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Origin and  comprehensive study of Thünen´s
model to analyze data from in situ rumen

degradability technique

Summary

The classical model utilized to analyze data from in situ rumen degradability technique
was originally proposed by Thünen to study the harvests responses to different production
factors. In order to settle the meaning of kd in the Thünen´s model, a mathematical analysis
was realized which indicated that this constant represents the quotient between the ruminal
degradation acceleration and velocity. Similarly, the kp constant represents the quotient
between the ruminal passage acceleration and velocity.
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Introduction

Although the in situ degradation technique is one
of the most frequently used in food evaluation to
ruminants, it has been recognized that its results depend
on several methodologic factors (17). The
mathematical model used to estimate the parameters
of ruminal kinetics from data of in situ degradation,
also can affects the results and can explains the lack
of response to supplementation with nutritional
undegradable fractions in rumen (3). Other reason in
the absence of response is the interpretation of the
results and its application to the estimation of the
degradable and non degradable fractions in the rumen.

Since 1970, when Waldo (25) proposed a
mathematical model to the analysis of data from in
situ ruminal degradability technique, it has been
published several alternative models to try to improve
their prediction capacity and the understanding  of this
process (11, 13). One of this models was the one
proposed by Ørskov and McDonald (19). It had been
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converted in one of the most frequently used to the
study of ruminal degradation kinetic and it had been
incorporated as the reference model in several systems
to food protein evaluation to ruminants (1, 16, 21) (see
in Annex 1 the SAS (20) procedure to estimate the
kinetic parameters).

Nevertheless its popularity, the interpretation of one
of the terms of the model is still unclear and it had
determined, in consequence, the erroneous
interpretation of the results. This confusion is possibly
due to this model was originally developed to other
purposes and due to the ignorance of the mathematical
and kinematical interpretation of it.

The objectives of this paper were to review the
origin of the model proposed by Ørskov and McDonald
(19)  and to discuss the mathematical interpretation of
each terms and the complete model.
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The model origin

Ørskov and McDonald (19) proposed the non lineal

exponential  model  y = a + b(1-exp(-kd t)) ,for
the analysis of the data obtained trough the in situ
ruminal degradability technique, being the most used
model for this purpose (11, 15, 16). Although this model
had been credited to this authors (12, 18), this was
known before as Mitscherilch´s model (14) because
this researcher was who utilized it for the study of the
responses of harvest to different fertilizing dose named
it as “law of the soil”. This law was mathematically

represented by this author as dP/dF = k(B - P)  ,
which represents the marginal productivity of fertilizer
(dP/dF) as a constant fraction of the difference
between the maximum (B) and real level (P) of
production.  After integrating this equation, it is obtained
(8)

P = f (F) = B(1 - e-kF) .

Spillman (22), in an independent paper, obtained the
same Mitschelich´s equation calling his model as “law
of the diminishing increment”.

Neither of this authors, however, were aware that
before the German agronomist and economist  Johann
Heinrich von Thünen (24), had been developed a similar
model in an effort to identify empiricaly the production
relationship in his farm. To solve this problem, Thünen,
applied the marginal analysis to all production factors
and prices (8).

The experiments done by Thünen in Mecklenburg
(Germany), suggested to him that the successive
increases of any production factor - keeping constant
the others -  caussed that the production is increased
in a constant fraction related to the amount added by
the preceding unit. This fraction was two-thirds for
labor, nine-tenths for capital and one-half for fertilizer
(8).

Accepting that the fractional relationship between
the marginal products obtained for any variable
production factor can be denoted as r, the increased
factor in the incomes constitutes the diminishing term
of the geometric series a, ar, ar2, ar3, . . . arn-1, where
a is the marginal product of the first unit of the factor,

ar the marginal product of the second unit, ar2 the
marginal product of the third and so until it is reached
the last unit, nth, whose marginal product is arn-1 (8).

Using the formula to the sum series it is obtained
S = [a(1 - rn)/(1 - r)] . The sum of the n marginal
products gives the factor’s total product as P = B(1 - rn) ,
where B denotes the constant term a/(1 - r)  and the
exponent n is the number of units of the variable factor
utilized. Due that r is a fraction such that rn trends to
zero when n becomes infinite, it is deduced that B is
the limit that the sum B(1-rn) approaches as the number
of factor units n that becomes infinitely large. The last
result obtained is that the total sum converge
asymptotically with the maximum B value (8).

The same analysis is held to others variable
production factors. In consequence, when it is allowed
that all factors vary simultaneously, the production
function that underlyies Thünen´s experiments can be
expressed as  P = f (L, C, F) = B(1 - 2/3L)(1 - 9/
10C)(1 - 1/2F) , where the exponents denote the
amounts utilized by each factor. This apply when
factors vary in discrete units. When this units are
infinitely divisible and continuously variable, then the
term e-k replaces  the factor r in the production function.
In this case, k denotes the instantaneous rate of
decreasing in the marginal productivity and e-k is the
factor of proportionality over the unit interval. The result
obtained is that the total product of each factor
becomes as P = B(1 - e-kn) . This function, like its
discrete counterpart, possesses two properties: first,
the output is zero when any factor is zero and second,
the output approaches its maximum level B when all
factors are increased indefinitely (8).

Mathematical interpretation of Thünen’s
model for the analysis of data from in situ ruminal
degradability technique

Data from in situ ruminal degradability technique
(RD) show a similar behavior described to marginal
production according to Thünen’s model, this is, while
the incubation time is increased a diminution in the
increment of the degradation is observed to reach a
maximum value from which it does not exist additional
increments. This is observed graphically from the

______________________
*  Equations are represented with capital letters into circles.
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Alexandrov´s data (2) about crude protein of alfalfa
hay RD (see Figure 1).

Thünen’s model can be classified as an exponential
model of e base. This base concerns to an irrational
number that is approximately equal to 2.71828…which
is obtained from the first terms of the series

1 + 1 +  1  +  1  +  1  +  1  + .....
             2!     3!     4!     5!

Both, the p number and the e number, are important
basic constants in the nature. When this number is
utilized as the base in functions of the form
f(x) = ex , the “natural exponential functions” (23)
are obtained.

the y values are in the positive quadrants, 4) the x axis
is asymptotic, 5) while the dominium elements of f(x)
= bx change arithmetically, the elements associated to
the range, change geometrically. So, the geometric
progression of values of f produces a tendency to
increase  (or to diminish) which is very important when
the base is the e constant (10).
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Figure 1. Crude protein degradability of alfalfa hay (2).

In general, in the functions of the form f(x) = xn ,
the n exponent is constant and the x base is variable.
By changing the order of this function the base is the
b constant and the exponent is the x variable, the
following exponential function can be obtained:
y = f(x) = bx  in that b > 0 but b ≠ 1.

To b > 1, the function f(x) increases when x
increases while 0 < b < 1, the function f(x) diminishes
when x increases (see Figure 2).

In all cases, this exponential function shows the
following characteristics: 1) it does not exist
intersection with x because it does not exist a value of
x in that bx is zero, 2) the intersection in y is (0, 1), 3)

Due to its fundamental importance in several biologic
phenomena, the f(x) = ex function is called “natural
exponential function” (23). In Figure 3 it is observed
that when x increases, the function increases also.
However, this function can be inverted becoming
negative the x exponent, so: f(x) = e-x .

Figure 3. Shape of the function f(x) = ex to x values between
zero and 10.

Figure 2. Behavior of the function f(x) = bx to b values between
zero and 1 and to upper values to 1 when x oscillates between –
1 and 1.
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In this equation, when x increases, the function
decreases with values that oscillate between 1 to
x = 0 and the limit value is zero when x tends to infinite
(see Figure 4). Subtracting 1 of this equation it is
obtained a graphic as is observed in Figure 5 and whose
values are inverted in comparison to  equation, this
is, the values oscillate between zero to x = 0 and the
limit value of 1 when x tends to infinite. Substituting
the independent x variable as the time t, it is obtained,
f(t) = 1 - e-t .

McDonald (19), and Jessop (9) denominated it as
constant fractional rate of degradation, Mertens (13)
denominated it as fractional rate of digestion, whereas
Sniffen et al (21) called it specific rate of ruminal
digestion, Bach et al (3) constant rate of degradation,
Gómez and Van Der Meer (6) degradation velocity,
and Galyean and Owens (5) denominated it as constant
rate of digestion.

To Mertens (13), kd is the proportion of mass in a
pool that changes per unit time while to Jessop (9) is a
measure of the proportional change in some
constituent. In the other hand, Galyean and Owens
(5) interpreted it as the ruminal degradation velocity
indicating  that when kd takes a value of 0.04%/h, 4%
of the constituent is digested each hour.

This denominations are not accurate and, besides,
misunderstood.

If 0 < kd < 1, as while kd tends to zero, the response
in the equation  is reduced proportionally with the
kd value (see Figure 6). Thus, kd determines the
diminishing rate in the increase in the response of the
equation  while the independent variable t increases
and it is equivalent to the instantaneous declinig rate
of marginal productivity in the Thünen’s model.

To understand the meaning of the kd constant, is
necesary to carry out the next analysis: the first derivate
on the equation  when kd  values, is f’(t) = kde-kdt

= v(t) .

Figure 4. Shape of the function f(x) = e-x to x values between
zero and 10.

Figure 5. Shape of the function f(x) = 1- e-x to x values between
zero and 10.

Incorporating a constant (kd) associated to t
exponent, the equation  is modified:

f(t) = 1 - e-kdt  .

This constant had received different names and had
been denominated in several ways. Thus, Ørskov and

Figure 6. Shape of the function f(t) = 1- e-kdt to different values of
kd when t oscillates between zero and 10.
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By definition, the first derivate of any function is
equal to the velocity and its units are %/h. As it is
appreciated in equation  , the velocity of equation 
is variable showing a decrease exponential behavior
(see Figure 7).

The second derivate of any function is, by definition,
the acceleration and its units are %/h2. So, the second
derivate of the equation ,  is f’’(t) = -kd2e-kdt =
a(t) .

In Figure 8 it is appreciated that as the velocity, the
acceleration is also variable and shows a decrease
exponential behavior.

Dividing the acceleration on velocity, it is obtained
-kd2e-kdt/kde-kdt = -kd .

This means that kd is the relationship between the
ruminal degradation acceleration and its velocity and
IT is expressed as 1/h.

This is also possible to demonstrate by obtaining
the derivate of the natural logarithm of the absolute
values of both members of the equality in the equation

 :

ln|v| = ln|-kd| + ln|e-kdt| 
ln|v| = -kdt 

The derivate of this equation respect to t, is
v’/v = -kd = a/v .

Due that kd represents the constant quottient
between two parameters of ruminal degradability
kinetic (acceleration and velocity), a correct
denomination to kd is constant kinetic of ruminal
degradability.

Due to one of the characteristics of equation  is
to increase the value of the function  to the limit of 1
while the independent variable t increased, when this
equation is multiplied by a constant (B),  the value taken
by this constant will be the maximum value possible
that can reaches the equation . So, this equation
assumes the form RDb(t) = B*(1 - e-kd*t) .

The equation  is similar to equation , therefore,
it posses the same properties, this is, the product is
zero when either factor is zero and the product is near
the maximum value B when all factors increase to
infinity. This constant corresponds to potentially
degradable fraction in ruminal kinetic studies and the
equation  estimates the rumen degradability of B
fraction (RDb).

The inclusion of an independent term (A) in the
equation , allows to estimate the value assumed by
this function when the independent variable (time) is
zero and corresponds to the soluble fraction which is
immediately degraded in the rumen:

RDA+B(t) = A + B(1 - e-kdt) .

Figure 7. Variation  in degradation velocity as time function to kd
= 0.04%/h.

Figure 8. Variation in degradation acceleration as time function to
kd = 0.04%/h.
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Natural exponential equations have, in essence,
the same properties of equation . This is the case of
Grovum and Williams (7) model’s for the study of
ruminal passage kinetic and, therefore, the constant of
ruminal passage (kp) estimated by this model also
represents the quotient between the acceleration and
velocity of ruminal passage.

From the equation  it is possible to estimate three
parameters: the initial velocity, the initial acceleration
and the time-life. The initial velocity (vo) is obtained as
the first derivate of equation  and resolving

t = 0: vo = kdB .

In the same manner, the initial acceleration (ao) is
obtained from the second derivate of this equation and
resolving t = 0:  ao= kd2B .

The time-life is the time necesary for a proportion
(P: in percent/100) of initial quantity of the B fraction
disapearing by degradation. To estimate this parameter
is necesary calculate the t in that RDb is B*P, this is:
RDb(t) = B(1 - e-kdt)= B*P = 1 - P = e-kd*t .

Appling the natural logarithm to both members of
the equality (23), it is obtained  -kdt = ln(1-P) . Then,
reorganizing this equation the result is t = -ln(1-P)/kd

. Thus, to meet the half-life of B fraction (B*0.5),
the equation is: t = -ln(0.5)/kd .

Discussion

An adequate interpretation of mathematical model
components is fundamental to its correc t application
in estimation procedures. Since Ørskov and McDonald
(19) applied the Thünen´s exponential model to estimate
the ruminal degradability parameters, it had been an
unclear interpretation of kd component of this model,
which had received different names and had been
denominated in several ways. It is incorrect to assume
that this constant corresponds to velocity (rate). As it
was demonstrated here, kd is the quotient between
the rumen degradability acceleration and velocity  which
is different to the equation utilized by López et al (11)
to calculate the kd in the simple negative exponetial
curve model such of Thünen´s model. These autors
utilized the negative quotient between the first derivate
of equation OJO on the original equation assuming that
kd is a function of the incubation time. This is incorrect,
since as was demostrated here, kd is a constant that

is unvariable over time. Its components, the acceleration
and the velocity, are variable over time but keep a
constant relationship.

The utilization of kd to estimate other parameters
assuming that kd is velocity, therefore, it had led to
mistakes. Such is the case of effective degradability
(26) and dry matter intake (4). In this sense, it is
necesary to review the calculus to estimate these other
parameters and propose other methodologies coherent
with kinematical characteristics of rumen degradability
and passage.

Some authors assume that kd units are %/h (3, 8,
13). However, as was demostrated here, its unit is 1/
h. This is the same unit utilized by López et al (11) to
kp in an equivalent equation utilized to estimate kd.

The initial velocity and the initial acceleration are
parameters that allow to analyze in detail the kinetic
characteristics of ruminal degradation of nutrient and
do better formulation eschemes based on the synchrony
of this parameters to diferent nutrional fractions such
as crude protein and nonfiber charbohydrate (16).

In the other hand, the time-life is an important
parameter: in other knowlodge areas, such as
radioactivity. The half-life is a parameter applied to
estimates the necessary time so that a sample of a
radioactive isotop can be reduced at half (23). Although
this parameter had been applied to ruminal degradability
of nutrient, its value is less important than in
radioactivity due that in the first case the nutrients are
submited to other force besides of the degradation (the
passage), so in some situations it is possible that B
fraction dissapears totally before reaching the half
quantity, while in the second case, the radioactive isotop
is only affected by its radioactivity and its half quantity
is always reached.

Conclusion

The model described by Ørskov and McDonald (19)
to analyze data from in situ rumen degradability
technique was originally proposed by Johann Heinrich
von Thünen to study the responses of harvests to
different production factors called the constant  k as
the instantaneous rate of decreasing in the marginal
productivity. In the study of ruminal degradability
kinetics of nutritional fractions, this constant is
denominate kd, that along with the ruminal passage
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constant (kp), had been erroneously defined and
misunderstood as velocity parameter (rate).  However,
as it was demonstrated here, this constant represents
the quotient between the acceleration and velocity of
degradation and passage, respectively. Therefore, the
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Resumen

Origen y estudio comprensivo del modelo Thünen para analizar datos de la técnica de
degradabilidad ruminal in situ.

El modelo clásico utilizado para analizar datos de la técnica de degradabilidad ruminal in situ
fue propuesto originalmente por Thünen para el estudio de la respuesta de los cultivos a diferentes
factores de producción. Con la finalidad de establecer el significado de la kd en el modelo de
Thünen, se realizó un análisis matemático que indicó que esta constante representa el cociente
entre la velocidad y la aceleración de la degradación ruminal. De manera similar, la constante kp
representa el cociente entre la velocidad y la aceleración del pasaje ruminal.

Palabras clave: aceleración, derivación, modelos exponenciales, velocidad

estimation of other parameters such effective
degradability (26) and dry matter intake (4) based in
this constant are mistaken and need to be reviewed to
propose other coherent methodologies  with its
kinematical characteristics.

Annex 1. SAS (20) procedure to estimate the kinetic parameters of rumen degradation nutrients based in the
Ørskov and McDonald (19) model.

bounds a>=1;
bounds c>0.01;
temp=exp(-c*t);
model y=a + b*(1-temp);
der.a=1;
der.b=-1+(1-temp);
der.c=b*t*temp;
output out=points predicted=yhat residual=yres
parms=d b c;
proc print data=points;
proc plot;
plot yres*t;
run;

data dmd;
input t p;
y=p;
cards;
0 14
2 21.6
.   .
.   .
.   .
72 61.6
run;

proc nlin iter=50 method=marquardt;
parms a=1 b=0.7 c=0.05;
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