ratio of its
magnetic exchange interactions, which allows concluding that this is a realistic example of
a Kondo chain, thus approaching the theoretical results and the experimental ones (Cheng
et al., 2019).

Another branch, opened in the last decade, relate to heavy fermions is the possibility of
emulating their main ingredients in clean and fully controllable setups, which is achieved
by confining alkaline-earth-like atoms (Yb and Sr) in optical lattices (Gorshkov et al.,
2010; Riegger et al., 2018; Ono et al., 2019).

As mentioned before, the spin exchange between conduction electrons and localized impuri-
ties is relevant for understanding heavy-fermions, which can lead us to an indirect exchange
interaction between impurities called Rudermann–Kittel–Kasuya–Yosida (RKKY) interac-
tion, which emerges due to the fact that the impurities are coupled to the same conduction
electrons, making possible a magnetic interaction between impurities and a magnetic or-
dering throughout the system. A different scenario involves a collective screening of the
impurities by the conduction electrons called the Kondo effect. The interplay between the
RKKY interaction and the Kondo effect is crucial here (Hewson, 1997). The main models
considered to explain the experimental results of heavy-fermion materials are the periodic
Anderson model and the Kondo lattice model, the latter being a simpler model obtained
from the former one. The Kondo lattice model considers a kinetic energy term and a local
spin-spin interaction term between the localized impurity and the conduction electrons, and
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Figura 2. Local spin-resolved spectral functions for the Kondo lattice model in a Bethe
lattice. The interaction coupling is J/4t = 0.25, hence the ground state is ferromagnetic.
In the inset, we can see the gap for the spin-down component. Reproduced from (Peters et
al., 2012).

its Hamiltonian reads

Ĥ = J ∑
i

Ŝi · ŝi − t ∑
<i, j>,σ

(
ĉ†

i,σ ĉ j,σ +H.c.
)
, (1)

where ĉ†
iσ creates a conduction electron at site i with spin σ so that n̂Fc

i,σ = ĉ†
i,σ ĉi,σ is the local

number operator. Ŝi represents a localized spin-1/2 operator, while ŝi =
1
2 ∑αβ ĉ†

i,α σαβ ĉi,β
is the spin operator of a conduction electron, σ being the vector of the Pauli matrices. J
is the antiferromagnetic local exchange coupling, and t is the hopping integral between
nearest-neighbor sites.

Despite its apparent simplicity and the arduous study on the Kondo lattice model, which
has involved multiple techniques, it constantly gives us new surprises that keep it alive
and current even today (Tsunetsugu et al., 1997; Shibata & Ueda, 1999; Gulacsi, 2004;
Caprara & Rosengren, 1997; Honner & Gulacsi, 1997; McCulloch et al., 2002; Basylko
et al., 2008). In Fig. 1, we sketch the one-dimensional phase diagram of the Kondo lattice
model, the local exchange coupling (J/t) versus the density of the conduction electrons
ρF,c = NF/L, where NF is the total number of conduction electrons and L is the lattice size.
When the number of conduction electrons matches the lattice size, the half-filling configu-
ration (ρF,c=1) is reached and a local singlet is expected at each site. This ground state is an
insulator with nonzero spin and charge gaps, which is called a Kondo spin liquid. A richer
scenario emerges far away from half-filling with a main ferromagnetic phase dominating
the diagram, although it decreases when the density increases. A phase with zero spin gap
and a quasi-long-range order that depends on the density is established for lower values of
the local exchange, which is called the “island” phase (Garcia et al., 2000, 2002, 2004;
Xavier et al., 2003). Between the island and ferromagnetic phases, a ”spiral“ region with
unclear magnetic order in the system emerges (Garcia et al., 2004). An additional small
ferromagnetic phase with intermediate coupling strengths and densities ρF,c > 2/3 has been
reported (Peters & Kawakami, 2012; McCulloch et al., 2002).

The ferromagnetic phase contains interesting physics, as was shown by Peters et al., who
used dynamical mean-field theory to solve the Kondo lattice model, considering a two-
dimensional square lattice and a Bethe lattice. The local spin-resolved spectral functions
reported for the latter lattice appear in Fig. 2, where they considered an antiferromagnetic
Kondo coupling J/W = 0.25 (bandwidth W = 4t), for which the ferromagnetic phase ex-
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tends to the conduction density ρF,c = ρ↑
F,c + ρ↓

F,c = 0.5. The surprising result is that the

spectral function for the majority-spin (ρ↑
F,c) is different from that for the minority-spin

(ρ↓
F,c). The minority-spin spectral function exhibits a gap at the Fermi energy, while that for

the majority-spin has a peak at the Fermi energy ω = 0 and a dip for ω > 0, which sug-
gests that despite the ferromagnetic state being metallic, one kind of conduction electron
contributes little to the low-temperature behavior and the responsibility is assumed by the
other kind. A further increase in the occupation number leads to the dip becoming larger
and closer to the Fermi energy, which will take us to a paramagnetic state (Peters et al.,
2012).

An insulator state called spin-selective Kondo insulator is established for the minority-spin
conduction electrons, which has not yet been explained. To elucidate this, Peters et al.
considered that the localized spins are formed by a half-filled f orbital with a strongly
local repulsion interaction between the electrons, so that the spin polarization is given
by ⟨Sz,i⟩ = 0.5

(
⟨nF f

i,↑ ⟩+ ⟨nF f
i,↓ ⟩

)
. In Fig. 3, we display the local commensurability profile

along a one-dimensional lattice, calculated using the density matrix renormalization group
(DMRG) method with open boundary conditions (Peters & Kawakami, 2012). The local
commensurability is given by ⟨nFc

i,↓ +nF f
i,↓ ⟩= ⟨nFc

i,↑⟩−⟨Sz,i⟩+0.5, and its evolution is shown
for a lattice with 60 sites and diverse numbers of conduction electrons and antiferromag-
netic couplings. In all the panels, we observe that the local commensurability oscillates
around ⟨nFc

i,↓ + nF f
i,↓ ⟩ ∼ 1, but the total number of minority-spin conduction electrons plus

spin-down f electrons is commensurate with the lattice size. The oscillations are due to
the open boundary conditions, and despite them, the local commensurability condition is
fulfilled within 1% for the upper four panels, which correspond to states inside the main
ferromagnetic phase, while the lower panel, related to the smaller ferromagnetic area in the
phase diagram, exhibits very strong oscillations. It is important to mention that the above
commensurability was also observed for the Kondo lattice model in a Bethe lattice and a
two-dimensional square lattice; therefore the conclusion is that within the ferromagnetic
state the following commensurability condition is fulfilled:

ρ↓
F,c +ρ↓

F, f = 1. (2)

Taking into account that the half-filling condition for the localized band requires that ρ↑
F, f +

ρ↓
F, f = 1, it is clear that ρ↑

F, f = ρ↓
F,c. Another important point is that the majority spins do

not fulfill any commensurability relation. Note that the minority-spin conduction electrons
and a part of the f electrons collaborate to form a Kondo singlet, while the rest give the
ferromagnetic character to the state.

To summarize, it was found that in the ferromagnetic metallic phase of the Kondo lattice
model with antiferromagnetic coupling, the majority-spin conduction electrons are in a gap-
less state, while the minority-spin ones remain in an insulator state, which has an associated
a commensurability relation. This insulator was referred to as a spin-selective Kondo in-
sulator, for us simply a spin-selective insulator, and this was the first scenario in which it
arose.

We would like to point out that Bazzanella and Nilsson also explain the ferromagnetic phase
and the emergence of the spin-selective insulators through a canonical transformation that
expresses the Kondo lattice model in terms of Majorana fermions (Bazzanella & Nilsson,
2014).

From the above discussion, we know that the Kondo lattice model can offer still new physics
and phenomena, which is evident when we consider the new possibilities that emerge from
the attempts to emulate the Kondo lattice model in diverse environments (Silva-Valencia &
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Figura 3. Local commensurability profile along the lattice for a 1D Kondo lattice model. 
A lattice with 60 sites was considered and each panel shows the evolution of the local 
commensurability for a specific ferromagnetic state characterized by the parameters on the 
right. Lines are a guide for the eye. Reproduced from (Peters et al., 2012).

Souza, 2012a, 2012b; Caro et al., 2020; Silva-Valencia & Miranda, 2001; Silva-Valencia 
et al., 2001).

We remark that a spin-selective insulator also emerges in the spin-asymmetric Hubbard 
model in a partially filled Lieb lattice with spin-dependent electron band dispersions, which 
could be relevant to the electronic states at the LaAlO3/SrTiO3 interface (Faúndez et al., 
2018).

Bose-Fermi mixtures

Studying a system composed of a mixture of carriers that obey the Bose-Einstein and Fermi-
Dirac statistics was a utopia until the emergence and evolution of the ultracold atom field, 
which has allowed verifying and extending several ideas and concepts in physics in clean 
and fully controllable setups (Bloch et al., 2008; Esslinger, 2010; Bloch et al., 2012; Gross 
& Bloch, 2017). Mixing fermionic and bosonic isotopes of the same or different atoms, ex-
perimentalists have created unimaginable mixtures, controlling the number of each kind of 
carrier, the interspecies and intraspecies interactions (Truscott et al., 2001; Schreck et al., 
2001; Hadzibabic et al., 2002; Roati et al., 2002; Ott et al., 2004; Silber et al., 2005; 
Günter et al., 2006; Ospelkaus et al., 2006; Zaccanti et al., 2006; McNamara et al., 
2006; Best et al., 2009; Fukuhara et al., 2009; Deh et al., 2010; Tey et al., 2010; Sug-
awa et al., 2011; Schuster et al., 2012; Tung et al., 2013; Ferrier-Barbut et al., 2014; 
Delehaye et al., 2015; Vaidya et al., 2015; Yao et al., 2016; Onofrio, 2016; Wu et al., 
2017; Roy et al., 2017; Schäfer et al., 2018). As expected, new and exciting phenom-
ena have emerged, such as a Bose-Fermi superfluid m ixture ( Trautmann e t a l., 2018), 
phase separation (Lous et al., 2018), and attractive interaction between bosons mediated by 
fermions (DeSalvo et al., 2019).

The description of mixtures of bosons and fermions, taking into account the interactions, 
leads us to the Bose-Fermi-Hubbard model, for which there is some level of approxima-
tion, and it has been widely studied using analytical and/or numerical techniques (Albus et 
al., 2003; Cazalilla & Ho, 2003; Lewenstein et al., 2004; Mathey et al., 2004; Roth & 
Burnett, 2004; Frahm & Palacios, 2005; Batchelor et al., 2005; Takeuchi & Mori, 
2005; Pollet et al., 2006; Mathey & Wang, 2007; Sengupta et al., 2007; Mering & Fleis-
chhauer, 2008; Suzuki et al., 2008; Lühmann et al., 2008; Rizzi & Imambekov, 2008; 
Orth et al., 2009; Yin et al., 2009; Sinha & Sengupta, 2009; Orignac et al., 2010; Polak 
& Kopeć, 2010; Mering & Fleischhauer, 2010; Anders et al., 2012; Masaki & Mori,

6

et al.,

et al.,

et al.,

et al.,

et al., et al.,

et al., et al.,
et al.,et al.,et al.,et al.,

et al.,
et al.,

et al.,
et al.,

et al., et al.,

et al.,
et al.,

et

 et al.,

et al., et al., et al.,
et al., et al., et al.,

et al., et al., et al.,
et al., et al., et al.,

al., et al.,

et al.,
et al.,

et al., et al., et al.,
et al.,

et al.,
et al.,

et al.,
et al.,



883

Aislantes de espín selectivo
46(181):877-898, octubre-diciembre de 2022. doi: https://doi.org/10.18257/raccefyn.1774
Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 

(c)

(d)

(b)

(a)

Figura 4. Sketches of possible distributions of fermions (golden) and bosons (blue) in a
12-sites lattice. (a) Mixed Mott insulator state, for which ρF +ρB = 1. (b) Mixed
noncommensurate insulator for a balance mixture (ρB +

1
2 ρF = 1). (c) and (d) show

insulators for an imbalanced mixture with I = 1/3. Adapted from (Guerrero-Suarez et
al., 2021).

2013; Bukov & Pollet, 2014; Ozawa et al., 2014; Bilitewski & Pollet, 2015). Among
the diverse ground states found, the mixed Mott insulator stands out and is characterized
by the commensurability between the lattice size and the total number of carriers (bosons
+ fermions), which was predicted for a mixture of polarized bosons and fermions (Zujev
et al., 2008) and experimentally observed in a mixture of ytterbium atoms confined in a
three-dimensional optical lattice (Sugawa et al., 2011).

An intermediate approach for describing a Bose-Fermi mixture consists of taking into ac-
count the internal degrees of freedom of fermions and treating the bosons as scalars, whose
Hamiltonian is given by

ĤBF = ĤF + ĤB + ĤI , (3)

where ĤB, ĤF , and ĤI represent the contribution of bosons, fermions, and the interaction
between fermions and bosons, respectively. Specifically, ĤF corresponds to the Fermi-
Hubbard Hamiltonian, which is given by

ĤF =−tF ∑
⟨i, j⟩,σ

(
f̂ †
iσ f̂ jσ +H.c.

)
+

UFF

2 ∑
i,σ�σ ′

n̂F
i,σ n̂F

i,σ ′ . (4)

Here, f̂i,σ ( f̂ †
i,σ ) annihilates (creates) a fermion with spin σ =↑,↓ at the lattice site i, and

n̂F
i,σ = f̂ †

i,σ f̂i,σ is the local number operator for each kind of fermions, such that n̂F
i = n̂F

i,↑+

n̂F
i,↓. The hopping parameter between nearest-neighbor sites (⟨i, j⟩) for fermions is tF , and

UFF quantifies the local fermion-fermion interaction. The global density for σ -fermions is
defined as ρσ

F = Nσ
F /L, where Nσ

F is the number of fermions with spin σ . ρF = ρ↑
F +ρ↓

F
is the total fermionic density, which varies from zero to two, ρF = 1 being the half-filling
configuration.

On the other hand, the Bose-Hubbard Hamiltonian ĤB corresponds to

ĤB =−tB ∑
⟨i, j⟩

(
b̂†

i b̂ j +H.c.
)
+

UBB

2 ∑
i

n̂B
i
(
n̂B

i −1
)
, (5)

where the operator b̂†
i (b̂i) creates (annihilates) a boson at the lattice site i, and n̂B

i = b̂†
i b̂i is

the local number operator. The interaction between bosons is quantified for the parameter
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Figura 5. Evolution of the chemical potential µB with the bosonic density ρB, for a
mixture with ρF = 1 (half-filling) and UFF = 3.5. Two different values of the
boson-fermion interaction UBF = 6 (red) and UBF = 1 (black) were considered. Inset:
Chemical potential as a function of the inverse of the lattice size at the bosonic density
ρB = 1/2. The diamonds determine a finite gap of ∆B = 2.85. The lines are visual guides.
From (Avella et al., 2019).

UBB, while the hopping of the bosons is modulated by tB. NB is the number of bosonic
atoms, and ρB = NB/L is the global density of bosons, which varies from zero to one.

Considering the above definitions, the interaction between two-color fermions and scalar
bosons is described by

ĤI =UBF

L

∑
i=1

n̂B
i
(
n̂F

i,↑+ n̂F
i,↓
)

, (6)

where UBF is the boson-fermion interaction parameter.

A numerical study of Hamiltonian (3) requires fixing the energy scale (tF = tB = 1), and
restricting the number of bosons per site, which is unbounded. It is common to consider
the hard-core limit, which implies that each site can be occupied by at most one boson
(which implies no interaction term in Eq. (5)), leading to the following local basis: |F⟩

|B⟩ =
|0⟩
|0⟩ ,

|↑⟩
|0⟩ ,

|↓⟩
|0⟩ ,

|↑↓⟩
|0⟩ ,

|0⟩
|1⟩ ,

|↑⟩
|1⟩ ,

|↓⟩
|1⟩ ,

|↑↓⟩
|1⟩ .

Taking into account the above basis and using DMRG, we were able to explore the ground
state of two-color fermions and scalar bosons in a one-dimensional lattice, for which we ex-
pected diverse configurations, as shown in Fig. 4. One possibility is the mixed Mott insula-
tor, where the total number of carriers is commensurate with the lattice (Fig. 4 (a)), while the
others drawn are yet to be established. Therefore, the ground-state energy E(N↑

F ,N
↓
F ,NB),

for NB bosons, and N↑
F and N↓

F fermions is calculated for different sets of densities and
parameters. Knowing how the system reacts to perturbations is crucial, which can be quan-
tified by the bosonic chemical potential µB = E(N↑

F ,N
↓
F ,NB+1)−E(N↑

F ,N
↓
F ,NB). In Fig. 5,

we follow the evolution of the bosonic chemical potential at the thermodynamic limit as the
number of bosons increases, considering fermionic density at half-filling (ρF = 1), fermion-
fermion repulsion UFF = 3.5, and two values for the boson-fermion coupling. Note that un-
der the above parameters, there is no possible emergence of the mixed Mott insulator; hence
any plateau in the curve implies a new insulator state to be characterized. A monotonous
evolution of the bosonic chemical potential can be seen for UBF = 1 (black dots), which
implies that the bosonic excitations are for free. A different scenario happens for UBF = 6
(red squares), where the continuous growth of the bosonic chemical potential is broken at

8

et al.,



885

Aislantes de espín selectivo
46(181):877-898, octubre-diciembre de 2022. doi: https://doi.org/10.18257/raccefyn.1774
Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 

0 2 4 6 8 10
UBF

0

5

10

15

µ

ρF = 1/2
UFF = 3.5

tB = tF

0 2 4 6 8 10
UBF

0

5

10

15

µ B Superfluid
Insulator

ρF = 1/2
UFF = 3.5

tB = tF ρB = 1/2
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corresponds to an insulator phase for ρB = 1/2, while the white zone represents a
superfluid. The vertical dashed line at UBF = 6 corresponds to the curve in Fig. 5 (red
squares). The lines are visual guides. Adapted from (Avella et al., 2019).

the bosonic density ρB = 1/2, indicating the emergence of a finite gap to generate bosonic
excitations, as can be seen in the inset. The plateau in Fig. 5 establishes a new kind of in-
sulator state for Bose-Fermi mixtures, because the total number of particles is not commen-
surate with the lattice and the emergence of this insulator depends on interactions (Avella
et al., 2019). We found that this new noncommensurate insulator fulfills the condition
ρB +

1
2 ρF = 1, and a possible distribution of carriers was sketched in Fig. 4 (b).

The progress of the noncommensurate insulator as a function of the boson-fermion coupling
is depicted in Fig. 6 for a fixed fermion-fermion repulsion UFF = 3.5 and a fermionic density
ρF = 1. The insulator state (yellow area) is surrounded by the superfluid phase, and there
is a critical value from which the insulator emerges and corresponds to U∗

BF ≈ 1.50. This
picture is similar for other values of the fermion-fermion repulsion, although the critical
values change.

The interplay between fermions with internal degrees of freedom and scalar bosons led to a
new insulator state characterized by the condition ρB+

1
2 ρF = 1, but this was for a balanced

mixture, i.e. ρ↑
F = ρ↓

F = 1
2 ρF ; therefore, we can surmise that this new insulator involves a

commensurability relation between the bosons and one kind of fermion, but what happens
to the other kind of fermions? To unvield this scenario, we need to get out of the balanced
condition and consider a mixture where ρ↑

F � ρ↓
F .

Experimentalists in the cold-atom area can generate asymmetries in the spin populations
(Zwierlein et al., 2006; Partridge et al., 2006; a. Liao et al., 2010; Kinnunen et al., 2018;
Dobrzyniecki & Sowiński, 2020), making such systems ideal for searching for the elusive
unconventional pairing mechanism suggested by Fulde, Ferrell, Larkin, and Ovchinnikov
(FFLO) (Fulde & Ferrell, 1964; Larkin & Ovchinnikov, 1964). In a recent study, it was
shown that the visibility of the FFLO state is enhanced as the interparticle strength grows in
a Bose-Fermi mixture (Singh & Orso, 2020).

In Fig. 7, we show the thermodynamic limit value for the bosonic chemical as the number of
bosons increases from zero for a mixture with a quarter fermionic density (ρF = 1/2), a re-
pulsive fermionic interaction UFF = 6, and a boson-fermion coupling UBF = 10. The black
dots correspond to a spin-balanced mixture, for which ρ↑

F = ρ↓
F = 1

2 ρF , and we observed
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that the chemical potential grows monotonously for almost all densities, which indicates
that there is no cost to generating excitations. However, at the bosonic densities ρB = 1/2
and ρB = 3/4, the chemical potential jumps, generating a plateau in the curve, which is
associated with a rise of insulating states. The nature of the insulator state at ρB = 1/2 is
obvious, because the total number of carriers will be commensurate with the lattice size,
and this state corresponds to the mixed Mott insulator, for which ρB +ρF = 1, and we em-
phasize that in a mixture with spinor fermions the mixed Mott insulator also emerges. The
previously-found noncommensurate insulator also arises in this case, at the bosonic density
ρB = 3/4, and we corroborate that ρB +

1
2 ρF = 1.

To explore a spin-imbalanced mixture, we quantify the difference between the spin pop-
ulations through I = (N↓

F −N↑
F)/(N

↑
F +N↓

F), and depict the case I = 1/3 (red squares) in
Fig. 7. We observed that the imbalanced curve matches the balanced one over almost the
entire range, indicating that the mixed Mott insulator will emerge regardless of the spin
imbalance considered, which is an expected result. However, the main difference between
the curves is the disappearance of the insulating state at ρB = 3/4 and the emergence of
two new plateaus, which are separated by a superfluid state. The new plateaus are lo-
cated at the bosonic densities ρB = 2/3 and ρB = 5/6, i.e. one below and one above the
noncommensurate insulator of the balanced mixture. We show in the inset of Fig. 7 that
there is a finite gap (∆B = E(N↑

F ,N
↓
F ,NB +1)+E(N↑

F ,N
↓
F ,NB −1)−2E(N↑

F ,N
↓
F ,NB)) at the

thermodynamic for the plateaus, located at ρB = 1/2, ρB = 2/3 and ρB = 5/6, indicating in-
sulator states for these densities. Note that the charge gaps for the plateaus at ρB = 2/3 and
ρB = 5/6 are different, which establishes the first difference between these new insulating
states (Guerrero-Suarez et al., 2021).

Replicating the imbalanced curve of Fig. 7 for other values of UBF , we obtained three insu-
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lating lobes surrounded by a superfluid phase, which emerges from different critical values,
depending on the fermion-fermion repulsion, the widths of theses lobes increasing further
as the boson-fermion coupling grows, similar to what was found in Fig. 6.

A mixture of two-color fermions and scalar bosons exhibits two insulator states that satisfy
ρB +ρF = 1 and ρB +

1
2 ρF = 1; however, when considering a spin population imbalance,

the noncommensurate insulator disappears, giving way to two new insulating states, located
at ρB = 2/3 and ρB = 5/6 for ρF = 1/2 and I = 1/3. The new insulator states are located
between the mixed Mott insulator and the trivial one (full lattice), which suggests the re-
lation ρB +

1
2 ρF(1± I) = 1, for locating the new insulators for any fermionic density and

imbalanced parameter. Although we found a general relation to locate the new insulators,
its physical origin is unclear. To gain more information, we explore the distribution of car-
riers at these insulators for a finite lattice (Fig. 8). Considering a lattice with L = 84 sites,
a quarter fermionic density, and a spin population imbalance of I = 1/3, we display the
density profiles of the spin-up fermions and bosons along the lattice for the insulator state
with ρB = 5/6 (Fig. 8(a)). We observe that the expectation value of the local number of
both bosons and fermions with spin up slightly oscillates around the values

〈
n̂B

i
〉
≈ 0.833

and
〈

n̂F
i,↑

〉
≈ 0.166, respectively. These curious values lead us to consider the profile of〈

n̂F
i,↑

〉
+
〈
n̂B

i
〉

along the lattice, obtaining one at each site, which suggests a commensura-
bility relation between the bosons and the spin-up fermions. As expected, the local number
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of fermions with spin down varies around
〈

n̂F
i,↓

〉
≈ 0.333 (not shown), and remains in a

gapless state, i.e., fixing bosonic density at ρB = 5/6 and ρ↑
F = 1/6, there is no energy cost

to adding spin-down fermions around the density ρ↓
F = 1/3. In Fig. 8(b), we show the dis-

tribution of the carriers at the insulator state with ρB = 2/3, where a charge density wave
is established for each carrier, marking a new difference from the other insulator. We see
that the expectation value of spin-down fermions and bosons oscillates off phase and adjusts
to meet local commensurability

〈
n̂F

i,↓

〉
+
〈
n̂B

i
〉
= 1, while the spin-up fermions remain in a

gapless state (Guerrero-Suarez et al., 2021).

The above discussion suggests that the new insulator state involves a commensurability
relation between the bosons and one kind of fermions, while the other remains in a gapless
state. These spin-selective insulators must satisfy the relation ρB + ρ↑,(↓)

F = 1, which is
compatible with the relation ρB + 1

2 ρF(1± I) = 1 found previously. We conclude that a
mixture of two-color repulsive fermions and scalar bosons at the hard-core limit exhibits
a mixed Mott insulator and two spin-selective insulators that fulfill the commensurability
relations ρB +ρ↑,(↓)

F = 1, in a gapless fermion polarized background.

The next question to be resolved is whether spin-selective states emerge if we relax the
hard-core condition. It is well-known that the local number of bosons goes from zero to
infinity, which forces us to perform a cutoff of the local number of bosons allowed. In
our soft-core approximation, we restrict the number of bosons per site to a maximum of
n̂max = 3, which leads us to a large but tractable local Hilbert space of dimension d = 16,
allowing our results to remain unaffected if we increment n̂max (Pai et al., 1996; Rossini
& Fazio, 2012). Now the interaction term between the bosons will be relevant, and we
expect that without the boson-fermion coupling (UBF = 0), only the well-known Mott insu-
lators (trivial) of each species will appear. In Fig. 9, we display the progress of the bosonic
chemical potential at the thermodynamic limit as the number of bosons increases from zero
for a mixture with a quarter fermionic filling (ρF = 1/2) and repulsion between bosons
and fermions of UBB = 16 and UFF = 6, respectively. Two values of the boson-fermion
interaction UBF = 1 (open red squares) and UBF = 8 (closed black dots) were considered,
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obtaining that UBF = 1 is a weak coupling between fermions and bosons because the chem-
ical potential evolves continuously, undergoing jumps only at integer bosonic densities,
which correspond to bosonic Mott insulators, an expected result in the absence of coupling
between fermions and bosons. Comparing Fig. 9 with figures 5 and 7 for the hard-core ap-
proximation, it is clear that relaxing this condition leads to the emergence of trivial plateaus
for larger integer values of the bosonic density.

As discussed throughout the paper, increasing the boson-fermion coupling will allow un-
earthing new discoveries, as can be seen in the closed black dot curve. Clearly, the trivial
bosonic Mott insulators survive, but their width is strongly reduced; however, the most im-
portant thing is the emergence of two plateaus between trivial Mott insulator ones, which
are due to the boson-fermion interaction and are located at the bosonic densities ρB =
1/2,3/4,3/2, and 7/4. These non-trivial plateaus found for larger boson-fermion repul-
sion have a finite charge gap (∆B) at the thermodynamic limit, as can be seen in the inset,
indicating insulator states. Now, we have to classify these states, and we quickly observe
that the plateaus located at ρB = 1/2 and ρB = 3/2 correspond to mixed Mott insulators,
since they fulfill the relation ρB + ρF = n, where n is an integer, namely n = 1 and 2 for
the plateaus at ρB = 1/2 and 3/2, respectively. Here, we considered a balanced mixture
for which ρ↑

F = ρ↓
F = 1

4 , and taking into account that the other two non-trivial plateaus are
located at ρB = 3/4 and ρB = 7/4, we conclude that the latter insulators are spin-selective
ones that satisfy the commensurability relations ρB + ρ↑,(↓)

F = n (n = 1,2), in a gapless
fermion polarized background. Therefore, relaxing the hard-core approximation leads us to
the emergence of one mixed Mott insulator and one spin-selective one between the trivial
Mott insulators in a mixture of two-color fermions and scalar bosons (Avella et al., 2020).

It is important to point out that state-of-the-art cold-atom setups allow creating mixtures
of two-color fermions and scalar bosons. For instance, mixtures with isotopes 171Yb and
174Yb (170Yb) have been tested (Takasu & Takahashi, 2009), and dual Bose-Einstein con-
densates of paired fermions and bosons with 6Li and 7Li have been achieved experimen-
tally (Ikemachi et al., 2017). This suggests that the search for the spin-selective insulators
reviewed here is an intriguing challenge that can be addressed by experimentalists.

Other possible scenarios

Spin-selective insulators emerged initially in the Kondo lattice model, where two kinds of
electrons interact, and then were found in mixtures of two-color fermions and scalar bosons;
however, we believe that these peculiar insulators can arise in other scenarios, which we
suggest below.

Periodic Anderson model

The standard model for studying the physics of heavy fermion materials is the periodic
Anderson model (PAM), whose Hamiltonian is given by

Ĥ = − t ∑
i,σ

(
ĉ†

iσ ĉi+1σ + ĉ†
i+1σ ĉiσ

)
+E f ∑

iσ
n̂ f

i,σ

+ V ∑
i,σ

(
ĉ†

iσ f̂iσ + f̂ †
iσ ĉiσ

)
+Uf ∑

i
n̂ f

i↑n̂ f
i↓, (7)

where ĉ†
iσ ( f̂ †

iσ ) creates an electron in the conduction (localized) band at site i with spin
σ =↑,↓. The local number operator with spin σ for the localized electrons is n̂ f

iσ = f̂ †
iσ f̂iσ .

The Coulomb repulsion between two localized electrons at the same site is quantified by U , t
is the nearest-neighbor hopping integral, and V is the hybridization between the conduction
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Figura 10. Phase diagram for the periodic Anderson model considering electron densities 
between a quarter and half-filling. The hybridization parameter is fixed at V /t = 0.75. The 
main phases shown in this diagram are: spin-density-wave (SDW), incommensurate
spin-density-wave (ISDW), paramagnetic (PM), ferromagnetic (FM), and RKKY phase 
that consists of a SDW with momentum determined by the Fermi momentum of the 
conduction electrons. Also, we see a spin liquid (SL) and a spin liquid with strong 
antiferromagnetic fluctuations (SLS). Taken from (Bertussi et al., 2011).

and the localized bands. Finally, Ef = −U/2 is the energy displacement of the localized 
band, which take this value in the symmetric case.

Since its appearance, this Hamiltonian (7) has been widely studied, using various analytical 
and numerical techniques; however, we still know little about it: for example, not even in 
one dimension do we know a complete phase diagram. For the specific case of V /t = 3/4, 
Bertussi et al. built the phase diagram shown in Fig. 10, where they considered electronic 
densities between ρT = ρF,c + ρF, f = 1 (quarter filling) and ρ T = 2 (half filling) (Bertussi 
et al., 2011). A metal-insulator transition from a paramagnetic metal to an insulator with 
an f -band spin-density wave was found at quarter filling, whereas at half-filling the ground 
state is always an insulating spin liquid. Between a quarter and half-filling the ground state 
is always metallic, exhibiting a very rich magnetic behavior; for instance, we found ferro-
magnetic, paramagnetic, RKKY, and incommensurate spin density wave (ISDW) regions.

Remembering that the ferromagnetic phase of the Kondo lattice model exhibits peculiar 
properties, such as that the minority conduction electrons form an insulating state, while the 
majority conduction electrons form a metallic state, which characterizes the spin-selective 
insulators, we expect that these insulators also emerge in the ferromagnetic phase of the 
periodic Anderson model.

The “g-e” model

The possibility of studying the interplay of charge and spin degrees of freedom in clean 
and fully controllable setups leads to considering the special features of alkaline-earth-like 
atoms (Yb and Sr) to confine them in traps (Honerkamp & Hofstetter, 2004; Cazalilla & 
Rey, 2014; Capponi et al., 2016). Because these atoms can be confined in two different 
optical lattices, the description is given in terms of the two-orbital SU(N)-symmetric Hub-
bard model, more commonly called the “g-e” model (Gorshkov et al., 2010; Nonne et al., 
2011; Bois et al., 2015). This model has allowed extending and revising other models, such

14

as the Kugel-Khomskii model, the Kondo lattice model, and the periodic Anderson model,
as well as the discovery of several characteristics of the “g-e” model with N > 2. It has been
shown that the high SU(N) symmetry can lead to the emergence of exotic properties in
quantum magnetism and pairing superfluidity and to the realization of symmetry-protected
topological phase transitions (Capponi et al., 2016; Nakagawa & Kawakami, 2017).

Alkaline-earth-like atoms have a long-lived metastable excited state 3P0 (|e⟩) coupled to the
ground state 1S0 (|g⟩) via an ultranarrow doubly-forbidden transition, and at low tempera-
tures, the spin-changing collisions are prohibited; hence four different scattering lengths for
the states |ee⟩,|gg⟩, and 1√

2
(|ge⟩± |eg⟩) arise. The description of these atoms confined in

optical lattices can be done in terms of the following Hamiltonian (Gorshkov et al., 2010):

Ĥ = − ∑
m=g,e

tm ∑
i,α

(
ĉ†

mα,iĉmα,i+1 +H.c.
)

+
U
2 ∑

m=g,e
∑

i
n̂m,i(n̂m,i −1)+V ∑

i
n̂g,in̂e,i

+ V g-e
ex ∑

i,α,β
ĉ†

gα,iĉ
†
eβ ,iĉgβ ,iĉeα,i, (8)

where, i varies along the sites of a one-dimensional lattice of size L, ĉ†
mα,i creates an atom

at site i with orbital index m = g,e and nuclear spin index α =↑,↓. The local density
operator for each species is n̂m,i = ∑α=↑,↓ ĉ†

mα,iĉmα,i. The strength parameters U and V
quantify the local intra- and inter-species interactions, respectively, while V g-e

ex measures the
hybridization between the optical lattices. The hopping parameter for each species is tm.

Analytical and numerical studies have shown a rich phase diagram at half-filling, where the
spin Peierls, charge density wave, orbital density wave, and rung singlet phases predominate
in the phase diagram for positive and negative hybridization between the lattices (Nonne et
al., 2011; Bois et al., 2015). We believe that under an adequate set of parameters, the “g-e”
model will exhibit the spin-selective insulators reviewed here.

Mixtures of spinor bosons and scalar fermions

At the heart of some spectacular phenomena in physics are the mediated interactions; for
instance, conventional superconductivity is due to the fact that electrons can form Cooper
pairs by interacting via phonons. Also, electrons act as mediators for interactions be-
tween magnetic impurities, leading to RKKY interaction, which is fundamental for the
heavy fermion materials. A few years ago, attractive boson–boson interactions mediated
by fermions were reported, which are expected to form new magnetic phases and super-
solids (DeSalvo et al., 2019; Edri et al., 2020).

Another way to study Bose-Fermi mixtures is to consider spinor bosons and scalar fermions,
which have been little studied so far. Recently, it was found that spin-dependent fermion-
mediated interactions dramatically modify the properties of binary Bose-Einstein conden-
sates (Liao, 2020). A mixture of spinor bosons and scalar fermions can be described by the
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ĉ†
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where b̂i,σ (b̂†
i,σ ) annihilates (creates) a boson with spin σ =↑,↓ at the lattice site i, and
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i,σ b̂i,σ is the local number operator for each kind of bosons, such that n̂B
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i,↓.

The operator f̂ †
i ( f̂i) creates (annihilates) a fermion at the lattice site i, and n̂F

i = f̂ †
i f̂i is the

local number operator for fermions. The boson-fermion interaction is quantified for the
parameter UBF , the hopping of bosons (fermions) is modulated by tB (tF ), and UBB

0 quan-
tifies the spin-independent contact repulsion, while UBB

2 is the spin-dependent interaction
coupling (de Forges de Parny et al., 2010).

Exploring the Hamiltonian (9) will allow us to determine the dependence of the spin-
selective insulators with the Pauli exclusion principle as well as effective mediated inter-
actions and possible new ground states.

Conclusions

This paper presents some scenarios where particular spin-selective insulators arise, which
appear in systems composed of two different kinds of carriers, one of them being fermions
with two internal degrees of freedom, while the other could be localized spins or scalar
bosons. Spin-selective insulators have a finite charge gap, and one kind of fermions remains
in an insulator state, while the other one is in a gapless state.

The physical properties of heavy fermion materials involve electrons from two different
bands, and the simplest model for describing some of them is the Kondo lattice model,
which exhibits a rich phase diagram with Kondo insulator, spiral, ferromagnetic, and island
phases. Namely, for the ferromagnetic phase it was found that the cooperation between a
partial Kondo screening and ferromagnetism leads to a spin-selective insulator where the
majority-spin conduction electrons are in a metallic state while the minority-spin ones re-
main in an insulator state, fulfilling the commensurability relation ρ↓

F,c +ρ↓
F, f = 1.

In a balanced mixture of two-color fermions and scalar bosons, two non-magnetic insulators
surrounded by superfluids arise. The repulsive character of the interactions causes one of
insulators to be a mixed Mott insulator, where the sum of the number of bosons and fermions
are commensurate with the lattice, satisfying the relation ρB+ρF = n, where n is an integer.
The other insulator corresponds to the spin-selective one, for which the total magnetization
is zero and it satisfies the commensurability relation ρB +ρ↑

F = ρB +ρ↓
F = n, in a gapless

fermion polarized background. Note that between trivial Mott insulators of the mixture, one
mixed Mott insulator and one spin-selective insulator always appear.

If a spin population imbalance is generated in a mixture of two-color fermions and scalar
bosons ρ↑

F � ρ↓
F , the mixed Mott insulator remains unaltered; however, the non-magnetic

spin-selective insulator splits into two ferromagnetic spin-selective insulators that fulfill the
relations ρB +ρ↑

F = n and ρB +ρ↓
F = n.
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Finally, we suggest new scenarios were the spin-selective insulator could arise, such as
the periodic Anderson model, the “g-e” model, and a mixture of spinor bosons and scalar
fermions.

We hope that this contribution may stimulate more investigation of these insulators and the
search for them in diverse experimental setups.
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