
Macronutrient absorption curves of carrot  
in the high tropics 

Curvas de absorción de macronutrientes en zanahoria  
en el trópico alto

CARLOS JULIO FERNÁNDEZ-PÉREZ1

GERMÁN EDUARDO CELY-REYES2, 3

PABLO ANTONIO SERRANO-CELY2

Carrot Cordoba F1 hybrid.

Photo: P.A. Serrano-Cely

ABSTRACT
Carrot cultivation in Colombia reached 9,000 ha in 2020. The production chain of this crop faces various 
problems, among which marketing and nutrition stand out, the latter a decisive factor for performance. 
Some studies claim that with the use of hybrids in combination with irrigation and balanced fertilization, 
yields greater than 70 t ha-1 can be obtained. The commercial competitiveness of crops is related to the ti-
mely, adequate and efficient application of nutrients; element absorption curves are tools that offer effective 
information on how much the crop assimilates during its phenological cycle, allowing us to know the mini-
mum required amount of elements for the specific area. A carrot crop was established to determine the foliar 
absorption curves of macronutrients (N, P, K, Mg and Ca). The yield obtained was 39.6 t ha-1, with 552,500 
plants/ha. K was the element with the highest absorption 147 days after sowing with 29.36 kg ha-1 for the 
leaves and 27.74 kg ha-1 in the root and a total of 57.1 kg ha-1. The order of the other elements was N, Ca, P 
and Mg. This information is useful for managing carrot nutrition in order to make fertilizer management 
efficient and improve yield.
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Globally, carrot production in 2021 reached an aver-
age of 41,500,000 t on 1,096,000 ha, with a yield of 
36 t ha-1. Countries such as China, Uzbekistan and 
the United States are the main producers, while the 
United States stands out among the leading import-
ers (FAO, 2022). In Colombia, about 9,000 ha were 
cultivated in 2020; the main producing departments 
were Boyaca and Cundinamarca with yields of 28 t 
ha-1, followed by Antioquia with yields close to 41 
t ha-1 (Agronet, 2022). Carrot is used in various culi-
nary preparations. It has high nutritional value due 
to the high content of carotenoids, precursors of vi-
tamin A (Kopsell and Kopsell, 2006; Geoffriau and 
Simon, 2020).

Colombia faces various problems in the carrot pro-
duction chain, among which marketing and nutrition 
stand out, the latter adverse to performance (Agbede, 
2021). Generally, carrot cultivation is the rotation op-
tion in potato crop cycles, as it takes advantage of the 
remnants from the previous crops without compre-
hensive management. Abundance of remnants from 
the previous crop indicates that this was carried out 
in an unbalanced manner, contaminating the agro-
ecosystem; if adequate nutritional management is 
not provided, high yields cannot be expected. 

Knowing the ecophysiology is imperative for 
searching adaptation strategies in vegetable and 
fruit plants exposed to changing environments 

(Sánchez-Reinoso et al., 2019). Climate change 
transforms the water supply and increases the dif-
ferent phytosanitary measures needed (Bodeker et 
al., 2022). Traditional management of vegetables 
such as carrots become less functional due to pro-
longed periods of high precipitation or drought and 
variation in maximum and minimum temperatures 
(Godwin et al., 2023). In addition, soil fertility is 
affected. Competitive crop performance is related 
to the timely, adequate and efficient application of 
nutrients; the inadequate use of fertilizers causes 
economic losses and damage to the environment 
(Suárez and Torres, 2014; Hoyos et al., 2015).

Some studies show that the use of hybrids in com-
bination with irrigation and balanced fertilization 
achieves yields close to 70 t ha-1 (Smoleń and Sady, 
2009; Sosa et al., 2013; Reid and Gillespie, 2017; Reid 
et al., 2018); research by Reid and English (2000) sim-
ulates the productive potential of the species at 100 
t ha-1. Westerveld et al. (2006a) point out that the ac-
cumulation of N in  foliage has priority over the root 
until 53 days after sowing (DAS); they also add that 
the total N content in the roots decrease during the 
cycle, while in the leaves it decreased around 80 and 
100 DAS; the greatest absorption occurred between 
50 and 60 DAS and the total N absorbed by the plant 
at the end of the cycle was 380 kg ha-1. Hochmuth et 
al. (2021) evaluated the application of eight nitrogen 
fertilization rates (56, 112, 168, 224, 280, 336, 392 

RESUMEN
El cultivo de zanahoria en Colombia alcanzó 9.000 ha para el año 2020 y la cadena de producción de este cultivo 
afronta diversos problemas, entre los que se destacan la comercialización y la nutrición, este último un factor 
decisivo para el rendimiento. Algunos estudios aseguran que con el uso de híbridos en combinación con riego y 
fertilización balanceada se pueden obtener rendimientos mayores a 70 t ha-1. La competitividad comercial de los 
cultivos está relacionada con la oportuna, adecuada y eficiente aplicación de los nutrientes; las curvas de absorción 
de elementos son herramientas que ofrecen información eficaz sobre cuanto asimila el cultivo durante su ciclo 
fenológico, permiten conocer la cantidad mínima requerida de los elementos para la zona específica. Se estableció 
un cultivo de zanahoria para determinar las curvas de absorción foliar de macronutrientes (N, P, K, Mg y Ca). El 
rendimiento obtenido fue 39,6 t ha-1, con 552.500 plantas/ha. El K fue el elemento de mayor absorción a los 147 días 
después de siembra con 29,36 kg ha-1 para hojas y 27,74 kg ha-1 en la raíz y un total de 57,1 kg ha-1. El orden de los 
demás elementos  fue N, Ca, P y Mg. Esta información es útil para el manejo de la nutrición en zanahoria a fin de 
hacer eficiente el manejo de fertilizantes y mejora en el rendimiento.
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and 448 kg ha-1); a regression analysis showed that 
the optimal dose was 206 kg ha-1 N, reaching a com-
mercial yield of 71.3 t ha-1. For Montazar et al. (2021) 
the total N accumulated at harvest ranged between 
205.4 kg ha-1 (almost 52% in roots) and 350.5 kg ha-1 

(almost 64% in roots), although none of the rates of 
N application evaluated showed a significant rela-
tionship with performance.

The element absorption curves are a tool that offer 
information on the assimilation by the crop during 
its phenological cycle, allowing to know the mini-
mum required amount of elements for the specific 
area, improving and increasing the yield through 
correct decisions in the amount and time of nutrient 
application, in turn helping to reduce electrochemi-
cal imbalances in the soil and therefore in the agro-
ecosystem (Pedraza and Henao, 2008; Chica-Toro 
and Garzón-González, 2018; González et al., 2018). 
Therefore, the objective of this study was to deter-
mine the absorption of macronutrients N, P, K, Mg 
and Ca, in the carrot crop. This information is useful 
for nutrition management to make fertilizer manage-
ment efficient and increase crop yield.

MATERIALS AND METHODS

The study was carried out in the municipality of 
Soraca, Colombia, in the center of the department 
of Boyaca, located in Quebrada Vieja at 5.492492N 
and 73.302448 W. From the information generated 
by a mobile agroclimatic station Vantage Pro2 Plus 

(Davis Instruments, Hayward, CA), precipitation, 
evapotranspiration and temperature were monitored 
during the crop cycle. In addition, the climatic infor-
mation was compared with that generated from the 
UPTC hydro-climatology station (Tunja), as well as 
with historical values.

Three soil samples were extracted at a depth of 0-20 
cm for physical and chemical characterization (Tab. 
1) and volume rings described by Cooper et al. (2017).

To correct exchangeable acidity before sowing, do-
lomite was applied at a dose of 150 kg ha-1. The 
fertilization plan was established with the results 
reported in the chemical analysis of the soil and ac-
cording to the following extractions for carrot in kg 
ha-1: N 210, P2O5 150, K2O 250, CaO 140, MgO 30, 
S 25, B 2 and Zn 3. Chemical fertilizer applications 
for sowing and replanting were distributed laterally 
to the soil (Tab. 2).

The Cordoba F1 hybrid was distributed by a mechan-
ic al roller seeder in 6 rows at a distance of 15 cm at 
a depth of 1 cm. The final configuration was 6 rows 
with 5 cm between each, on a 2 m pressed bed. Prior 
to soil preparation, Streptomyces was incorporatedfor 
the control of nematodes (2 kg ha-1); in addition, in-
tegrated management of pests and diseases was guar-
anteed during the cycle.

The foliar analyses were carried out when the crop 
presented 50 % emergence and at 62, 98, 125 and 147 
DAS. The sample was obtained randomly until 150 

Table 1.  Physicochemical characterization of the soil.

pH
OM Exc. Ac. Al+3 Ca K Mg Na BS ECEC

% cmol kg-1

4.65 4.35 3 2.6 2.1 0.6 0.63 0.03 3.36 6.36

P S Cu Fe Mn Zn B A L Ar

mg kg-1 %

233.56 127 5.11 218 17.72 1.34 0.6 28 30 42

SE AD Pt Macro Meso Micro SHC FC PWP

g cm-3 % cm h-1 % %

1.14 2.41 52.53 11.62 15.31 25.58 0.137 36.06 22.56

pH – 1:1 ratio; organic matter (OM) – Walkley-Black; extractable acidity (Exc. Ac.) - titration; exchangeable aluminum (Al+3) – 1N KCl; Ca-K-Mg-Na – extract NH4 
and atomic absorption; base saturation (BS) – sum of bases; effective cation exchange capacity (ECEC) – extract NH4; available phosphor (P): Bray II, colorimetry; 
sulfur (S): monocalcium phosphate; Cu-Fe-Mn-Zn: DTPA extract – atomic absorption; boron (B): hot water; texture – Bouyoucos: sand (% A), clay (% Ar) and silt 
(% L); saturation extract (SE); apparent density (AD); ring of known volume; porosity (Pt), macropores (Marco), mesopores (Meso), micropores (Micro); saturated 
hydraulic conductivity (SHC) – laboratory constant head permeameter; field capacity (FC) and permanent wilting point (PWP) – pressure cookers.
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g of fresh tissue from the third mature leaf from the 
outside to the inside of the crown was completed. At 
the time of harvest, root samples were taken to de-
termine the elemental contents. Likewise, complete 
plants were taken to determine the distribution of 
dry matter.

The elemental contents (N, P, K, Ca and Mg) were de-
termined from the decomposition of the plant tissue 
through acid digestion. For the minerals P, K, Ca and 
Mg, nitric acid (HNO3) and perchloric acid (HClO4) 
were used in a 2:1 ratio; for the determination of N, 
sulfuric acid (H2SO4) was used. The extracts were 
subsequently prepared for quantification according 
to the following methodologies: nitrogen-Kjeldahl, 
phosphorus-colorimetric phosphomolybdic potas-
sium, calcium and magnesium -atomic absorption 
flame. From the concentration of the elements in 
leaves and their weight, the foliar absorption curve 
was calculated. Yield was determined from planting 
density (plants/ha) and production.

The data obtained from the response variables in the 
sampling units were subjected to Box-plot analysis 

and analysis of homogeneity of variance through the 
R software version 4.0.1.

RESULTS AND DISCUSSION

Climatic conditions during the experiment period 
(February to June) showed an increase in precipita-
tion (150%) in relation to the historical monthly av-
erages of the hydro-climatic station (33.7, 58.1, 66.8, 
73.2 and 53 mm, respectively). The maximum tem-
perature was in the month of January (18°C), how-
ever, it decreased for April, May and June (15°C); the 
average minimum temperature was constant except 
for January (6 °C) (Fig. 1).

The distribution of soil pores before the tillage pro-
cess showed 25.58 % micropores, 15.31% mesopores 
and 11.62% macropores. The movement of water 
in the soil occurs when the largest pores are hy-
drologically active and interconnected with each 
other, contributing to the dynamics of usable wa-
ter (Mazurana et al., 2017; Hlaváčiková et al., 2019). 
The microporosity was high (>20%) which can be 

Table 2.  Fertilization (kg·ha-1) applied to the carrot crop.

Application N P2O5 K2O CaO MgO S B Zn Date

Sowing 75.6 54.6 45.6 52.2 18.6 8.7 1.8 2.7 20/12/22

Replanting 50.4 36.4 30.4 34.8 12.4 5.8 - - 16/02/23

Total 126 91 76 87 31 14.6 1.8 2.7 -
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Figure 1. Precipitation, evapotranspiration and temperature during the growing cycle.
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a trigger for compaction, one of the main causes of 
soil degradation, reducing its volume and increasing 
the apparent density (Moraes et al., 2018; Fidalski 
and Tormena, 2022). 

The yield presented an average of 39.6 t ha-1 and 
552,500 plants/ha. The production of dry matter at 
harvest was 547.70 kg ha-1 of the leaves and 1,403.35 
kg ha-1 of the root (Fig. 2). Hochmuth et al. (2021) re-
port yields of up to 71.3 t ha-1 with a planting density 
of 992,827 plants/ha for ‘Choctaw’, 849,331 plants/
ha for ‘Maverick’, 1,648,279 plants/ha for ‘Triton’ 
and 2,496,123 plants/ha for ‘Uppercut 25’. The to-
tal yield of fresh roots reported by Montazar et al. 
(2021) varied from a minimum of 83.9 t ha-1 carrots 
for processing harvested at 128 DAS, to a maximum 
of 132.7 t ha-1 harvested 193 DAS and a minimum 
planting density of 1,260,000 plants/ha to a maxi-
mum of 3,200,000 plants/ha; these trials were carried 
out in productive areas of the United States with a 
high level of technology in machinery, improved ma-
terials, irrigation and nutrition.

Similar yield results are reported by Agbede (2021) 
with 22 and 43 t ha-1, where reduced tillage was high-
lighted, increasing yield between 2.3 and 2.6 t ha-1 
compared to conventional tillage in two seasons. Reid 
et al. (2018) reported between 270,000 to 930,000 car-
rot plants/ha and an average of 520,000 plants/ha 
(coefficient of variation of 22%) in response to dif-
ferent nitrogen fertilizers. Reid and Gillespie (2017) 
assure that minimizing water deficit is decisive to 

achieve high yields of quality carrot; they mention 
that total biomass and root yield decreased linearly 
as the maximum potential water deficit of the soil (D 
Ømax) increased; they found no significant relation-
ship between the concentration of soluble solids in 
the root and D Ømax.

The N absorption rate was 13.38 kg ha-1 at 147 DAS 
in the leaves of the plant and 8.21 kg ha-1 in the root 
(Fig. 3). An increase in absorption in the leaves was 
observed at 98 and 125 DAS, the stage where root 
thickening begins due to the activity of the secondary 
cambium. Its development depends on the contribu-
tion of assimilates and growth regulators from the 
leaves (Vega et al., 2012). Montazar et al. (2021) re-
port total N content of 350.5 kg ha-1 for fresh carrots 
harvested at 193 DAS, and 227.3 and 123.2 kg ha-1 

for roots and leaves, respectively; in addition, they 
indicate that approximately 50% of the total N was 
absorbed during a period of 50 days (between 80 to 
130 DAS). This period seems to be the most critical 
for N absorption; N availability in the effective zone 
of roots is essential during this period (Westerveld et 
al., 2007). N was the element with the second high-
est absorption at the end of the cycle, unlike in other 
vegetables such as bulb onions and tomatoes (Quesa-
da-Roldán and Bertsch-Hernández, 2013; Geisseler et 
al., 2022).

For Reid et al. (2018) N contents ranged between 
131 and 468 kg ha-1, with an average of 237 kg ha-1 

harvest at 156 DAS and 321 kg ha-1 at 203 DAS. For 
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Figure 2.  Distribution of dry matter in carrots. MsF, aerial; MsR, root.
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Westerveld et al. (2006b), total N absorption was 380 
kg ha-1 for processing carrot (‘Fontana’), with an aver-
age biomass of 13 t ha-1

K was the element with the highest absorption at 147 
DAS with 29.36 kg ha-1 for the leaves and 27.74 kg 
ha-1 for the root, with a total of 57.1 kg ha-1 at harvest 
time (Fig. 3). K absorption increased between 98 and 
124 DAS for the leaves. In mint plants, the element 
with the highest concentration was K, followed in 
order by N, Ca, P, Mg (Pedraza and Henao, 2008). In 
melon, Mendoza-Cortéz et al. (2014) found that the 
sequence of greatest accumulation of macronutrients 
in the evaluated cultivars was K>Ca>N>Mg>S>P 
(‘V. Olimpic express’) and K>N>Ca>Mg>S >P (‘V. 
Iracema’). In similar studies, K is reported as the nu-
trient with the highest accumulation in various parts 
of the plant (Delgado-Ospina et al., 2012; Barahona-
Amores et al., 2019) (Fig. 3).

The Ca absorption rate was 8.12 kg ha-1 for the leaves 
at 147 DAS and 4.77 kg ha-1 for the root for a total of 
12.89 kg ha-1. The Ca absorption curve of the leaves 
during the crop cycle showed an increase during 125 
to 147 DAS, when the root is in the thickening pro-
cess (60% of the root diameter). Vega et al. (2012) 
report that the accumulation of dry matter and ab-
sorption of nutrients such as N, P and K, for 5 hy-
brids showed four differentiable phases: the first of 
slow growth, the second of exponential growth, the 

third of growth deceleration and finally, the fourth 
of stability. Avitia-García et al. (2014) report that in 
strawberry plants Ca is the element with the high-
est absorption with 250.9 kg ha-1, followed by K with 
237.6 kg ha-1.

The absorption curves of P and Mg in the leaves dur-
ing the crop cycle (Fig. 4) at 147 DAS reached 1.19 
and 0.83 kg ha-1 respectively, and 2.72 and 1.16 kg 
ha-1 for the root, respectively. Sosa et al. (2013) out 
that the accumulation of nutrients in carrots acceler-
ates mainly at 65-130 DAS, where almost 70% of the 
total amounts of N, P and K are absorbed; the low 
mobility of P and K in the soil make its application 
necessary at the time of sowing and not throughout 
the cycle, even for sources of high solubility such as 
those applied in fertigation. Similarly, Menezes et al. 
(2013) under Brazilian conditions, report for bulb on-
ion that the aerial part absorbs P between 0.47 and 
0.80 kg ha-1 at 48 DAS, between 1.88 and 3.67 at 68 
DAS and between 7.45 and 9.05 kg ha-1 at 108 DAS. 
Other results on absorption curves in rice showed 
that the reproductive stages are those with the high-
est P absorption (tillering, mature grain filling) (Bara-
hona-Amores et al., 2019). In general, P in the soil is 
retained when it is adsorbed by clays, which implies 
low availability and applications at the time of sow-
ing favor availability in the reproductive stage, the 
time of greatest demand, since it has great mobility 
within the plant (Fig. 4).
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Figure 3.  Absorption curve of N, Ca and K for carrot.
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CONCLUSIONS

K was the element with the highest absorption, 29.36 
kg ha-1 for the leaves, 27.74 kg ha-1 for the roots and 
a total of 57.1 kg ha-1 at 147 days after sowing, ap-
proaching harvest. N was 13.38 kg ha-1 for leaves and 
8.21 kg ha-1 for roots. Ca presented a total of 12.89 kg 
ha-1 . For P and Mg the contents were 1.19 and 0.83 
kg ha-1 for leaves and 2.72 and 1.16 kg ha-1 for roots, 
respectively. The yield was 39.6 t ha-1 with 552,500 
plants/ha.

According to our results and the bibliographic refer-
ences, the best yields are when nitrogen fertilization 
does not exceed 220 kg ha-1. High application of P and 
K at the time of sowing is the best time for root de-
velopment due to low mobility in the soil.
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