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Abstract 

Background: Genetic association studies have been increasingly used in cattle breeding 

programs. However, inconsistent results -such as positive, negative, or absence of association- 

across studies restrain reproducibility and proper implementation, propitiating the occurrence 

of bias.  

Objective: To identify and classify potential sources of bias and determine possible strategies 

to avoid it in genetic association studies in cattle.  

Source of bias in genetic association studies: Genetic and genomic sources of bias include 

effects associated with the gene loci governing expression. Sampling-related and statistical 

biases are related with factors such as stratification and database size.  

Strategies to correct bias in genetic association studies: Correction strategies differ in 

nature. Genetic and genomic strategies are based on determining the appropriate approach to 

obtain and report the genetic information. Sampling-related and statistical strategies are based 

on grouping individuals with certain traits that lead to a reduction in heterogeneity.  

Conclusion: It is necessary to consider the methodology used in previous studies to establish a 

hierarchy of sources of bias and facilitate decisions on the use of tools to reduce 

inconsistencies in the results of future studies. 

 

Keywords: association estimates, genetic bias, genetic improvement, sampling-related bias, 

statistical bias. 

 

Resumen 

Antecedentes: Los estudios de asociación genética son cada vez más usados en los programas 

de mejoramiento genético. Sin embargo, resultados inconsistentes de los estudios -como 

positivos, negativos o ausencia de asociación- restringen la reproducibilidad y su aplicación 

adecuada, propiciando la aparición de sesgos.  

Objetivo: Identificar y clasificar las fuentes potenciales de sesgo y determinar posibles 

estrategias para evitarlo en estudios de asociación genética en ganado.  

Fuentes de sesgo en estudios de asociación genética: Las fuentes genéticas y genómicas de 

sesgo incluyen los efectos asociados con la expresión que gobierna los loci. Los sesgos 



 
estadísticos y de muestreo están relacionados con factores como la estratificación y el tamaño 

de la base de datos.  

Estrategias para corregir sesgos en estudios de asociación genética: Las estrategias de 

corrección difieren en naturaleza. Las estrategias genéticas y genómicas se basan en determinar 

el enfoque apropiado para obtener la información genética. Las estrategias estadísticas y 

relacionadas con el muestreo se basan en la agrupación de individuos con ciertos rasgos que 

conducen a una reducción de la heterogeneidad.  

Conclusión. Se deben considerar las metodologías utilizadas en estudios previos para 

jerarquizar las fuentes de sesgo y facilitar las decisiones sobre el uso de herramientas para 

reducir inconsistencias en resultados futuros. 

 

Palabras clave: estimados de asociación, mejoramiento genético, sesgo de 

muestreo, sesgo estadístico, sesgo genético. 

 

Resumo 

Antecedentes: Nos programas de criação de bovinos, os estudos de associação genética têm 

sido cada vez mais utilizados. No entanto, resultados inconsistentes, como positivos, negativos 

ou ausência de associação entre os estudos, restringem a reprodutibilidade e sua adequada 

implementação, propiciando o aparecimento de viés.  

Objetivo: Identificar e classificar potenciais fontes de viés e determinar estratégias possíveis 

para evitá-lo nos estudos de associação genética em bovinos.  

Fonte de viés em estudos de associação genética: Fontes genéticas e genômicas do viés 

incluem os efeitos associados aos genes que relacionam a expressão. Os vícios estatísticos e de 

amostragem estão relacionados a fatores como a estratificação e o tamanho do banco de dados.  

Estratégias para corrigir os viéses nos estudos de associação genética: As estratégias de 

correção diferem na natureza. As estratégias genéticas e genômicas são baseadas na 

determinação da abordagem apropriada para obter e relatar a informação genética. As 

estratégias estatísticas e de amostragem baseiam-se no agrupamento de indivíduos com certos 

traços que levam a uma redução na heterogeneidade.  



 

Conclusão: É necessário considerar a metodologia utilizada em estudos anteriores para 

estabelecer uma hierarquia de fontes de viés e facilitar decisões sobre o uso de ferramentas 

para reduzir inconsistências nos resultados de estudos futuros. 

 

Palavras-chave: estimativas de associação, melhoria genética, viés de amostragem, viés 

estatístico, viés genético. 

Introduction 

Genetics association studies (GAS) aim to detect associations between one or more genetic 

polymorphism and a quantitative or discrete trait by testing for a correlation between a specific trait 

and a genetic variation (Lewis and Knight, 2012). The number of genetic association studies have 

increased, and their assessment has become a powerful approach to identify common and rare variants 

underlying complex diseases (Wu et al., 2012), discovering causative mutations (Schwarzenbacher et 

al., 2016), or identification of quantitative trait loci (QTLs; Jahuey et al., 2016) on a population. 

Nevertheless, inconsistencies in GAS due to the combination of factors contribute to spurious or not 

consistently results (Table 1). 

The inconsistencies found in GAS suggest that many original results could be false-positive (type I 

errors), especially in studies with systematic differences between sample and population, affecting 

their representativeness (Shingarpure and Xing, 2014). Thus, factors like paternity 

misidentification, stratification, and population structure are crucial in establishing sample size and its 

representativeness (Pyo and Wan, 2012). Other important source of inconsistencies in GAS are 

undetectable small genetic effects (false-negative, type II errors) (Lee, 2015). In this regard, poor design 

quality of the database usually means high p-values and low recognition of genetic associations 

(Ioannidis, 2005), especially when genotypes have low frequencies in the population or the study deals 

with low heritability traits (Satkoski et al., 2011). 

 

Table 1. Results of genetic association studies between CSN3 gene with milk yield in dairy cattle. 



 
*Best genotype: genotype reported with the best performance for milk yield ; N/D gen-trait association absent. 

 

This lack of reproducibility tends to produce genetic associations of no value for genetic 

improvement. Ioannidis (2005) defined bias as the combination of design, data, analysis, and 

presentation factors resulting in findings that otherwise should not be produced. However, 

most reviews on bias in GAS have focused in the analysis of the genetic factors or address 

other factors as part of the genetic issues. 

Bovine breed(s) considered in the study has been addressed as a genetic source of bias due 

to intra- and inter-racial diversity in genetic population (Lenstra et al., 2014), especially in the 

presence of crossbred animals (Dickerson, 1993). Besides, contemporary group factor has 

been confounded with the pure environment effect as it affects results due to the influence of 

interaction between genotype and environment (Ramírez-Valverde et al., 2008). Additionally, 

genomic factors of bias are associated with the gene loci governing expression, and are 

confused with environmental or residual variance (Burgueño et al., 2012), especially if those 

factors have an epigenetic nature such as genomic imprinting (Manolio et al., 2009), or 

influences more than one marker like the linkage disequilibrium, pleiotropy or polygenic 

effect (Pereira et al., 2016). 

Lastly, even when the statistical model used in GAS is not usually confounded or assessed as 

a genetic factor of bias, its importance as a possible source of bias is remarkable since there 

are models that can work with just few markers at the same time (Pärna et al., 2012) and 

methods to determine the associations of thousands of markers at once. The variability 

resulting from the use of so different assessment methods could then be confounded with 

genetic or sampling factors of bias. Thus, it    is necessary to classify bias in GAS according 

to its nature to better understand and reduce possible spurious results. Therefore, the objective 

of this study was to identify and classify potential sources of bias and determine possible 

strategies to avoid it in genetic association studies. 

 

Sources of bias in genetic association studies 

Different approaches, based on related or non- related individuals, have been used to carry out 

GAS (Table 2). The literature reports that some widely cited associations cannot be replicated 

due to inaccuracies in the approaches used to determine them (Sagoo et al., 2009). In this 

sense, inconsistencies in GAS could be attributable to factors such as genetic, genomic, 



 
sampling-related, or statistical, which influence production traits, and contribute to the risk 

of false- positive results (Pärna et al., 2012) 

Genetic factors 

The breed(s) used in the study could be a source of bias due to intra- and inter-racial bovine 

genetic population diversity (Figure 1). Besides, the presence of crossbred populations confers 

changes in the behavior of offspring, relative to that of the parents. Modifications can be 

evaluated by direct, maternal effects and heterosis of breeds and their crosses, with enough 

precision to predict the expected behavior of several breeding alternatives and mating systems 

(Dickerson, 1993). On this regard, Trail et al. (1984) reported direct and maternal effects on 

economic production traits in crossbred Boran cattle showing differences due to paternal or 

maternal breed. 

Contemporary group (CG) is another genetic factor of bias, affecting results by the 

influence between genotype and environment interaction. Contemporary group as a fixed 

effect reduces bias in genetic comparisons, while the variance of the prediction error is 

reduced when CG is considered random (Ramírez-Valverde et al., 2008). 

Genomic factors 

Genomic factors of bias are associated with the gene loci governing expression and are 

confused with environmental or residual variance (Burgueño et al., 2012). Genomic 

imprinting bias in GAS is related with production traits due to their nature as epigenetic factors 

(Manolio et al., 2009). Han et al. (2013) mentioned that maternal effects could be confused 

with genomic imprinting because they produce the same parent-of-origin patterns of 

phenotypic variation, leading to an over- or underestimation in GAS of traits that include 

maternal effects. Su et al. (2012) reported a 3.5% bias decrease in genetic association values 

when additive, dominance, and epistatic effects are included in the analysis model compared 

to models previously reported that only included the additive effect. 

 



 
Table 2. Former and current approaches used in genetic association studies. 

1TDT: transmission disequilibrium test; 2FB-GWAS: family based genome-wide association study (Benyamin et al., 2009; Foulkes, 2009). 

The type of markers used in GAS is a potential source of bias due to its effect on the analysis power 

to determine the linkage disequilibrium (LD) level of the data (Goode and Jarvik, 2005). 

Additionally, Rosenberg et al. (2010) reported mean information content (IC) differences between 

microsatellites and biallelic markers across the genome, with a better performance from the second 

one (Figure 2). Moreover, according with Kinghorn et al. (2010) correct choice of markers could 

increase the performance of quantitative genotyping. 

Figure 1. Diversity and distribution of major Bos taurus and Bos indicus haplogroups (taken from Lenstra et al., 

2014). 



 

Figure 2. Information content variability for haplotype level in Europeans (taken from Rosenberg et al., 2010). 

 

Monomorphism bias is based on the presence of uninformative markers in GAS (De et al., 

2014). Thus, appearance of possible loss of power related with use of inadequate type of 

marker can occur. Another important genomic factor of bias is the minor allele frequency 

(MAF), it shows different behavior according to its effect size (Figure 3) and it is related with the 

Hardy-Weinberg proportions (HWP) potential bias. Therefore, MAF bias could occur if GAS 

use low density, monomorphic, or incorrect type of markers (Eynard et al., 2015). 

Pleiotropic and polygenic effects are other important genetic sources of bias due to the influence 

over more than one economic trait in cattle (Figure 4). 

Figure 3. Types of MAF according to its effect size (taken from Bush and Moore, 2012). 

 

Pleiotropic genes, such as PLAG1, operate like satellite regulators of the growth pathway while 

polygenic effect influences the estimation of genetic values. Segregation factor potential bias 



 
is related with the monomorphic and type of marker factors of bias and highly influences the 

linkage disequilibrium (LD) in the population (Bush and Moore, 2012). Since, LD describes 

the degree to which an allele of one SNP is inherited or correlated with the allele of another 

SNP within a population (De et al., 2014), recombination events and type of markers to detect 

them are critical for the development of this factor bias. 

Figure 4. Network of candidate pleiotropic genes for carcass traits in Nellore cattle (taken from Pereira et al., 

2016). 

 

Genomic factors also include heritability bias, which is related with the gap between the 

phenotypic variance explained by GWAS results and those estimated by classical 

heritability. Zaitlen and Kraft (2012) mentioned that “missing heritability” could be due to 

presence of rare variants, epistatic and gene-environment interactions, or structural variation, 

that are not well captured by current GWAS or their analysis methods. 

Sampling-related factors 

Sample selection is another source of bias. It is defined asany systematic difference between the 

sample and the population affecting its representativeness (Shringarpure and Xing, 2014), 

leading to inaccurate estimation of relationships between variables (Figure 5). According to Pyo 

and Wan (2012), a larger sample size is required to achieve enough statistical power and to 

improve the ability of prediction. On the other hand, small sample size increases false negative 

rates and reduces the reliability of a study. 

 



 

Paternity misidentification, stratification, and population structure are also factors related to 

sample size and its representativeness. On this regard, Visscher et al. (2002) determined a 

proportional selection response decrease of 2 to 3% for each 10% of paternity 

misidentification rate. Additionally, Sifuentes-Rincón et al. (2006) reported differences of 

47% in the genetic values between simulated- and uncertain- paternity populations. 

Similarly, stratification bias could lead to spurious association that have no value as a tool for 

genetic improvement. In this sense, Zaitlen and Kraft (2012) mentioned that stratification bias 

arises when there is a difference in the phenotypic variance between the population. 

Statistical factors 

Statistical factors of bias are those related with the model and the nature of data used. According 

to Pyo and Wang (2012), the observed signal for association is considered statistically 

significant when the p-value is lower than a present threshold value (e.g., 0.05) to reject a null 

hypothesis of genetic association. Poor design quality of the database usually means high p-

values and lower recognition of genetic associations (Ioannidis, 2005), especially if some of the 

genotypes have low frequency in the population or traits with low heritability (Satkoski et al., 

2011). 

Odd ratios can be a statistical factor of bias (Figure 6) when they are wrongly used as a weighted 

average to quantify genetic effects in GAS (Su and Lee, 2016). Due to their non-collapsible 

nature and tendency towards being null, a quantitative difference between conditional and 

marginal odd ratios in the absence of confounding is a mathematical oddity, not a reflection of 

bias (Groenwold et al., 2011). 

Another factor that could cause bias is collinearity, which refers to the non-independence of 

predictor variables, usually in a regression-type analysis (Dormann et al., 2013). Yoo et al. 

(2014) mentioned that collinearity inflates the variance of regression parameters with a 

potential misidentification of relevant predictors in a statistical model. Dias et al. (2011) 

reported multicollinearity in genetic effects related with weaning weight in a Brazilian cattle 

population. They reported 9.8% of bias in the sum squared deviations, with variance inflation 

factors of 16 and 5.3 when using least square and ridge regression methodologies, 

respectively. 

 



 

Figure 5. Sample size used in genetic association studies showing type I errors (taken from Ioannidis, 2005). 

 

The presence of collinearity could lead to collider bias (i.e., the reversal paradox), an 

artificial association created between exposures (A and B) when a shared outcome (X) is 

included in the model as a covariate (Day et al., 2016). Day et al. (2016) identified over 200 

spurious GAS, when the shared outcome was included as a covariate in the model used to 

analyze the data. 

One of the most important sources of bias in GAS is the statistical model chosen due to the 

differences within obtained results (Figure 7). The first models used in GAS included only 

fixed effects, causing bias when random effects were ignored (Miciński  et al., 2007). On the 

other hand, mixed models can differentiate between the effects of random error and those 

from systematic error (Pärna et al., 2012). In the same way, Maximum likelihood (ML) is 

another procedure used in GAS with potential of bias. Kučerová et al. (2006) determined that 

ML can estimate genetic associations of casein genes and reported mean differences in protein 

concentration between 42 and 73% across κ-casein genotypes (AA, AB, AE, BB, and BE). 

However, when estimating a higher number of associations (e.g., in genome-wide association 

studies), the power of mixed models and ML is reduced. 

 

 

 



 

Figure 6. Forest plot of the effects or recombinant bovine somatotropin on the risk ratio of clinical mastitis (taken 

from Dohoo et al., 2003). 

 

Extensive GAS need methods to determine the associations of thousands of markers at once. 

On this regard, De los Campos et al. (2009) reported Bayesian regression models (BM) able 

to adjust for the effects of thousands of markers simultaneously. Tenesa et al. (2003) observed 

that the differences between estimates obtained with ML and BM were small (about 5%), and 

both estimation procedures yielded essentially the same results. On the other hand, there are 

non-Bayesian models (NBM) that use information of genotyped and non-genotyped animals to 

perform genomic predictions (e.g. single-step genomic model) (Ma et al., 2015). However, 

due to its ability to estimate genetic association, even with markers lacking information, BM 

and NBM are under the influence of sample size and require a pedigree as complete as possible 

(Sahana et al., 2010). 

 

 

 

 

 



 

 

Figure 7. Probabilities of association obtained with two different Bayesian-based methods (taken from 

Bennewitz et al., 2017). 

 

Strategies to correct biases in GAS 

The aim of bias correction in GAS methodologies focuses on bias reduction, rather than its 

elimination (Pärna et al., 2012). Thus, it is possible to group bias correction into genetic-

genomic, statistical, and methodological strategies. 

Genetic-genomic strategies 

Strategies of genetic-genomic bias correction rest on two aspects: source and conditions of 

genetic information. The source of genetic information in GAS refers to the approach used to 

obtain and report genetic information (i.e., single and multi-loci genotype or haplotype). 

Instead of analyzing the effects of individual alleles, some researchers estimate the effects of 

haplotypes defined by genes associated with the traits under study (Zhou et al., 2013), while 

other authors use multi-loci genotypes for the same purpose (Jaiswal et al., 2016). 

The use of haplotypes and multi-loci genotypes can reduce bias arising from the way several 

genes are combined, the polygenic effect of the studied traits, and the position of the analyzed 

loci within the genome. However, unlike multi-loci genotypes, it has been argued that 

haplotypes have similar effects on different breeds (Andrés et al., 2007). As a result, a common 



 
approach to analyzing the effects of haplotype has been to determine the most likely configuration 

for each and assume that this allocation of haplotypes is known without error when subsequent 

statistical analyses are performed. However, precise haplotype construction could be difficult, 

and often leads to biased estimates and reduced analytical power in GAS (Andrés et al., 2007). 

In addition, when multiple loci are genotyped, haplotypes are unknown because there is no 

information about linkage phase of alleles at different loci (Sahana et al., 2010). Sahana et al. 

(2010) observed a high rate of type I error when using haplotypes as a fixed effect in genetic 

association models. Zhang et al. (2016) concluded that when there is a lack of tools available to 

reconstruct haplotypes, the best alternative is to use multi-loci genotypes regardless of whether 

phase adjustment information is available. 

Other factors affecting the reliability of results are the number of markers used for 

reconstruction and the way that haplotypes and multi-loci genotypes are included in GAS 

models. For reconstruction, the best results have been obtained using 2 to 5 markers (Abdallah et 

al., 2004). In this sense, the main benefit of using haplotypes or multi-loci genotypes is their ability 

to explain most of the additive, dominance, and epistasis effects on the loci studied (Zhao et al., 

2012). With respect to inclusion methods, incorporating haplotype as a random effect conveys 

better performance compared with models that include it as a fixed effect in terms of power, 

control of type I error, and precision (Boleckova et al., 2012). Hence, some of the probable HWP 

bias in these studies can be avoided, especially if the nature of the alleles being studied is 

considered. Kent et al. (2007) concluded that due to the risk of wrong associations, it is best to 

use common genetic variants greater than 10% as rare alleles generate biases in their association 

values and equally affect the values of common alleles. Therefore, the conditions needed to 

establish the use of haplotypes, genotypes, or both in GAS are of utmost importance for 

devising strategies to correct bias of genetic information. 

Sampling-related and statistical strategies 

Methodological strategies used to avoid sampling bias are based on grouping individuals or 

samples that share the same features in order to reduce heterogeneity and increase 

representativeness of results (Gustavsson et al., 2014). On the other hand, the use of 

previously reported information becomes important when establishing a methodological bias 

reduction strategy. Published information enables to use features and results previously 

validated, and helps to avoid the risk of bias related with transferring results among breeds 

(Poulsen et al., 2015). 



 

Methodological strategies to reduce bias associated with statistical source are based on reviews, 

as well as the use of estimates and other literature results to determine the best models and 

features for the studied phenomenon (Brito et al., 2011). Commonly used association methods 

are based on family structure (pedigree) and case-control studies with unrelated individuals 

(De los Campos et al., 2009). However, case-control studies are the most viable to study 

genetic association because studies based on family structure involve extended testing 

periods (Kent et al., 2007). The presence of type I errors due to the subjective nature of the 

estimates (underlying assumptions) could address the risk of under- or overestimation of 

studied traits (Zoche-Golob et al., 2015). Therefore, the best strategy to reduce statistical bias 

lies in all aspects related to the predictive power of the approaches since it depends on all 

elements of bias that might arise. 

In conclusion, it is necessary to consider the methodology used in previous GAS to establish 

a hierarchy of sources of bias and to facilitate better decisions on the use of tools to reduce 

inconsistencies in the results of future studies. 
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