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Abstract 

Oxidative stress is the result of an imbalance between free radicals and antioxidants. Under normal 

physiological conditions, free radicals are involved in reproductive events such as cell cycle 

activation, ovulation and luteolysis. However, when an overproduction of free radicals surpasses 

antioxidant capacity, oxidative damage, reproductive anomalies and diminished fertility occur. 

Supplementation with antioxidants prevents oxidative damage and can be incorporated into 

reproductive management to improve fertility in females. Selection of the preovulatory follicle, 

ovulation, fertilization, embryo development and formation of the corpus luteum occur during the 

periconceptional period. This is a dynamic period and the events are susceptible to oxidative stress 

damage. Therefore, the objective of this review is to discuss the effect of oxidative stress on 

reproductive events during the periconceptional period, as well as to address antioxidant 

supplementation during this period. 
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Resumen 

El estrés oxidativo es generado por un desbalance entre radicales libres y antioxidantes. Bajo 

condiciones fisiológicas normales, los radicales libres participan en eventos reproductivos tales 

como activación del ciclo celular, ovulación y luteólisis. Sin embargo, cuando estos son producidos 

en cantidades que sobrepasan la capacidad antioxidante del organismo producen daño oxidativo 

y trastornos reproductivos que disminuyen la fertilidad de la hembra. La suplementación con 

antioxidantes previene el daño oxidativo y su incorporación a programas de manejo reproductivo 

puede ser una opción para mejorar la fertilidad de la hembra. La selección del folículo 

preovulatorio, ovulación, fecundación, desarrollo embrionario y formación del cuerpo lúteo 

ocurren durante el periodo periconcepcional. Este es un periodo dinámico y los eventos que 

ocurren en él son susceptibles a daño por estrés oxidativo. Por tanto, el objetivo de esta revisión 

es discutir el efecto del estrés oxidativo en los eventos reproductivos durante el periodo 

periconcepcional, así como la suplementación de antioxidantes en rumiantes durante este 

periodo. 
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Resumo 

O stress oxidativo é gerado por um desequilíbrio entre radicais livres e antioxidantes. Sob 

condições fisiológicas normais, os radicais livres participam de eventos reprodutivos, como 

ativação do ciclo estral, ovulação e luteólise. No entanto, quando é produzido em quantidades 

que excedem a capacidade antioxidante do organismo, produzem danos oxidativos e distúrbios 

reprodutivos que diminuem a fertilidade da fêmea. A suplementação com antioxidantes 

previne o dano oxidativo e sua incorporação em programas de gerenciamento reprodutivo 

pode ser uma opção para melhorar a fertilidade da fêmea. A seleção do folículo pré-ovulatório, 

ovulação, fecundação, desenvolvimento embrionário e formação do corpo lúteo ocorrem 

durante o período periconcepcional. Este é um período dinâmico e os eventos que ocorrem são 

suscetíveis ao dano por estresse oxidativo. Portanto, o objetivo dessa revisão é fornecer ao leitor 

conhecimento sobre o efeito do estresse oxidativo em eventos reprodutivos durante o período 

periconcepcional, e também discutir a suplementação com antioxidantes em ruminantes durante 

este período. 

Palavras-chave: embrião, estresse oxidativo, fertilidade, ovócito, ovulação, radicais livres. 

 

Introduction 

Oxidative stress is defined as an imbalance between free radicals and antioxidants, caused by an 

increased production of the former or decreased concentrations of the latter (Halliwell and Whiteman, 

2004). A free radical is a highly reactive atom or molecule that contains one or more unpaired electrons in 

its outer orbit, and extracts an electron from other compound to gain stability (Phaniendra et al., 2015). 

Reactive oxygen species (ROS), and reactive nitrogen species are the main types of free radicals (Agarwal 

et al., 2005). They are normally produced in the mitochondria, peroxisomes, during inflammation and 

phagocytosis (Lobo et al., 2010). Free radicals participate in diverse physiological processes without 

causing harm, but high concentrations can cause oxidative stress and damage to lipids, proteins and 

DNA (Silva and Coutinho, 2010). In farm animals, heat stress, dietary imbalances and bacterial infections 

can increase free radical production and oxidative stress (Celi and Gabai, 2015). 

Antioxidants prevent or inhibit oxidation of the substrate (lipids, protein or DNA) by donating electrons 

(Halliwell and Gutteridge, 1995). Antioxidants can be classified as enzymatic and non-enzymatic. 



 
Enzymatic antioxidants include superoxide dismutase, catalase, glutathione peroxidase and glutathione 

oxidase, while the non-enzymatic group includes vitamins A, C and E, beta-carotene, and trace elements 

such as copper, manganese, selenium and zinc, which are cofactors of antioxidant enzymes (Leung, 1998; 

Agarwal et al., 2012; Pisoschi and Pop, 2015). 

Free radicals are normally involved in reproductive events such as follicular development, ovulation, 

corpus luteum development, luteolysis and early embryo development (Rizzo et al., 2012). However, 

an imbalance between free radicals and antioxidants can cause failure to conceive. Reactive oxygen 

species are part of the mechanism controlling ovulation; failure to achieve enough intra-follicular 

concentrations to produce preovulatory follicle rupture causes follicular cyst in cattle (Rizzo et al., 

2009; Talukder et al., 2014a). Talukder et al. (2015) reported that cows with ovulatory oestrous cycles 

have greater concentrations of superoxide dismutase and lower oxidative damage to lipid products than 

cows that did not ovulate. In addition, repeat breeder cows that fail to conceive after artificial insemination 

have higher serum concentrations of oxidative stress markers than pregnant cows (Rizzo et al., 2007).  In 

this regard, Celi (2011) mentions that oxidative stress indicators are higher in cows experiencing late 

embryo mortality. In buffalos, blood concentrations of antioxidants vitamin E and β-carotene were lower 

and intra-follicular concentrations of ROS were higher in animals in anestrus than those with normal 

oestrous cycles (Kahlon and Singh, 2004; Jan et al., 2014). 

Oxidative stress occurs during different periods in animal systems, and antioxidants can be supplemented to 

improve reproductive performance (Nayyar and Jindal, 2010). In this review, we are focused on the 

periconceptional period; which comprises the events preceding, during and immediately occurring after 

conception (Louis et al., 2008). These events include follicle wave emergence, preovulatory follicle 

selection, ovulation, fecundation, early embryo development and corpus luteum formation. 

Restriction to these events is because available hormone treatments allow controlling these events, and 

the time of occurrence can be predicted (Lucy et al., 2004; Rahman et al., 2008; Menchaca et al., 2017). 

Therefore, if oxidative stress is suspected during the occurrence of events in this period, antioxidants can 

be supplemented to specifically protect/improve such events. The objective of this review is to provide 

evidence of the impacts of oxidative stress during the periconceptional period. In addition, the effect of 

antioxidant supplementation during hormonal treatments in female ruminants will be addressed. 

Effects of oxidative stress on preovulatory follicle development and oocyte 

competence 

Follicles undergo primordial, primary, small preantral, large preantral and small antral stages before 

reaching the preovulatory stage (Braw-Tal and Yossefi, 1997). Mammalian females are born with a fixed 

number of primordial follicles from which a preovulatory follicle will be recruited. There are two types of 



 
follicular recruitment: initial and cyclic. Initial recruitment is a continuous process   in primordial follicles 

that occurs before puberty, while cyclic recruitment starts after puberty under the control of increased 

gonadotropin production (McGee and Hsueh, 2000). After puberty, antral follicles are recruited in a 

predictable wave fashion between estruses (Adams et al., 2008). The follicle wave is preceded by a FSH 

surge, which allows cyclic antral follicle recruitment (Fortune et al., 2001). After recruitment takes place, 

selection and growth of the dominant follicle occurs under the influence of LH until the ovulatory stage 

occurs (Ginther, 2000). For a follicle to accomplish the dominant status, it must be capable of performing 

three fundamental tasks: expressing gonadotropin receptors, performing steroidogenesis, and 

having access to IGF-I (Quirk et al., 2004). Under conditions of declining progesterone production, 

such as luteolysis, the dominant follicle will reach the ovulatory stage. The time required for a primordial 

follicle to reach the ovulatory stage is at least 80 days (Britt, 2008). During this period, the follicle and its 

enclosed oocyte are exposed to harmful conditions such as oxidative stress. 

The oocyte from the primordial follicle to the preovulatory stage is arrested at the diplotene stage of 

prophase I. The preovulatory surge of LH breaks diplotene arrest by reducing the intra- oocyte 

concentration of cyclic 3′,5′-adenosine monophosphate (cAMP) (Tripathy et al., 2010), which is 

associated with a rise in the intra-oocyte concentration of hydrogen peroxide (H2O2) (Pandey and 

Chaube, 2014). The intra-oocyte generation of a tonic level of H2O2 is necessary to exit diplotene stage 

arrest, but high concentrations of H2O2 produce oocyte apoptosis (Chaube et al., 2005; Tripathi et 

al., 2009). The H2O2 is part of the ROS family.  It is generated after the dismutation of superoxide radical 

by superoxide dismutase and can then be scavenged by glutathione peroxidase or catalase (Valko et al., 

2007). Potential intra-follicular sources of reactive oxygen species include steroidogenesis (Hanukoglu et 

al., 1993), leukocytes (Brännström and Enskog, 2002) and ATP generation by mitochondrial electron 

transport (Kala et al., 2016). In addition, the preovulatory peak of LH induces an increase in ROS 

production (Yacobi et al., 2007), which is necessary to accomplish ovulation (Shkolnik et al., 2011). 

Embryo implantation is reduced when the oocyte comes from a follicle with a high percentage of 

granulosa cells producing ROS (Jancar et al., 2007). Apoptosis, induced by oxidative stress to granulosa 

cells (Shen et al., 2012), implies a reduction in nutrient supply and signal molecules to the oocyte (Kidder and 

Vanderhyden, 2010), which can disrupt oocyte meiotic maturation (Ratchford et al., 2008). Additionally, 

ROS causes DNA fragmentation, cell cycle arrest, and apoptosis (Chaube et al., 2005; Prasad et al., 

2016). Thus, on one hand, a moderate increase in ROS production is used as a signal to break cell cycle 

arrest, but on the other, high concentrations disrupt oocyte quality. It is likely that the required amount 

of ROS within the follicle and oocyte is regulated, at least in part, by the intra-follicular antioxidant system. 

The presence of antioxidants such as catalase, glutation peroxidase, superoxide dismutase, ascorbic acid, 



 
vitamin E, and β-carotene has been demonstrated in ruminant follicle compartments (Schweigert and 

Zucker, 1988; Behl and Pandey, 2002; Combelles  et al., 2010; Gupta et al., 2011; Hennet et al., 2013; 

Hozyen et al., 2014). Antioxidants prevent oxidative damage by preventing ROS concentrations from 

reaching levels that could harm the follicle and oocyte. However, situations leading to increased ROS 

production or to a reduction in antioxidant concentrations are likely to affect fertility by causing 

oxidative damage. Examples of these situations are mastitis, negative energy balance and heat stress. 

Mastitis causes a 26 to 28% reduction in conception rates when it occurs within 10 days before or 30 days 

after artificial insemination (Lavon et al., 2011). The reduced pregnancy rate after mammary gland 

infection can be explained by alterations in ovarian steroid production and gonadotropin secretion 

(Wolfenson et al., 2015). In addition, mastitis produces an imbalance between antioxidants and oxidants, 

leading to oxidative stress (Sharma et al., 2016; Shahid et al., 2017). Recently, it was found that cytoplasmic 

maturation and embryo viability is compromised when oocytes are cultured with follicular fluid from 

cows with mastitis (Roth et al., 2015). Mastitis is experimentally induced by injection of gram negative 

toxins, such as lipopolysaccharides (Asaf et al., 2014). Lipopolysaccharides disrupt follicular steroidogenesis 

by reducing the expression of gonadotropin receptors and steroidogenic enzymes (Magata et al., 2014), 

inducing apoptosis and oxidative stress in oocytes (Zhao et al. 2017). Moreover, mastitis decreases 

antioxidant blood concentrations and increases oxidant capacity in milk (Kizil et al. 2007; Atakisi et 

al., 2010). Thus, oxidant/antioxidant balance is compromised during mastitis infection. 

The increase in milk production after parturition demands a great amount of nutrients, but the inability to 

consume the required quantity produces a negative energy balance. Thus, the body removes nutrients from 

internal reserves to sustain vital functions and milk production. The state of negative energy balance is 

characterized by weight loss, increase in blood concentrations of non-esterified fatty acids (NEFA) and 

ketone bodies such as beta-hydroxybutyrate (Adewuyi et al., 2005). 

Negative energy balance can last for 10-12 weeks after calving, during which fertility is compromised 

(Butler, 2003). After analyzing the NEFA profile and β-hydroxybutyrate in blood serum and follicular 

fluid of cows after parturition (Leroy et al., 2004), Leroy et al. (2005; 2006) found that administration of these 

two metabolites to the culture medium reduces oocyte competence. Moreover, Van Hoeck et al. (2013) reported 

that oocyte redox status is affected by NEFA, suggesting that oxidative stress induced by NEFA is responsible for 

lowering oocyte competence in dairy cattle undergoing negative energy balance. In this regard, Song et al. 

(2014; 2016) reported that NEFAand β-hydroxybutyrate cause hepatocyte apoptosis by means of oxidative 

stress. In addition, cows showing signs of negative energy balance -such as body weight lost, increased 

concentrations of NEFA and β-hydroxybutyrate- suffer oxidative stress (Bernabucci et al., 2005; Pedernera 

et al., 2010), which can be explained by diminished blood and follicular concentrations of antioxidants such as 



 
β-carotene, vitamins C and E, superoxide dismutase, and glutathione peroxidase (Cigliano et al., 2014; De Bie 

et al., 2016). 

Oxidative stress induced by heat stress disrupts fertility in dairy cattle (Roth, 2015). Heat stress increases 

ROS production and reduces the proportion of oocytes that attain nuclear maturation and the blastocyst 

formation rate (Nabenishi et al., 2012). In addition, Takahashi (2012) suggests that oxidative stress 

induced by high temperatures creates adverse intraoviductal conditions for oocytes, sperm and embryo. 

Even though antioxidant supplementation seems to be a feasible way of ameliorating the negative effect 

of heat stress in fertility (Hansen, 2013), De Rensis et al. (2017) concluded that more research is needed 

to identify an antioxidant regimen that can effectively protect oocytes from heat stress. 

Effects of oxidative stress on sperm, corpus luteum development and embryo 

viability 

Fertilization of the ovulated oocyte, formation of the corpus luteum and embryo cleavage occur after 

ovulation. As with the oocyte, reactive oxygen species are necessary for the sperm to achieve capacitation, but 

high concentrations are detrimental (Aitken et al., 2012). Sources of ROS in the sperm include mitochondria, 

cytosolic L-amino acid oxidases, and plasma membrane nicotinamide adenine dinucleotide phosphate oxidases 

(Aitken, 2017). Infertile men have been found to have higher concentrations of reactive oxygen species, lower 

concentrations of vitamin E, and lower total antioxidant capacity than fertile men (Benedetti et al., 2012). In 

cattle, oxidative stress induced by heat stress reduces the fertilization rate in dairy cattle during summer season 

relative to winter (Sartori et al., 2002). 

An antioxidant system supports corpus luteum functionality. Luteal superoxide dismutase and vitamin 

C concentrations increase as the corpus luteum develops (Luck and Zhao, 1993; Vu et al., 2013), and an 

increase in luteal antioxidant activity has been reported during pregnancy (Al-Gubory et al., 2004). An 

antioxidant system is necessary to counteract the ROS generated by steroidogenic cells and mononuclear 

phagocytes (Kato et al., 1997), or by the inner environment of the corpus luteum. This is relevant since the 

mechanism used by PGF2α during luteolytic events implies the production of ROS and a decrease in 

antioxidant activity (Hayashi et al., 2003; Vu et al., 2012; Vu et al., 2013), resulting in low progesterone 

production. 

A changing antioxidant status is detectable throughout the estrous cycle. According to Aydilek et al. 

(2014), total antioxidant activity is lower in the luteal than in the follicular phase of the estrus cycle in 

cows. Repeat breeder cows have higher concentrations of ROS during the crucial period of corpus luteum 

survival (days 12 and 16 of the estrous cycle), causing failure to conceive (Rizzo et al., 2007). However, a 

failure to generate enough ROS after induced luteolysis by PGF2α results in anovulation (Talukder et 

al., 2014b). This suggests that increased antioxidant activity during the luteal phase may be detrimental to 



 
reproductive performance in empty cows, but not for pregnant cows. 

Oxidative stress is detrimental to embryo survival either by blocking progesterone supply or by a direct 

effect on embryo cells. The source of reactive oxygen species may come from metabolic activity of the 

embryo itself (Gupta et al., 2006) or from the maternal environment (Poston et al., 2011). Regarding the 

latter, it is known that maternal heat stress is responsible for induced embryonic death by increasing ROS 

production and antioxidant depletion, but not by heat stress itself (Ozawa et al., 2002). When ROS 

become uncontrolled, they cause morphological and functional alterations, which may block embryo 

development or apoptosis (Guérin et al., 2001), supporting the suggested implication of ROS in bovine 

embryo mortality (Celi et al., 2011). 

The early embryo may be capable of developing some degree of resistance to the adverse effects of ROS as it 

grows. Ealy et al. (1993) reported that Holstein cow embryos become less susceptible to maternal heat stress 

after one day of pregnancy. Similarly, Morales et al. (1999) reported that nine- to 16 cell- embryos are more 

resistant to ROS insults than zygotes and blastocysts. Bain et al. (2011) suggested that susceptibility of the 

bovine embryo to ROS increases during the first 72 hours of embryonic life. In addition, differences in 

ROS resistance related to embryo sex have been reported (Pérez-Crespo et al., 2005); female embryos are 

more resistant than male embryos. These findings suggest that severity of ROS-induced embryo damage is 

developmental and sex dependent. 

Antioxidant supplementation during the periconceptional period in female 

ruminants 

Oocyte and embryo well-being can be compromised by oxidative damage generated as the result of common 

reproductive practices around the periconceptional period. Rectal palpation and artificial insemination are 

stressful to dairy cattle (Nakao et al., 1994) and cause oxidative stress (Cingi et al., 2012). These practices 

are commonly and repeatedly performed during estrus synchronization. A common practice among 

reproductive technicians, before artificial insemination, is to stimulate the reproductive tract via rectal 

massage for visualization of cervical mucus in order to reveal any infection. However, unexperienced 

technicians may cause rectal irritation, evidenced by the presence of blood on the palpating hand. This 

situation is also observed after multiple, prolonged or rough palpations, but it is unknown how much this 

can affect fertility. 

Estrus synchronizations using progesterone- releasing devices is common in small ruminants and cattle. 

Several studies have reported inflammatory responses and changes in normal flora and vaginal histology 

of ewes and cattle after using estrus synchronization devices (Manes et al., 2010; Suárez et al., 2006; 

Walsh et al., 2007; Manes et al., 2015). In addition, Sönmez et al. (2009) reported a steady increase in ROS after 

intravaginal sponge insertion in goats, suggesting that sponge insertion can cause oxidative stress. The 



 
inflammatory response and oxidative stress induced by insertion of progesterone release devices may be 

responsible for the reduced fertility in ewes carrying intravaginal sponges (Manes et al., 2014). 

Ovarian superstimulation of small and large ruminants is used to increase the number of oocytes 

and embryos that a female would normally produce during a normal estrous cycle. However, 

superstimulation is known to upregulate genes related to oxidative stress in cattle (Dias et al., 2013). In mice, 

an increase in oxidative damage in the uterus and oviduct (Park et al., 2015), as well as a reduction in 

oocyte mitochondria number and function, have been reported after single and repeated superstimulation. 

In addition, low quality oocytes -resulting in embryos with mitochondrial functional defects, which are more 

susceptible to oxidative damage- have been found during superstimulation (Komatsu et al., 2014). Since an 

oxidative insult is present during superstimulation, antioxidant supplementation may help to overcome 

some of the detrimental effects on oocyte and embryo quality. According to Liu et al. (2013) and Ben-Meir 

et al. (2015), antioxidant supplementation not only counteracts oxidative damage in the oocyte but also 

restores mitochondrial function. 

The evidence suggests that antioxidant supplementation may be beneficial, by improving fertility during 

the periconceptional period. Evidence validating the effectiveness of antioxidant supplementation during 

hormonal treatment in ruminant females around this period is shown in Table 1. Parenteral antioxidant 

supplementation is probably the best option during the periconceptional period. As shown in Table 1, 

antioxidants were given via injection in all cases, probably because high concentrations in blood and other 

body compartments can be reached faster than through feed supplementation. In the case of vitamin E, for 

example, parenteral supplementation is a more effective way to improve antioxidant status in the short term 

compared with in-feed supplementation (Bourne et al., 2007; Mokhber-Dezfouli et al., 2008). This is 

relevant because a rapid effect is desired.  

Table 1. Effect of antioxidant injection during the periconceptional period on ruminant fertility. 

 

 

 

 

 

 

 

 

 



 
 

In conclusion, free radicals participate in reproductive events occurring during the periconceptional period. 

However, situations leading to overproduction that surpasses antioxidant capacity cause oxidative stress 

and compromise fertility. Antioxidant supplementation during hormonal treatments carried out during this 

period can improve fertility in female ruminants. 
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