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Abstract
Proteasomal degradation is an essential regulatory mechanism for cellular homeostasis maintenance. The speckle-type POZ 
adaptor protein (SPOP) is part of the ubiquitin ligase E3 cullin-3 RING-box1 complex, responsible for the ubiquitination and 
proteasomal degradation of biomolecules involved in cell cycle control, proliferation, response to DNA damage, epigenetic 
control, and hormone signaling, among others. Changes in SPOP have been associated with the development of different 
types of cancer, since it can act as a tumor suppressor mainly in prostate, breast, colorectal, lung cancer and liver cancer, 
due to point mutations and/or reduced expression, or as an oncogene in kidney cancer by protein overexpression. In 
endometrial cancer it has a dual role, since it can act as a tumor suppressor or as an oncogene. SPOP is a potential 
prognostic biomarker and a promising therapeutic target.
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Resumen 

La degradación proteosómica es un mecanismo de regulación esencial para el mantenimiento de la homeostasis celular. La 
proteína adaptadora Speckle-type POZ (SPOP) hace parte del complejo ubiquitin ligasa E3 cullin-3 RING-box1, encargado 
de la ubiquitinación y degradación proteosomal de biomoléculas involucradas en el control del ciclo celular, proliferación, 
respuesta al daño de ADN, control epigenético, señalización hormonal, entre otros. Las alteraciones en SPOP han sido 
asociadas al desarrollo de diferentes tipos de cáncer, ya que puede actuar como supresor tumoral principalmente en 
cáncer de próstata, mama, colorrectal y pulmón, debido a mutaciones puntuales y/o expresión reducida o como oncogén 
en cáncer riñón por sobreexpresión de la proteína. En cáncer endometrial tiene un rol dual, ya que puede actuar como 
supresor tumoral o como oncogén. SPOP es considerado como un potencial biomarcador pronóstico y un objetivo terapéutico 
prometedor.

Palabras clave: SPOP, Ubiquitin Ligasa, Cáncer, Biomarcador, Oncogen, Gen supresor tumoral, degradación proteasomal.  
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Introduction

Degradation of biomolecules is an especially important 
regulatory mechanism for maintaining cell balance. It 
may be mediated by the lysosomal or the ubiquitin-
proteasome pathways, the latter being responsible for 
maintaining intracellular levels of proteins involved in 
many cellular processes such as cell cycle regulation, 
proliferation, apoptosis, response to DNA damage, 
and transcriptional activation, among others. Many of 
the proteins involved in the process of ubiquitination 

and proteolysis have gained attention because of the 
effects they can have on the development of cancer (1). 
One of them is the Speckle-type POZ protein (SPOP), 
which acts as an adaptor protein in the ubiquitin ligase 
E3 cullin-3 RING-box1 (Cul3-RING-box1) complex, 
recruiting substrates for ubiquitination and subsequent 
degradation in the 26S proteasome (2). Among the 
SPOP substrates, there are the androgen receptor (AR) 
(3,4), the estrogen receptor (ER) (5,6), the steroid 
receptor coactivator 3 (SRC3) (4), the bromodomain 
and extra-terminal BET domain proteins (7,8), the cell-

https://doi.org/10.35509/01239015.717
mailto:mlserranol%40unal.edu.co?subject=
https://orcid.org/0000-0001-5617-2686
https://orcid.org/0000-0002-7946-2026
https://orcid.org/0000-0003-4060-4418


Wendy Montero-Ovalle et al.

Revista Colombiana de Cancerología

a. Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, ESE. Bogotá, Colombia.
b. Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia. Bogotá, Colombia.

126

division cycle protein 20 (Cdc20) (9) and the proteins 
associated with DAXX and FADD death domains (10–12), 
among other effectors, which show its importance in 
cell development and growth.

SPOP has recently been found to act as a tumor 
suppressor gene (TSG) or oncogene in different types 
of cancer, as shown by findings of mutations, loss in 
the number of copies and/or reduced expression, gain 
of function or protein overexpression, and it has been 
associated with prognosis, which has suggested SPOP as 
a prognostic biomarker and promising therapeutic goal 
(13–18). In this review, we will describe the structure of 
the adaptor protein, its main functions and molecular 
mechanisms, its relationship with cancer, its usefulness 
as a prognostic biomarker, and therapeutic advances.

2. Methodology

2.1 Eligible studies 
We conducted a search of the literature from the last 
16 years (2004 – 2020) using Pubmed (NIH) and Scielo 
(19,20). The eligibility criteria included original articles 
that addressed different roles of the SPOP protein, its 
main functions and molecular mechanisms related to 
the development of different types of cancer, as well 
as its usefulness as a prognostic biomarker and cancer 
treatment. Relevant review articles were consulted as 
well. Studies written in languages other than English 
or Spanish, studies that did not describe the topics 
mentioned and studies whose publications were not 
accessible were excluded.

2.2 Publication search
An initial search was performed in the PubMed database 
combining the Medical Subject Headings (MeSH): 
“SPOP”, “SPOP mutation”, “SPOP in cancer”, “Speckle-
type POZ protein” and retrieve 130 publications from 
which 106 articles were eligible. The last search was 
carried out on July 29, 2020. We revised manuscripts 
cited within those studies to identify additional 
publications that fulfilled our eligibility criteria. A total 
of 112 unique publications were included in our review.

3. Structure of the SPOP protein 
The SPOP protein was first identified in 1997 as a 
nuclear protein with a speckle-type pattern (21). This 
protein is encoded by the SPOP gene which is located 
in locus 17q21.33 and has 16 exons (79280 bp). It has 

an isoform called SPOPL (SPOP like) that is encoded in 
locus 2q22.1 and is formed by 12 exons and 71778 bp 
(Figure 1A) (22). SPOPL shares an overall 85% protein 
sequence identity with SPOP but has 18 more amino 
acid residues, suggesting that the isoform could perform 
similar functions; though, as we will see below, it also 
seems to play a role in modulating the SPOP function 
(2,23).

The SPOP protein is made up of 374 amino acid, has 
a molecular weight of 43.13 kDa, and its secondary 
structure consists of 18 α-helices and 14 β sheets, 
which form three main domains: MATH, BTB, and BACK 
(Figure 1B). Followed by the BACK domain, in the 
C-terminal region is the NLS, which allows its location 
in the nucleus (24). It has been shown that SPOP can be 
found in a dimeric or oligomeric conformation, which 
increases binding to substrates (Figure 1C).

MATH (Meprin and TRAF-C homology) is the N-terminal 
domain, which function is to recruit substrates to the 
ubiquitin ligase complex by forming a cleft  surrounding 
the hydrophobic side chain of the substrate (Figure 1D) 
(2,24–26).

BTB (Bric-a-brac/Tamtrack/Broad), is an internal 
domain known as POZ (zinc finger and poxvirus protein) 
that allows SPOP binding to the ubiquitin ligase complex 
via Cullin3 (Figure 1D), and also allows the formation of 
SPOP-SPOP homodimers or SPOP-SPOPL heterodimers 
(2).

BACK (BTB with Kelch repeats) is a carboxyterminal 
domain that allows a greater interaction surface 
between BTB and Cul3, besides the formation of 
oligomers through interaction with other SPOP BACK 
domains (Figure 1C); this allows recruiting multivalent 
substrates, and significantly increases their degradation 
(Figure 1D) (2,14). The interaction between SPOP 
oligomers and substrates generates membraneless 
“organelles” formed by liquid–liquid phase separation 
(LLPS), as nuclear speckles (Figure 1E) (14,27). The 
creation of these complexes is dependent on the 
concentration of SPOPL since, by lacking 18 residues in 
the BACK domain, it is not possible to form oligomers, 
suggesting SPOPL as a regulator in the ubiquitination 
process (28). Formation of these LLPS enhances binding 
of enzymes and substrates, and it is suggested that 
the organelles that are created could be involved in 
cell proteostasis processes such as location, control, 
and balance of different proteins. Perturbations in 
proteostasis, leads to an accumulation of damaged and 
misfolded proteins (14). 
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Figure 1. Structure and function of the SPOP protein. A. SPOP and SPOPL locus. B. SPOP domains: MATH (light blue), BTB 
(green), BACK (dark blue), and nuclear localization sequence (NLS) C. Dimeric and oligomeric association of SPOP. D. Cul3-
Rbx1 E3 ubiquitin ligase complex, showing the adapter role of a SPOP oligomer for substrate ubiquitination (gray wavy 
line) and subsequent degradation in the 26S proteasome. E. In the nucleus, SPOP is observed in higher-order oligomers 
as small green nuclear speckles, and the substrate available to be ubiquitinated is shown in red. Increase in substrate 
concentration generates SPOP-substrate localization foci that form membraneless liquid organelles (yellow), which favors 
SPOP oligomerization and location of the mono or multivalent substrate for its ubiquitination.
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4. Functions of SPOP
 
4.1 Regulation of substrates by 
proteasomal degradation
Approximately 20% of protein degradation in the cell is 
mediated by Ubiquitin ligases E3 CRL-RING complexes. 
Specifically, Cul3 uses proprietary substrate adaptors 
such as SPOP (29). Figure 1D shows the interaction 
of a SPOP oligomer with the Ubiquitin ligase E3 Cul3-
RING-box1 complex. The ubiquitinated substrate is 
targeted to the 26S proteasome for degradation (29). 

More than 33 substrates of SPOP have been described, 
whose functions vary and involve regulating important 
processes at the cellular level (Table 1) (3,4,5,7,8,9–
12,14,22,28–36,37–46,47–56,57). It is interesting to see 
that most of these substrates have been associated 
with a particular type of cancer, and this may be due 
to the impact that a substrate can have on a given 
tissue, and causes different SPOP mutations to affect 
the degradation of said substrates, therefore being 
associated with a specific type of cancer.

Type of 
cancer Function Substrate Reference

SPOP as a tumor suppressor gene (TSG)

Mutations in the MATH domain with loss-of-function: Increased effect on the substrate

Prostate

Steroid hormone receptor Androgen receptor (AR) (3),(4)

Transcriptional regulation

Tripartite motif-containing 24 (TRIM24) (38),(39) 

Steroid receptor coactivator 3 (SRC3) (4),(14)

ETS transcription factor (ERG) (40),(41)

Activating transcription factor-2 (ATF2) (28)

SR-related CTD associated factor 1 (SCAF1) (30)

Proto-oncogene c-Myc (8),(29)

Homeobox transcription factor NANOG (32-34)

Hedgehog pathway proteins: glioma-associated 
oncogene Gli2 (25)

Cell cycle regulation

Cell division cycle protein 20 (Cdc20) (9)

Cyclin E1 (44)

Cell cycle associated protein 1  (CAPRIN1) (45)

Cell cycle regulation, 
transcription, and apoptosis Death domain-associated protein (DAXX) (10),(11), (14)

Epigenetic regulation /
Chromatin remodeling and 

transcription regulation

Proto-oncogene DEK (40)

Zinc finger protein WIZ (30)

Bromodomain and extra-terminal (BET) protein 
family (BRD2/3/4)

(7),(8),(23) (78),(103), 
(107)

Immune system suppression Programmed death-ligand 1 (PDL1) (50)

SUMO removal Sentrin-specific protease 7 (SENP7) (18)

Regulation of actin polymerization, 
maintenance of Golgi structure, 

and mitochondrial fission
Inverted formin 2 (INF2) (109)

Lung

Cell cycle regulation and 
apoptosis FAS-associated protein with death domain (FADD) (12)

DNA repair and transcription 
regulation NAD-dependent deacetylase sirtuin 2 (SIRT2) (49)

Table 1. SPOP substrates classified by function and type of cancer.
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Endometrial

Steroid hormone receptor Estrogen receptor (ER) (5)

Transcription regulation
Zinc finger and BTB domain containing 3 (ZBTB3) (43)

Steroid receptor coactivator 3 (SRC3) (5)

Low SPOP expression levels: Increased effect on the substrate

Breast

Steroid hormone receptor Progesterone receptor (PR) (37)

Epigenetic and transcriptional 
regulation Breast cancer metastasis suppressor 1 (BRMS1) (31)

Cell cycle regulation, transcription, 
and apoptosis Death domain-associated protein (DAXX) (10),(11), (14)

Colorectal
Transcription regulation

Interleukin enhancer binding factor 3 (ILF3) (110)

Hedgehog pathway proteins: glioma-associated 
oncogene Gli2 (86)

Cell cycle regulation, transcription, 
and apoptosis Death domain-associated protein (DAXX) (10),(11), (14)

Liver SUMO removal Sentrin-specific protease 7 (SENP7) (51)

SPOP overexpression: Decreasing effect on the substrate

Gastric Transcription regulation Hedgehog pathway proteins: glioma-associated 
oncogenes Gli2/Gli3 (35),(42)

SPOP as an oncogene

Mutations in the MATH domain with gain-of-function: Decreasing effect on the substrate

Endometrial Chromatin remodeling and 
transcription regulation

Bromodomain and extra-terminal (BET) protein family 
(BRD2/3/4) (7),(78)

SPOP overexpression: Decreasing effect on the substrate

Kidney

Regulation of signaling pathways 
with phosphatase activity Dual-specificity phosphatase 6/7 (DUSP6/7) (93),(102)

Phosphatase, tumor suppressor
*Phosphatidylinositol 3,4,5-trisphosphate 
3-phosphatase and dual-specificity protein phosphatase 
(PTEN)

(102)

Cell cycle regulation, transcription, 
and apoptosis Death domain-associated protein (DAXX) (10),(11), (14)

Transcription regulation Hedgehog pathway proteins: glioma-associated 
oncogene Gli2 (93)

Chromatin remodeling SET domain containing 2, histone lysine 
methyltransferase (SETD2) (48)

Cell cycle regulation and apoptosis Large tumor suppressor kinase 1 (LATS1) (56)

CL myeloid (K562-
HPC7) and animal 

model (mouse)

Signal transduction to IL-1R-
associated kinases (IRAK) Myeloid differentiation primary response 88 (MYD88) (54),(55), (57)

CL osteosarcoma 
(U2OS)

Epigenetic regulation /Chromatin 
remodeling

**B Lymphoma Mo-MLV insertion region 1 homolog (BMI1) (53)

**Histone variant macroH2 (47),(53)

CL: Cell line. *PTEN phosphatase is a SPOP substrate only in kidney cancer, in which SPOP is in the cytoplasm. 
** Substrates with poor location.
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4.2 Role in the response to DNA damage  
It has been proposed that SPOP modulates 
transcriptional repression activities and participates 
in the repair of double-stranded DNA ruptures (DSB) 
(60), where it is recruited forming nuclear foci, 
which depend on the kinase activity of the ataxia-
telangiectasia (ATM) protein, and are colocalized with 
histone γ-H2AX foci in response to damage. Depletion or 
decrease in SPOP has been shown to generate impaired 
DNA damage response (DDR) and high sensitivity to 
ionizing radiation; however, the mechanism has not yet 
been determined, but it could be associated with the 
regulation it exerts on the levels of expression of Rad51 
and Ku80 factors, which are important in DSB repair by 
homologous recombination (HR) (17,61). In addition, 
an interactome analysis showed that SPOP is associated 
with multiple proteins involved in the transcription, 
splicing, and export of the mRNA molecules (62).	

4.3. Function of SPOPL

Besides being a regulator of SPOP, one study found 
that SPOPL is involved in the regulation of endosome 
maturation and traffic of endosome load to lysosomes 
and that this depended on ubiquitination and 
degradation of the EPS15 endocytic adapter, which 
according to the study, is a SPOPL substrate, not a SPOP 
substrate (63).

5. Relationship of SPOP with cancer: a 
view from protein structure and function
SPOP plays a key role in maintaining cell development 
and growth by controlling the degradation of proteins 
that regulate important processes for cell homeostasis 
(Table 1). However, it is striking that, apart from 
cancer, just a few functions of SPOP have been 
described, such as regulation of fetal hemoglobin 
expression (64), regulation of insulin and glucose 
homeostasis and having the pancreatic and duodenal 
homeobox transcription factor (PDX1) as a substrate 
(54,55). SPOP is also believed to have a role in the 
development of neurological disorders, as “de novo” 
genetic variants have been found in one study (65). 

Given its functions, SPOP can act as a tumor suppressor 
gene (TSG), by regulating processes of cell division, 
repair and apoptosis, or as an oncogene, inducing 
proliferation, through different mechanisms as shown 
by findings of reduced expression or overexpression of 
the protein, loss of copy number, or mutations in the 
gene in different types of cancer (13–18).

5.1 SPOP as a tumor suppressor gene 

5.1.1 Mutations in the MATH domain with 
loss-of-function
Missense mutations with loss of function have been 
found in prostate cancer (PCa), endometrial cancer 
(EC), and lung cancer (LC) (Figure 2A); however, 
mutation hot spots are different. In PCa, they are 
located in the substrate-binding cleft, in EC they 
are outside the cleft, and in LC they are both inside 
and outside this site (Figure 2B); these differences 
could be related to the role of SPOP in each of these 
malignancies, since SPOP substrates in PCa and LC are 
overexpressed, whereas in EC some of the substrates 
are overexpressed but others are underexpressed 
(38,66–71).

SPOP mutation in PCa is frequent and is taken as one 
of the molecular subtypes identified by the TCGA. 
Although a germline mutation in the BTB domain 
(N296I), associated with hereditary PCa has been 
described in a family of European ancestry (72), the 
remaining mutations found are somatic in the MATH 
domain (Figure 2). In localized PCa, the mutation 
frequency is between 6% and 15%, and between 15% 
and 25% in advanced PCa. A frequency of 20% has been 
reported in patients with African ancestry, while in 
those with European ancestry it ranges between 6% 
and 10%, between 7% and 12% in Asians, and between 
5% and 14% in North Americans (24,38,69,73–76).

The frequency of SPOP mutations described in EC 
ranges between 6% and 10%, mainly in serous tumors 
and clear cell carcinoma (5,66,70,77,78), and 6% in 
non-small cell LC (NSCLC) (Figure 2) (70,71). Not all 
SPOP mutations in these cancers have been associated 
with an effect on protein function.

These loss-of-function mutations prevent SPOP from 
binding to its substrates, increasing their quantity. 
Figure 3 shows some SPOP substrates, by type of 
cancer, that participate in signaling pathways that 
could be deregulated and associated with tumor 
progression processes. In PCa, the overexpression 
of AR is associated with increased proliferation and 
survival (4,14). Another SPOP substrate found in EC 
and PCa is SRC3, which is found overexpressed in these 
tumors and activates the PI3K/mTOR and AKT signaling 
pathways (Figure 3), causing a higher cell growth and 
proliferation rate (3,4,66,79).
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Other substrates are also increased in EC, such as 
the estrogen receptor alpha (ERα), which increases 
its transactivation (5), and the expression of 
the transcription factor ZBTB3, a substrate that 
accumulates and generates a positive regulation on 
Sonic hedgehog (SHH), which in turn promotes tumor 
proliferation and survival (Figure 3) (45).

Figure 2. Point mutations of the MATH domain in SPOP 
in prostate, endometrial, and lung cancer. A. Mutation 
frequency, mutation hot spots, and number of mutations 
reported in prostate cancer (top), and endometrial and 
lung cancer (bottom) with clinical impact on the disease. B. 
Crystal structure of the MATH domain with missense point 
mutations, relevant in different types of cancer. Residues 
are marked with different colors depending on the type of 
cancer: prostate cancer (red), endometrial cancer (blue), 
and lung cancer (green). Endometrial cancer mutations 
include loss and gain of function.

Proteins from the bromodomain family and the 
extraterminal BET domain, such as BDR2, BDR3, and 
BDR4, have also been related to PCa and EC. These 
proteins increase their stability by mutations in 
some SPOP residues in PCa, while in EC their amount 
decreases due to the role of SPOP as an oncogene, 
which will be discussed later (80).

In the case of NSCLC, an increase in two substrates has 
been observed: NAD-dependent deacetylase sirtuin 2 
(SIRT2), which favors tumor proliferation (51) and FADD, 
which regulates the NF-kß activity and is associated 
with an unfavorable prognosis (Figure 3) (12).

There are other genetic changes in PCa related to 
mutated SPOP, such as somatic deletions in 5q21 and 
6q21 (60,81). Locus 5q21 contains the CHD1 gene, which 
encodes for helicase with DNA-binding chromodomain, 
involved in regulating gene transcription through 
chromatin interaction and remodeling (38), and in 
genomic stability (82). Moreover, locus 6q21 contains 
the forkhead box O3 gene (FOXO3), which acts as a 
regulatory transcription factor of genes necessary for 
cell death, so its loss is related to PCa carcinogenesis 
and progression (38). This could mean that the effects 
of SPOP mutations are synergetic with those of these 
genes or others located in these regions.

Loss of SPOP function also affects DNA repair (62). 
In LC and PCa, a high genomic instability has been 
found, related to a deficiency in HR, a decrease in the 
recruitment of RAD51, and an increase in NHEJ (60–62). 
In LC, the decrease in SPOP expression also affects DDR, 
increases apoptosis, and activates cell cycle control 
points induced by ionizing radiation (61), and in PCa 
leads to replicative stress and cell cycle deregulation. 
In PCa, the F133V mutant generates a deficiency in the 
expression of BRCA2, ATR, CHK1, RAD51, TDP1, TDP2, 
and MRE11, which are essential enzymes for DNA repair 
(62,83,84).

5.1.2 Low levels of SPOP expression 
Low SPOP expression has been found in breast cancer 
(BC), colorectal cancer (CRC) and liver cancer (HCC), 
associated with increased substrate expression 
(Figure 3), and even though point mutations have 
also been found, these have not been associated 
with loss of function or changes in SPOP expression 
(33,39,53,70,85,86). 

In BC, low SPOP levels cause overexpression of the 
progesterone receptor (PR), favoring cell cycle 
progression and activation of ERK1/2 (39) and breast 



Wendy Montero-Ovalle et al.

Revista Colombiana de Cancerología

Figure 3. Signaling pathways compromised by SPOP alterations in different types of cancer. The signaling pathways 
presented here involve proteins that are SPOP substrates and are associated with increased or decreased growth, survival, 
migration, and invasion. The arrows next to these proteins indicate the following: upward arrows show overexpression 
and downward arrows show low expression. Pathway components are marked in colors according to the type of cancer in 
which their involvement has been demonstrated. Prostate cancer: AR pathway and SRC3/PI3K/Akt pathway. Breast cancer: 
PR pathway and metastasis suppressor 1 (BRMS1) pathway. Colorectal cancer: PI3K/Akt/Sp1 and Hedgehog pathways. Lung 
cancer: FAS-associated protein with death domain (FADD)/NF-kß  pathway. Liver cancer: SENP7 pathway. Endometrial cancer: 
Pathway associated with ZBTB3 and increase in SRC3. Gastric cancer: Hedgehog pathway. Kidney cancer: Pathway associated 
with ZEB1. T (testosterone), DHT (dihydrotestosterone), SRC3 (steroid receptor coactivator 3), IGF-1 (insulin growth 
factor type 1), P (progesterone), MAPK (mitogen-activated protein kinase), uPA (urokinase-type plasminogen activator), 
OPN (osteopontin), MMP2/7 (metalloproteinases 2/7), SHH (Sonic hedgehog protein), Ptch (Patched), Smo (Smoothened), 
Gli2 (glioma-associated oncogene 2), SUMO (small ubiquitin-like modifier), HP1-𝛼 (heterochromatin protein 1 alpha), TCF4 
(transcription factor 4).
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cancer metastasis suppressor 1 (BRMS1), which inhibits 
activation of urokinase-type plasminogen activator 
(uPA) and osteopontin (OPN), promoting the onset and 
progression of this type of cancer (Figure 3) (33).

In CRC, the PI3K/Akt pathway that increases the levels 
of metalloproteinases is activated, promoting tumor 
proliferation and migration (86,87). Furthermore, Gli2 
is also overexpressed causing an increase in the levels 
of the anti-apoptotic protein Bcl-2, which favors the 
inhibition of cell death (Figure 3) (88).

In HCC, SENP7 is increased, which in turn, induced by 
HP1-∝, rises vimentin levels, and this triggers processes 
of migration, invasion, and metastasis (Figure 3) (53). 

SENP7 is responsible for mediating epigenetic silencing 
in PCa (18), and invasion in BC (89).

5.1.3 SPOP overexpression
SPOP protein has been found highly expressed in gastric 
cancer (GC), and in this model acts as a TSG, since 
it has been related to the inhibition of the Hedgehog 
signaling pathway through the accelerated degradation 
of its Gli2 substrate (Figure 3), decreasing the processes 
of tumor proliferation, migration, and invasion (37); in 
addition, it has been found that SPOP suppresses the 
growth of cancer stem cells and reduces their power 
(90).
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Figure 4. Regulatory mechanisms of SPOP expression. A. Hypermethylation in the SPOP promoter region. B. 
Hypermethylation at C/EBP∝ binding sites close to the SPOP promoter. C. Binding of TGF-ß to its receptor leads to the 
binding of phosphorylated SMAD2/3 and SMAD4 to the SPOP promoter. Mechanisms A, B, and C decrease or inhibit SPOP 
expression. D. Hypoxia causes an increase in hypoxia-inducible factors HIF1/2, which are attached to a hypoxia-response 
element (HRE) located in the SPOP sequence. E. The overexpressed E2F1 transcription factor binds to the promoter regions of 
miR-520/372/373, blocking their expression, preventing these miRNAs from binding to the 3’UTR SPOP sequence, preventing 
their negative regulation on the protein. Mechanisms D and E increase SPOP expression.
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5.2 SPOP as an oncogene			 
5.2.1 SPOP overexpression
In clear cell renal cell carcinoma (ccRCC), SPOP is 
overexpressed and accumulates in the cytoplasm 
and increases degradation of PTEN, DUSP6, DUSP7, 
DAXX, Gli2, and LATS1 proteins, leading to a higher 
proliferation, survival, invasion, and apoptosis 
processes (24,58,91) and it can also increase the 
expression of β-catenin and transcription Factor 4 
(TCF4), which positively regulate transcription factor 
ZEB1, an inducer of mesenchymal-epithelial transition 
(MET), favoring migration and invasion (Figure 3) (92).

BET proteins are underexpressed in EC as a result of the 
gain of function of SPOP due to mutations in residues 
E47, E50, E78, S80, M117, and D140 (Figure 2) (80). 
On the other hand, BET proteins are overexpressed 
in PCa. This shows how complex the role of SPOP in 

carcinogenesis is. Moreover, there are reports about 
the dual role of SPOP in the endometrium, since both 
loss of function and gain of function mutations has 
been described.

5.3 Regulation of SPOP expression
The decrease in SPOP expression in CRC and LC has 
been associated with hypermethylation of the SPOP 
promoter or binding sites close to the SPOP promoter 
(Figures 4A and 4B) (88,93) and to the binding of 
SMAD2/3 to the same promoter (Figure 4C) (94). In GC, 
regulation in SPOP expression appears to be mediated 
by long non-coding RNA (LncRNA) ADAMTS9-AS2 (90). In 
ccRCC, SPOP regulation could be mediated by hypoxia-
inducible factors 1 and 2 (HIF1/2), which increase 
SPOP levels, generating accumulation in cells (Figure 
4D) (91). It has also been identified that the miR-
520/372/373 family joins a 3’-UTR region of SPOP by 
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suppressing its expression; these miRNA are regulated 
downwards in ccRCC (Figure 4E) (95). More studies are 
required to know the precise mechanisms of regulation 
in each of these processes.

5.4 Usefulness of SPOP as a prognostic 
biomarker in cancer
It has been proposed that SPOP could be a prognostic 
biomarker in some types of cancer. Its role in PCa is 
controversial, some studies reveal that patients with 
mutated SPOP or with low protein expression have 
shorter biochemical and clinical progression free 
survival, compared to patients without the mutation 
(27,69,96); however, in other studies mutated SPOP 
has been associated with a favorable prognosis, finding 
a lower frequency of positive margins, extraprostatic 
extension, and invasion of seminal vesicles in radical 
prostatectomy, in addition to higher metastatic-free 
survival, particularly in high preoperative PSA patients 
(67,68,97). More PCa studies are needed to analyze 
the effect of other variables, such as age, pathological 
condition, Gleason score, or ethnicity, in the prognosis 
when the mutation is present.

In CRC, HCC, and NSCLC, the decrease in SPOP levels 
seems to be involved in a worse prognosis of the disease 
associated with poor cell differentiation, distant 
metastasis, advanced TNM and shorter overall survival 
(53,86–88,98). In the same sense, SPOP overexpression 
in patients with GC is associated with a good prognosis, 
given that less metastasis in lymph nodes, greater 
histological differentiation, and less advanced TNM 
staging are evident (37,99). In contrast, in ccRCC, SPOP 
overexpression is related to a high histological grade 
and tumors with local invasion or metastasis, as well as 
with a shorter recurrence-free survival and advanced 
stage of the disease (92,100,101). 

5.5 SPOP as a potential therapeutic 
target
In ccRCC, characterized with an overexpression of SPOP, 
therapeutic modulators such as miR-520/372/373, 
could be implemented as pharmacological agents for 
patients with this type of cancer, since it inhibits SPOP 
translation and decrease tumor size and metastasis 
(91,95). Also, other small molecules has been proposed 
to bind to cytoplasmic SPOP, preventing its interaction 
with substrates such as PTEN or DUSP7 in ccRCC and 
increasing the cell viability (Figure 5A) (102–104).

Figure 5. Possible therapeutic interventions in tumors 
with SPOP alterations, according to action mechanisms. A. 
Inhibition of SPOP expression by miRNAs or small molecules 
(6b) that bind to the MATH (light blue) domain of SPOP and 
prevent substrate degradation. B. Effect on SPOP substrates: 
Inhibitors of its function (JQ1 inhibits BET proteins) or 
molecules that promote its degradation (PROTAC ARV-771 
and NEO2734 promote BET degradation). C. Inhibition of 
signaling pathways activated by alteration in SPOP (RUSKI-43 
inhibits the Hedgehog pathway and the AKT/mTOR and AR 
pathways by using HDAC3 inhibitors. D. Because of the 
effect of SPOP on DNA damage, PARP inhibitors may be used 
to generate effects on DNA repair, inducing cell death.
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In those cases, in which mutations or underexpressed 
SPOP leads to increased substrates levels, as in 
EC, inhibitors of BET proteins, such as JQ1 or small 
molecules called proteolysis targeting chimeras 
(PROTAC) has been used and may favor patients 
with overexpressed AR or BET proteins. The designed 
chimera, ARV-771, has been showing great efficacy 
against BRD4 with suppression of AR levels and its 
signaling, leading to tumor regression; also the agent 
NEO2734, has been proposed as a new BET inhibitor, 
but its anticancer efficacy on patients is still under 
study (Figure 5B) (105–109).

It is also possible to block signaling pathways by 
inhibiting effectors such as the SHH protein by using 
the RUSKI-43 inhibitor as a therapeutic agent in EC, 
which suppresses proliferation, migration, and invasion 
(45,80). In the case of patients with aberrant activation 
of the AKT/mTOR and AR pathways in PCa, it was found 
that inhibition of histone deacetylase 3 (HDAC3) can 
target these pathways, decreasing their activation and 
suppressing tumor growth in organoids of patients with 
these characteristics (Figure 5C) (110).

Therapies that affect DNA repair, such as poly (ADP-
ribose) polymerase (PARP) inhibitors, could benefit 
patients with PCa and LC, in which repair has also been 
affected with SPOP mutations (Figure 5D) (60).

Another study showed that patients with metastatic 
castration-resistant PCa (mCRPC) with SPOP mutations 
and/or CHD1 deletions, have a higher response 
rate to treatment with abiraterone, an androgen 
synthesis inhibitor, as compared to cases lacking these 
alterations; however, prospective clinical trials are 
required to validate this response to treatment (76).

6. SPOPL and cancer
Association and clinical relevance of SPOPL in 
medulloblastoma have been found. The expression of 
this isoform is reduced in 75% of biopsies analyzed, 
and this expression can be related to the level of cell 
differentiation and the 5-year cumulative survival 
when compared to patients with increased expression. 
This suggests that SPOPL could function as a biomarker 
of poor prognosis in patients with medulloblastoma 
(23).

Conclusion
Evidence shows that SPOP is a multifunctional adaptor 

protein, which plays a very important role in maintaining 
and regulating cell cycle, cell proliferation, response 
to DNA damage, epigenetic control, and transcriptional 
control, among others, through ubiquitination and 
degradation of a large number of substrates. Mutations 
or changes in the expression of the protein, which 
trigger tumor progression are evident in different 
types of cancer, showing the role of SPOP as a tumor 
suppressor gene or oncogene, and this has been 
associated with clinicopathological characteristics, 
which allows considering SPOP as a prognostic 
biomarker with potential targeted therapies. Given 
that the adapter protein acts differently in different 
types of cancer, also depending on the substrates, it is 
important to do further research on the molecular and 
biochemical mechanisms involved in carcinogenesis 
generated by SPOP, to improve understanding of its 
role in each of these malignancies, aiming at a better 
classification and association with outcomes.
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