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Summary

Background: DNA markers have been widely used in genetic evaluation throughout the last decade 
due to the increased reliability of breeding values (BV) they allow, mainly in young animals. Objective: to 
compare breeding values estimated through the conventional method (best linear unbiased predictor, BLUP) 
with methods that include molecular markers for milk traits in Holstein cattle in Antioquia (Colombia). 
Methods: predictions of breeding values were performed using three methods: BLUP, molecular best linear 
unbiased predictor (MBLUP), and Bayes C. The breeding values were compared using Spearman’s correlation 
coefficient and linear regression coefficient. Results: all Spearman correlation coefficients between breeding 
values obtained by different methods were greater than 0.5, while linear regression coefficients ranged between 
-2.10 and 1.58. Conclusions: prediction of breeding values through BLUP, MBLUP and Bayes C showed 
different results in terms of magnitude from the estimated values. However, animal ranking according to 
breeding values was not significantly different.

Keywords: genetic markers, genomic selection, breeding value, milk quality, milk traits .

Resumen

Antecedentes: en la última década, los marcadores de DNA han sido ampliamente usados en evaluaciones 
genéticas porque incrementan la confiabilidad de valores genéticos principalmente en animales jóvenes. 
Objetivo: comparar valores genéticos (BV) estimados por el método convencional (mejor estimador lineal 
insesgado, BLUP) y métodos que incluyen marcadores moleculares para algunas características lecheras en 
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ganado Holstein de Antioquia (Colombia). Métodos: la predicción de valores genéticos se realizó mediante 
tres métodos: BLUP, mejor predictor lineal insesgado molecular (MBLUP) y Bayes C. Los valores genéticos 
fueron comparados usando el coeficiente de correlación de Spearman y el coeficiente de regresión lineal. 
Resultados: todos los coeficientes de correlación de Spearman entre los valores genéticos obtenidos por los 
diferentes métodos fueron mayores de 0,5. Mientras que los coeficientes de regresión lineal oscilaron entre 
-2,10 y 1,96. Conclusiones: la predicción de valores genéticos empleando los métodos BLUP, MBLUP y Bayes 
C fue diferente en términos de la magnitud de los valores estimados. Sin embargo el ranking o clasificación 
de los animales por sus valores genéticos no fue alterado significativamente.

Palabras clave: calidad de leche, características de la leche, marcadores genéticos, selección genómica, 
valor de cría . 

Resumo

Antecedentes: na última década, os marcadores moleculares que identificam polimorfismos no DNA têm 
sido utilizados amplamente nas avaliações genéticas porque aumentam a fiabilidade dos valores genéticos (BV) 
estimados principalmente em animais jovens. Objetivo: comparar valores genéticos estimados pelo método 
convencional (melhor preditor linear não-viesado, BLUP) e métodos que incluem marcadores moleculares para 
algumas características leiteiras no gado holandês de Antioquia (Colômbia). Métodos: as predições dos valores 
genéticos foram realizadas por meio de três métodos: BLUP, melhor preditor linear não-viesado molecular 
(MBLUP) e Bayes C. Os valores genéticos foram comparados por meio de coeficientes de correlação de 
Spearman e de coeficientes de regressão linear. Resultados: os coeficientes de correlação de Spearman entre 
os valores genéticos obtidos pelos diferentes métodos foram maiores que 0,5. Enquanto os coeficientes de 
regressão linear variaram entre -2,10 e 1,96. Conclusões: a predição dos valores genéticos usando os métodos 
BLUP, MBLUP e Bayes C foi diferente em quanto à magnitude dos valores estimados. No entanto, o ranking 
ou classificação de animais por seus valores genéticos não foi alterada significativamente. 

Palavras chave: características do leite, marcadores genéticos, qualidade do leite, seleção genômica, 
valor genético .

Introduction

Breeding values (BV) are commonly calculated 
by using the best linear unbiased prediction (BLUP; 
Henderson, 1984). BV have been very useful to 
select animals with high genetic merit. However, 
an important limitation of this method lies in 
obtaining continuous phenotypic records because 
of the high costs implied. Accordingly, since 
the presence of alleles carrying the fundamental 
causative mutations affecting quantitative traits 
can determine genetic merit, genetic evaluations 
in recent years have included information on DNA 
markers (Haley, 1995).

The use of DNA markers in selection schemes 
is very useful due to the increased reliability of the 
estimated breeding values (EBVs), mainly for young 
animals (Meuwissen and Goddard, 1996). In spite 
of considerable efforts for implementing marker-
assisted selection (MAS), the low density of DNA 
markers makes it difficult to find markers in linkage 
disequilibrium (LD) with quantitative trait loci (QTL). 

Many genes affect quantitative traits. Consequently, 
the benefit from MAS is limited by the proportion 
of the genetic variance explained by QTL (Meuwissen 
et al ., 2001).

Meuwissen et al . (2001) devised genomic 
selection, an excellent method to solve the limitations 
of MAS. This process allows the estimation of 
BVs using high-density SNP markers. The Single 
Nucleotide Polymorphism (SNP) markers are 
uniformly distributed across the entire genome; 
therefore, each QTL is in LD with some of these 
markers across the entire population. However, the 
practical applications of genomic selection became 
feasible only a few years later with the recent 
development of DNA chip technologies, which have 
led to a rapid adoption of this method in selection 
schemes in order to improve dairy cattle (Schaeffer 
et al ., 2006).

Milk production in Colombia has taken increasing 
importance. However, few genetic evaluations have 
been conducted in dairy cattle in Colombia (Quijano 
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et al ., 2011) and few studies including molecular 
markers have been associated with milk production 
traits (Rincon et al ., 2012). Thus, the current situation 
of livestock in Colombia requires initiating new 
research to improve the genetic composition of 
domestic dairy herds.

The objective of this study was to compare BV 
estimated through the conventional method BLUP 
and methods that include molecular markers for 
milk production traits in Holstein cattle in Antioquia, 
Colombia.

Materials and methods 

This study was approved by the Ethics Committee 
for Animal Research of the National University from 
Colombia (Approval letter number: CEMED-015 
May, 2012).

Population

The traditional estimated breeding value (TEBV), 
estimated breeding value (EBV), and molecular 
estimated breeding value (MEBV) were obtained from 
231 Holstein animals (cows and bulls); the genomic 
estimated breeding value (GEBV) was obtained 
from 13 Holstein bulls. Phenotypic information 
was taken from 59 dairy herds located in the high 
tropics of the Antioquia province, Colombia. The 
number of lactations used for the analyses were: 
1,494, 1,295, 1,645, and 1,140 for milk yield (MY), 
milk fat percentage (FP), milk protein percentage 
(PP) and somatic cell count (SCC), respectively. 
SCC was transformed to somatic cell score (SCS) 
using the following equation: SCS = [((SCC-100/12) 
*0.5015) + 0.0434] in order to achieve normality of 
data distribution (Roman, 2012). All the phenotypic 
information was managed and analyzed using the 
Control 1 software, version 1.0 (Echeverri et al ., 2010).

Animal genotyping

A total of 231 animals (cows and bulls) were 
genotyped for bovine growth hormone (bGH), kappa-
casein (KC), and prolactin (PRL) genes through 
PCR-RFLP methodology as described by, Medrano 
et al . (1990), Dybus (2002) and Rincon et al . (2012), 

respectively. Furthermore, 13 Holstein bulls were 
genotyped using the Illumina BovineSNP50 Beadchip 
(Illumina, San Diego, CA, USA). The Beadchip 
provides information of 54,001 SNPs distributed 
throughout the entire bovine genome (Matukumalli et 
al ., 2009). Upon editing the database of the SNPs, 13 
bulls with 40,753 SNPs were available. The database 
was edited using the SAS/STAT® software, version 
9.1 (SAS Institute Inc., Cary, NC, USA) and PLINK 
programs (Purcell et al ., 2007).

Statistical analysis

Analysis of Association for Biallelic Markers . An 
analysis of association between each marker (bGH, 
PRL, and KC) and each trait (MY, FP, PP, and SCS) 
was conducted through a generalized linear model in 
which the markers were included as fixed effects. The 
model used for this analysis was:

Where: 

yijklmno= dependent variable (MY, FP, PP, and SCS). 

µ= overall mean. 

PNi= fixed effect of the ith parity. 

Hj= fixed effect of the jth herd. 

βk= linear regression coefficient of lactation length. 

DLk= lactation length covariate. 

GHl= fixed effect of the lth genotype (+/+, +/- 
and -/-) for the bGH marker. 

KCm= fixed effect of the mth genotype (AA, AB 
and BB) for the KC marker. 

PRLn= fixed effect of the nth genotype (AA, AB 
and BB) for the PRL marker. 

eijklmno = residual.

The statistical analysis was conducted using the 
General Linear Model (GLM) procedure of SAS/
STAT® software, version 9.1 (SAS Institute Inc., Cary, 
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NC, USA). Differences between treatment means 
were determined by least squares and analyzed by 
ANOVA. The Tukey’s multiple comparison test was 
used to compare treatment means (p<0.05).

Calculation of traditional estimated breeding 
value	(TEBV).	A univariate animal model was used 
for each trait to estimate TEBV, which was defined 
as the breeding value obtained using the conventional 
method (BLUP). The statistical model used for this 
analysis was:

y=	Xb	+	Za	+	e

Where: 

y= vector of observations (MY, FP, PP, and SCS). 

X= design matrix relating records and fixed effects. 

b= vector of the following fixed effects: calving 
year, calving month, region, contemporary group 
(Herd-parity number), linear regression coefficients 
for lactation length covariate (for all traits) and milk 
production covariate (only for PP, FP, and SCS) 
respectively. 

a= vector of random genetic additive effect. 

Z= incidence matrix relating records and random 
genetic additive effect. 

e= residual.

The estimate breeding values (EBV) were 
predicted in the same way as the TEBV, but included 
the molecular markers (bGH, PRL and KC) as fixed 
effects. TEBVs and EBVs were estimated via a 
derivative-free algorithm by using the MTDFREML 
program (Boldman et al., 1995).

Calculation of molecular estimated breeding value 
(MEBV). The method used to estimate the molecular 
marker effects (bGH, KC and PRL) and polygenic 
effect was the MBLUP (Hayes et al., 2009). The 
model used for this analysis was: 

Where: 

y= vector of n traditional estimated breeding 
values (TEBV) corrected for fixed effects as described 
above (TEBV for MY, FP, PP, and SCS).

m= overall mean. 

1n= vector of 1s.

X= is (n x p) design matrix allocating records to 
the p markers (KC, bGH and KC), with element Xij 
= 0, 1 or 2 if the genotype of animal i at marker j is 
AA, AB, or BB for KC and PRL genes and +/+, +/- or 
-/- for the bGH gene, respectively. 

g= (p x 1) vector of molecular marker effects (g 
represents the sum of the linear regression coefficients 
of TEBV on genotype (0, 1 and 2) of three molecular 
marker (bGH, KC and PRL).

Z= design matrix allocating records to TEBVs. 

u= vector of polygenic effects of the ith animal, 
with variance ; where A: is the average 
relationship matrix of the animals genotyped with p 
molecular markers.  

e= residual error also assumed to be normally 
distributed, e ~ N ; 

where: 

I= the n x n identity matrix.

Molecular estimated breeding values (MEBV) 
were determined through the following equation:

MEBVs were estimated via a derivative-free 
algorithm by using the MTDFREML software 
(Boldman et al., 1995).

Accuracy of estimated breeding values . The 
reliabilities of the estimated breeding values 
(TEBV, EBV and MEBV) were obtained through 
the following equation: R2 = 1-diα, 
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where: 

di= ith diagonal element of C22 of the generalized 
inverse of the mixed model equations,  
and accuracy (R) is the square root of reliability 
(Mrode and Thompson, 2005). 

Calculation of genomic estimated breeding values 
(GEBV) . The estimation of GEBVs was carried out in 
two steps through the Bayes C method. 1) Estimation 
of the effects of each SNP marker and, 2) Prediction 
of the genomic estimated breeding values (GEBV). 
Bayes C method assumes a mixture of distributions for 
the SNP effects reflecting the assumption that there is 
a large number of SNPs with zero or near zero effect 
and a second smaller set of SNPs with larger effect 
(Kizilkaya et al ., 2010, Verbyla et al ., 2010). The 
general statistical model may be written as:

Where: 

y= is the vector of traditional estimated breeding 
values (TEBV) corrected for fixed effects as described 
above (TEBV for MY, FP, PP, and SCS) for n 
individuals (n = 13 bulls). 

µ= overall mean. 

1n= vector of ones of length n. 

Xj= vector of indicator variables representing the 
genotypes of the jth marker for all individuals, at each 
jth marker there are three possible combinations of two 
alleles (A or B), the homozygote of one allele (AA), 
the heterozygote (AB) and homozygote of the other 
allele (BB); these are then quantitatively represented 
by 0, 1 and 2 respectively (i.e., Xij = 0, 1 or 2). 

βj= is the random substitution effect for locus j, which 
is conditional on and is assumed normally distributed 
N  when δj = 1, but βj = 0 when δj = 0.

δj= is a random 0/1 variable indicating the absence 
(with probability π) or presence (with probability 1-π) 
of locus j in the model.

u= vector of random polygenic effects of length 
n (Z is the associated design matrix) and can be 
thought of as fitting the genes no accounted for by the 
markers-locus effects in β, additionally u is assumed 
to be normally distributed, u ~ N where A 
is the pedigree derived additive genetic relationship 
matrix of the genotyped animals. 

e= residual error, also assumed to be normally 
distributed, e ~ N here I = the nxn identity 
matrix. 

GEBVs of the animals (whose genotype was 
known) were predicted through the following 
equation:

The SNP effects and GEBVs were obtained by 
using the GS3 program (Legarra et al ., 2011a).

Methods for comparing breeding values

The Spearman’s rank correlation coefficients 
between the breeding values obtained by BLUP, 
MBLUP and Bayes C methods (rTEBV;MEBV, rEBV;MEBV 
and rEBV;GEBV) were calculated and used as a measure 
of the degree of similarity between the ranking or 
classification of the animals by their breeding values. 
The linear regression coefficients (bTEBV;MEBV, 
bEBV;MEBV and bEBV;GEBV) were also calculated 
and used as a measure of the change in magnitude 
between the breeding values. A regression coefficient 
of one indicates no bias between the methods of 
prediction and that the breeding values are equal in 
magnitude.

Results

Descriptive analysis of milk traits

The mean and standard deviations for MY, PP, FP 
and SCS were: 5324 ± 1437 L/lactation, 3.03 ± 0.24%, 
3.67 ± 0.43%, and 17.7 ± 39.37, respectively (Table 1). 
MY and SCS were the traits with greatest coefficients 
of variation (26.9 and 222%, respectively).
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Table 1. Descriptive analysis of milk traits for Holstein cattle in 
Antioquia.

Trait Mean±SD CV Min Max

MY (L/lactation) 5324 ± 1437 26.9 3000 9000

PP (%) 3.03 ± 0.24 8.0 2.50 3.92

FP (%) 3.67 ± 0.43 11.8 2.05 4.50

SCS   17.7 ± 39.37 222 -37 54

MY: milk yield; PP: protein percentage; FP: fat percentage; SCS: somatic 
cell score; SD: standard deviation; Min: minimum; Max: maximum; CV: 
coefficient of variation (%).

Association analysis for biallelic markers and 
milk traits

Table 2 shows the genotype frequencies of the 
PRL, bGH and KC genes and the means of each trait 

Table 2. Association between genotypic frequencies for PRL, bGH and KC gene and milk traits in Holstein cattle of Antioquia.

Trait
PRL bGH KC

Genotype GF Mean Genotype GF Mean Genotype GF Mean

MY (L/lactation)
(n = 1024)

    AA 74.7 5549A     +/+ 77.1 5558ª     AA 59.1 5600ab

    AB 23.6 5520A     +/- 21.7 5392ª     AB 35.9 5363b

    BB 1.7 4773B     -/- 1.2 6152ª     BB 5.0 5875ª

PP (%)
(n = 957)

    AA 74.4 3.05a     +/+ 77.0 3.05ª     AA 59.0 3.04a

    AB 23.9 3.06a     +/- 21.8 3.08ª     AB 35.7 3.06ª

    BB 1.7 3.19b     -/- 1.2 2.94b     BB 5.3 3.13b

FP (%)
(n = 972)

    AA 74.3 3.75a     +/+ 76.9 3.73A     AA 58.9 3.77a

    AB 24.1 3.75a     +/- 21.9 3.82A     AB 35.9 3.75a

    BB 1.6 3.97a     -/- 1.2 4.38B     BB 5.2 3.67a

MY: milk yield; PP: protein percentage; FP: fat percentage; n: number of animals; GF: genotypic frequencies; PRL: prolactin; bGH: bovine growth hormone, 
KC: kappa casein; columns with different superscripts differ significantly: capital (p<0.01); small letter (p<0.05).

per genotype. Through the use of Tukey’s multiple 
comparison test it was possible to determine that 
genotypes AA and AB of PRL gene (p<0.01) and 
genotype BB of KC gene (p<0.05) were the most 
favorable for MY. On the other hand, BB genotype 
of PRL gene (p<0.05), the genotype (+/-) of bGH 
gene (p<0.05) and genotype BB of KC gene were 
the most favorable for PP (p<0.05). In the case of FP, 
only genotype (-/-) of bGH gene showed significant 
association with greater fat content in milk (p<0.01).

Table 3. Descriptive analysis of breeding values obtained by using BLUP and MBLUP methods for milk traits in Holstein cattle of Antioquia.

Trait
EBV MEBV TEBV

Mean±SD CV Mean±SD CV R Mean±SD CV R

MY (L/lactation) -3.18± 134 42 -2.84±17 58 0.31 3.47±345 99 0.40

FP (%) 0.00±0.13 32 0.08±0.17 2 0.50 0.01±0.1 9 0.37

PP (%) -0.01±0.13 20 0.00±0.13 1300 0.69 0.00±0.07 165 0.40

SCS -1.54±24 16 -1.40±24 17 0.86 0.09±2 28 0.30

MY: milk yield; PP: protein percentage; FP: fat percentage; SCS: somatic cell score; SD: standard deviation; CV: coefficients of variation (%); R: accuracy 
of the estimated breeding values.

Estimated breeding values (including molecular 
markers)

The TEBV, EBV and MEBV means were close to 
zero in all cases, but the coefficient of variation (CV) 
and accuracy (R) differed among them. Accuracies (R) 
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SNP effects and genomic estimated breeding 
values (GEBVS)

The effects of 40,753 SNPs were determined for 
MY, PP, FP and SCS, and their means were: -0.03520 

Correlation	and	 regression	coefficients	between	
breeding values

The Spearman correlation coefficients between 
EBV and MEBV for MY, FP, PP and SCS were: 0.796, 
0.763, 0.936 and 0.999, respectively; and between 
TEBV and MEBV were: 0.823, 0.783, 0.962 and 
0.620, respectively. These results indicate a high 
and favorable degree of association between breeding 
values. Finally, the correlations between EBV and 
GEBV were medium: 0.780, 0.500, 0.500 and 0.580, 
since the number of phenotypic records for EBVs was 
greater than for GEBVs (Table 5). 

were greater for MEBVs compared to TEBVs in all 
traits except for MY (Table 3).

L/lactation, -0.000034, -0.00019 and 0.000048%, 
respectively (Table 4).

On the other hand, the GEBVs for MY, PP, FP 
and SCS were estimated and means and standard 
deviations were: 359 ± 311 L/lactation, 0.123 ± 
0.19%, 0.276 ± 0.20%, 0.501 ± 0.75, respectively 
(Table 4). 

Table 4. Descriptive analysis of the SNP effects and GEBVs obtained by using Bayes C method for milk traits in Holstein cattle of Antioquia.

Trait
SNP effects GEBV

Mean±SD Min Max Mean±SD Min Max

MY (L/lactation) -0.0352 ± 11.423 -64.2744 62.0965 359±311 -186 802

PP (%) -0.000034±0.029 -0.25295 0.22176 0.12±0.19 -0.30 0.32

FP (%) -0.00019±0.024 -0.16961 0.17709 0.18±0.20 0.00 0.88

SCS 0.00005±0.024 -0.20082 0.18344 0.50±0.75 -1.33 1.08

MY: milk yield; PP: protein percentage; FP: fat percentage; SCS: somatic cell score; SD: standard deviation; Min: minimum; Max: maximum. 

The comparison of breeding values obtained 
by different methods (BLUP, MBLUP and Bayes 
C) shows that regression coefficients were highly 
variable. For example, the regression coefficients 
of EBV on MEBV for MY, FP, PP, and SCS were: 
-2.140, 0.205, -0.015 and 0.999, respectively; for 
TEBV on MEBV were: 1.227, 1.163, 1.958, and 
0.003, respectively; and finally, the regression 
coefficients of EBV on GEBV were: 0.784, 0.077, 
0.380, and 1.110, respectively (Table 5).

Table 5. Correlation and regression between breeding values obtained using BLUP, MBLUP and Bayes C methods for milk traits in 
Holstein cattle of Antioquia. 

Trait
Correlation Coefficient (SE) Regression Coefficient (SE)

rEBV;MEBV rTEBV;MEBV rEBV;GEBV bEBV;MEBV bTEBV;MEBV bEBV;GEBV

MY 0.796 (0.040) 0.823 (0.038) 0.780 (0.04) -2.140 (0.290) 1.227 (0.150) 0.784 (0.194)

FP 0.763 (0.043) 0.783 (0.041) 0.500 (0.057) 0.205 (0.190) 1.163 (0.250) 0.077 (0.018)

PP 0.936 (0.023) 0.962 (0.018) 0.500 (0.057) -0.015 (0.007) 1.958 (0.150) 0.380 (0.150)

SCS 0.999 (0.008) 0.620 (0.052) 0.580 (0.054) 0.999 (0.000) 0.003 (0.000) 1.110 (0.360)

MY: milk yield; PP: protein percentage; FP: fat percentage; SCS: somatic cell score; SE: standard error.
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Discussion

Traditionally, breeding values are obtained by 
using the best linear unbiased predictor (BLUP) 
(Henderson, 1984), which assumes that phenotypic 
traits are determined by an infinite number of unlinked 
additive loci, each one having an infinitesimal small 
effect  (infinitesimal model) (Fisher, 1918). However, 
the finite loci model has been proposed to explain the 
genetic variation observed in quantitative traits. This 
model assumes a finite number of loci that explains the 
genetic variation of quantitative traits (Thompson and 
Skolnick, 1977). In this perspective, several methods 
that include molecular markers have been evaluated 
to estimate breeding values. 

Legarra et al. (2011b) evaluated five methods 
that include molecular markers (Bayesian Lasso with 
one variance (BL1Var), Bayesian Lasso with two 
variances (BL2Var), GBLUP, MCMC-GBLUP and 
Het-Var-GBLUP). The genomic estimated breeding 
values (GEBV) obtained through those methods were 
compared with the double daughter yield deviation 
(2DYD) by the correlation coefficient (r2DYD;GEBV). 
The correlations between 2DYD and GEBV (obtained 
through the methods mentioned previously) (r2DYD;GEBV) 
for fat percentage (FP) were: 0.53, 0.73, 0.59, 0.61, and 
0.71, respectively; and for protein percentage (PP) were: 
0.36, 0.48, 0.44, 0.46, and 0.47, respectively. We found 
similar results for PP and FP using MBLUP and Bayes 
C methods (Table 5). 

On the other hand, Moser et al . (2009) evaluated 
the following methods: fixed regression-least squares 
(FR-LS), random regression BLUP (RR-BLUP), 
Bayes A, support vector regression (SVR), and partial 
least squares regression (PLSR). They estimated the 
molecular breeding value (MBV) of young Holstein 
bulls using only genomic information and the GEBV 
obtained from the same bulls (combining the MBV 
with the pedigree). The MBVs and GEBVs obtained 
through the previously mentioned methods were 
compared with the Australian estimated breeding 
value (EBV) by using the correlation coefficient. 
Correlations between EBV and MBV (rEBV;MBV) 
were: 0.43, 0.56, 0.56, 0.58 and 0.55, respectively; 
and between EBV and GEBV (rEBV;GEBV) were: 0.49, 
0.57, 0.60, 0.62, 0.60, and 0.62, respectively. The 
correlations obtained by Moser et al . (2009) were 

medium, and the authors attributed these results to the 
low amount of data. Legarra et al . (2011b) suggests 
that if correlations are high (equal or close to 1), 
prediction methods have the same accuracy and the 
prediction errors of breeding values are very similar. 

We calculated correlations between breeding values 
(rEBV;MEBV, rTEBV;MEBV, and rTEBV;GEBV) for milk traits 
(MY, PP, FP, and SCS), which ranged from 0.500 
to 0.999. Furthermore, considering the correlations 
between EBV and MEBV (rEBV;MEBV) for PP (0.936) 
and SCS (0.999), and between TEBV and MEBV 
(rTEBV;MEBV) for PP (0.962), the ranking was not affected

The regression coefficients of TEBV on MEBV 
and EBV on GEBV (bTEBV;MEBV and bEBV;GEBV) 
obtained in this study were different from 1 (ranged from 
-2.10 to 1.58). These regression coefficients should 
ideally be 1. However, the regression coefficients were 
less than 1 for MY (bEBV;GEBV = 0.784), FP (bEBV;GEBV 
= 0.077) and PP (bEBV;GEBV = 0.380) and were greater 
than 1 for MY (bTEBV;MEBV = 1.227), FP (bTEBV;MEBV 
= 1.163), and PP (bTEBV;MEBV = 1.958). 

Bennewitz et al . (2009) determined GEBVs using 
Bayes-BLUP method and two nonparametric kernel 
regressions methods (ELM, ULM). The GEBVs were 
compared with true estimate breeding value (TEBV) 
(obtained by simulation) and determined the regression 
coefficients of TEBVs on GEBVs (bTEBV;GEBV), which 
were: 1.376, 0.722, and 0.626, respectively. On the 
other hand, Legarra et al . (2011b) obtained regression 
coefficients of 2DYD on GEBV (b2DYD;GEBV) (using 
the previously mentioned methods). The regression 
coefficients (b2DYD;GEBV) for PP were 0.35, 1.10, 0.83, 
1.10, and 0.99, respectively; and for MY were 0.25, 0.67, 
0.59, 0.66, and 0.67, respectively. Legarra et al . (2011b), 
suggest that most of the methods frequently inflate the 
variances of the genomic estimated breeding values 
(GEBVs) for some production traits, thus obtaining 
regression values below 1. Contrary to this, they also 
suggest that genetic variance is captured by QTL with 
large effect on some compositional traits, what leads to 
regression values greater than 1. 

The prediction of breeding values (TEBV, EBV, 
MEBV and GEBV) by using BLUP, MBLUP and 
Bayes C methods showed different results in terms 
of magnitude from the estimated values according to 
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the regressions obtained. However, the correlations 
between breeding values obtained by using methods 
that include molecular markers were similar, despite 
the different assumptions underlying the models. 
Finally, the results suggest that it is necessary to 
increase the number of records and genotyped animals 
to improve the prediction of GEBVs.
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