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The advancement of science depends, at least partially, on editorial 
processes and the peer review. Despite multiple challenges and 
limitations, editorial and peer review processes continue to serve 
as quality filters for the improvement of scientific publications 
(1-3). As editors and reviewers, we work to improve the integrity 
and completeness of the report and discuss methodological 
and analytical issues that take part in the editorial process. At 
times, during the peer review process, we are able to identify 
inconsistencies between the research question, the study design, 
and the methodology of the study. These inconsistencies are critical 
elements that reviewers evaluate when assessing the viability of 
scientific publications (4).

The research question is one of the most important aspects of the 
scientific process. The research question must be clearly defined, 
because it informs the objectives of the study, an appropriate 
design, and a clear plan for analysis. As 2022 came to an end, the 
statistical editors of the British Medical Journal (BMJ) were looking 
forward to a quiet and peaceful Christmas holiday; with that in 
mind, they urged to pay attention to “twelve potential problems” 
they commonly identified as reviewers (5). At the top of their list 
was to have “absolute clarity of the research question”. The primary 
suggestion was to think carefully about the research question and 
be clear about the objectives of the study. This first step helps to 
characterize the study design (cross-sectional, longitudinal, etc.), 
and the measure of association (relative risk, odds ratio, prevalence 
risk) to be estimated (5). Missteps in this early phase of the research 
process can hardly be resolved by methodological adjustments and 
may lead to misinterpretations of the study results.

Briefly, there are three principal areas of modern epidemiology 
and data science: description, prediction, and causal inference (6). 
In biomedical research, the objectives that stem from the research 
question must be ascribed to one of these categories. In fact, these 
objectives are later translated into: 1) the selection of the study 
sample, which  is characterized by the study population, place, 
and time; 2) the health outcome to be studied; 3) the measures of 
association to describe the event (incidence, prevalence, survival); 
and 4) the selection of a set of covariates that may be confounders 
of the relationship understudied (7). Given the current plethora of 
data, statistical softwares, and the advent of artificial intelligence, 
the aforementioned considerations are more relevant than ever.

To illustrate these concepts, we provide some examples recently 
published in the Colombian Journal of Anesthesiology. 

The area of description employs data to provide a quantitative 
assessment, or a graphic summary, of certain characteristics of 
the world. Descriptive tasks include, for example, calculating a 
proportion — cumulative incidence or prevalence — of patients 
with postoperative nausea and vomit in a large hospital database 
or in a cohort study. Descriptive analyses range from basic summary 
calculations — mean and other measures of central tendency 
— to highly elaborated figures and sophisticated data synthesis 
techniques. For example, in a cross-sectional study, Bocanegra et 
al., (2022) provide a very clear description of the frequency of legal 
claims (closed cases) filed against anesthetists between 2013 and 
2019 (8). Given the nature of the study design, these results cannot 
be generalized beyond the sample population. These limitations 
must be explicit within the study with the end to inform the 
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interpretations derived from it. In general, 
researchers must have a clear idea to what 
extent the objectives of their research are 
merely descriptive or seek other interests, 
because the objectives of the study must 
be reflected in the study design, the 
methodology, and the interpretation of the 
study results.

Prediction consists of using data to 
“map” certain characteristics of the world 
— inputs, or predictive variables — with 
other world characteristics — outputs or 
outcomes (6). Prediction usually begins 
with simple tasks, such as quantifying 
the association between midazolam 
premedication in children and the 
incidence of early postoperative delirium 
(9); and advances towards more complex 
tasks such as using multiple variables 
measured upon enrollment of patients 
undergoing cesarean section in order to 
“predict” which patients have a higher 
probability of developing postoperative 
nausea and vomiting (10). Predictive 
analyses range from simple calculations 
(e.g., incidence or risk difference) to more 
sophisticated modeling methods such 
as predictive and supervised learning 
algorithms (6). Questions related to 
“prediction or prognosis” are classified by 
the PROGnosis RESearch Strategy 
(PROGRESS) group (11) into four distinct 
types: 1) the ones that study the course of 
health-related conditions, or prognostic 
research; 2) the ones that study specific 
prognostic-related factors (biomarkers 
or others), or prognostic factors research; 3) 
the ones that study the development, 
validation and determination of the impact of 
statistical models on individuals’ disease risk 
and their future health outcomes, or 
prognostic models research; and 4) the 
ones that employ prognostic information 
for targeted individualized treatment 
decisions (11).

A common characteristic of predictive 
models is that the concept of “confounding 
bias” can become secondary because 
the primary focus of these models is 
not to establish “causal relationships” (11). 
However, advances in software

development have enabled the integration 
of supervised learning models (like the 
Super Learner) as essential tools for 
estimating parameters of causal inference 
(12,13). The integration of these two 
areas holds significant promise for the 
advancement of epidemiological research 
in the 21st century.

Causal inference — defined by some 
authors as counterfactual prediction — uses 
data to predict certain features of the world, 
had the world been different; a journey back 
in time to change “something” in the past 
and observe what would have happened 
(6). The main aim of causal inference is to 
explain how the world works, and what 
would happen if we changed something in 
the world today. A widely known example of 
causal inference are randomized controlled 
clinical trials. In these studies, the random 
assignment of the intervention creates a 
counterfactual scenario where comparison 
groups are similar in terms of known 
and unknown characteristics that could 
influence the outcomes of the study. In a 
clinical trial, Casas-Arroyave et al., (2019) 
compared the use of a closed-loop system 
for the administration of total intravenous 
anesthesia versus the administration using 
a target-controlled infusion (TCI) (14). Many 
factors can influence the main outcome of 
this study, as is the case of the performance 
assessment of the system in terms of the 
depth of anesthesia, which is quantified 
using the bispectral index (BIS). However, 
those “factors” or confounding variables 
were controlled, in principle, by the 
methodological design of the experiment, 
and the randomized assignment of the 
treatment. This strategy allows us to 
recreate a “journey back in time”. In this 
journey, the same group of patients would 
have been subjected to the anesthetic 
procedure using TCI and assessed in terms of 
the health outcomes; later, the same group 
of subjects could “travel back in time” and 
be subjected to the closed-loop strategy. 
In the real world, we are only able to assess 
one of those potential outcomes; for this 
reason, causal inference problems tend to 
be seen as a missing data problem. In ideal 

conditions, the control group is used to 
assess what would have happened had the 
subjects in the study not been subjected to 
the study intervention, and this is what is 
meant by counterfactual prediction. This 
counterfactual reasoning represents the 
paradigm of epidemiological studies that 
employ causal inference, as the randomized 
trials (15,16).

The application of causal inference 
techniques in observational studies requires 
additional assumptions to those used in 
randomized trials (17-19). In some cases, the 
inherent limitations of observation studies 
(reverse causality, confounding bias) 
preclude the use of causal language when 
it comes to reporting and interpreting 
study results (20). Causality is a complex 
phenomenon that not only depends on the 
available information gathered in the data; 
it also requires external information, pre-
existing knowledge, and the use of causal 
models that can be illustrated in the form 
of Directed Acyclic Graphs (DAGs). These 
graphs represent underlying premises, 
assumptions, theoretical concepts, and 
may provide guidance in the selection of 
confounding variables in regression models 
(21,22). Although some studies in the area 
of perioperative and intensive care (23-25) 
have approached causal inference using 
DAGs, the dissemination of these methods 
in such disciplines is still infrequent (26), 
and even more so in epidemiologic studies 
in Latin America. Therefore, this editorial is 
a call to study the counterfactual paradigm, 
and to implement causal inference methods 
in future epidemiological studies, with the 
objective to advance the national and Latin 
American scientific production toward the 
epidemiology of the 21st century. 

It is worth highlighting that causal 
inference techniques are not only reserved 
for experimental trials; observational 
studies can also provide evidence regarding 
the "causal effects of interventions'' in cases 
in which a randomized trial is not feasible, 
ethical, or appropriate. However, making 
causal inferences from observational data 
is challenging due to confounding and 
selection biases, as well as other threats 
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to the internal validity of observational 
studies. However, certain strategies such 
as Target Trial Emulation are being more 
accessible for solving causal questions in 
observational studies (27,28).

Finally, it is worth mentioning that 
the appropriate and clear selection of a 
research question leads to the correct 
interpretation of the study results. 
Clearly defining the aim of the study —
including the meaning of variables such 
as “risk factors” or “predictive factors” — is 
essential for the correct and transparent 
interpretation of the study results, (29) and 
for avoiding causal misinterpretations or 
clinically irrelevant recommendations (5). 
It is not uncommon to find cases in which 
wrong causal interpretations are made on 
the basis of descriptive studies with obvious 
biases. We also believe that it is wrong not 
to call things by their name, and by what 
they seek to accomplish; if we set out to 
study causality and we use the appropriate 
methods to do so, we should not be afraid 
to use the word cause during the research 
process (30, 31). Straightforward questions 
and objectives help dispel the classical 
confusion between association and 
causality, a widely discussed conundrum in 
epidemiology, and a persistent topic in the 
scientific literature. 
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