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Summary

Staphylococcus aureus is one of the main bacteria that affect human health. Its reduced 
susceptibility to beta-lactam antibiotics has driven the clinical use of macrolides and 
lincosamides. However, the presence of macrolide-lincosamide-streptogramin B 
(MLSB)-resistant S. aureus strains is increasingly common. Wastewater treatment 
plants (WWTPs) are the main anthropogenic source of resistance determinants. 
However, few studies have assessed the importance of this environment on the  
dissemination of MLSB-resistant S. aureus strains. Thus, we aimed to evaluate  
the impact of a domestic WWTP on the resistance to MLSB and penicillin in  
S. aureus in southeast Brazil. Of the 35 isolates tested, 40.6% were resistant to peni-
cillin. Resistance to erythromycin (8.6%) and quinolones (2.8%) was less common. 
Despite the low rate of resistance to clindamycin (2.8%), many isolates showed 
reduced susceptibility to this antibiotic (57.1%). Regarding the resistance pheno-
types of staphylococci isolates, inducible MLSB resistance (D-test positive) was 
found in two isolates. In addition, 27 S. aureus isolates showed the ability to produce 
penicillinase. In this article, we report for the first time the importance of WWTPs 
in the dissemination of MSLB resistance among S. aureus from southeast Brazil.

Key words: Antibiotic resistance, D-test, penicillin zone-edge test, quinolones, 
Staphylococcus aureus, water environment.
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Resumen

Plantas de tratamiento de aguas residuales domésticas como 
fuentes de Staphylococcus aureus resistente a macrólidos-

lincosamida-estreptogramina B- y penicilina en Brasil

Staphylococcus aureus es una de las principales bacterias que afectan la salud humana. 
Su susceptibilidad reducida a los antibióticos betalactámicos ha impulsado el uso 
clínico de macrólidos y lincosamidas. Sin embargo, la presencia de cepas resistentes 
a macrólido-lincosamida-estreptogramina B (MLSB) de S. aureus es cada vez más 
común. Las plantas de tratamiento de aguas residuales (PTAR) son la principal 
fuente antropogénica de determinantes de resistencia. Sin embargo, pocos estudios 
han evaluado la importancia de este entorno en la diseminación de cepas de S. aureus 
resistentes a MLSB. Nuestro objetivo fue evaluar el impacto de una PTAR doméstica 
en MLSB y la resistencia a la penicilina en S. aureus en el sureste de Brasil. De los 
35 aislamientos analizados, el 40,6% eran resistentes a la penicilina. La resistencia a  
la eritromicina (8,6%) y quinolonas (2,8%) fue menos común. A pesar de la baja tasa 
de resistencia a la clindamicina (2,8%), muchos aislamientos mostraron sensibilidad 
reducida a este antibiótico (57,1%). Con respecto a los fenotipos de resistencia de 
los aislamientos de estafilococos, la resistencia inducible a MLSB (prueba D positiva) 
se encontró en dos aislamientos. Además, 27 aislamientos de S. aureus mostraron la 
capacidad de producir penicilinasa. En este artículo informamos, por primera vez,  
la importancia de las PTAR en la difusión de la resistencia a MSLB entre S. aureus 
del sureste de Brasil.

Palabras clave: Resistencia a antibióticos, prueba D, prueba de borde de zona de penicilina, 
quinolonas, Staphylococcus aureus, ambiente acuático.

Resumo

Estações de tratamento de águas residuais domésticas como 
fontes de Staphylococcus aureus resistente a macrolídeo-

lincosamida-estreptograma e B- e penicilina no Brasil

O Staphylococcus aureus é uma das principais bactérias que afetam a saúde humana. 
Sua reduzida suscetibilidade aos antibióticos beta-lactâmicos tem impulsionado o uso 
clínico de macrolídeos e lincosamidas. No entanto, a presença de cepas de S. aureus resis-
tentes a macrolídeo-lincosamida-estreptogramina B (MLSB) é cada vez mais comum. 
As estações de tratamento de esgoto (ETEs) são a principal fonte antropogênica de 
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determinantes de resistência. No entanto, poucos estudos avaliaram a importância desse 
ambiente na disseminação de cepas de S. aureus resistentes ao MLSB. Assim, nosso obje-
tivo foi avaliar o impacto de uma ETE doméstico na resistência ao MLSB e à penicilina 
em S. aureus no sudeste do Brasil. Dos 35 isolados testados, 40,6% eram resistentes à 
penicilina. Resistência à eritromicina (8,6%) e quinolonas (2,8%) foi menos comum. 
Apesar da baixa taxa de resistência à clindamicina (2,8%), muitos isolados apresentaram 
sensibilidade reduzida a esse antibiótico (57,1%). Em relação aos fenótipos de resis-
tência dos isolados de estafilococos, a resistência induzível ao MLSB (D-teste positivo) 
foi encontrada em dois isolados. Além disso, 27 isolados de S. aureus mostraram a capa-
cidade de produzir penicilinase. Neste artigo relatamos pela primeira vez a importância 
das ETEs na disseminação da resistência do MSLB entre S. aureus do sudeste do Brasil.

Palavras-chave: : Resistência a antibióticos, D-teste, teste da borda da zona da penicilina, 
quinolonas, Staphylococcus aureus, ambiente aquático.

Introduction

Staphylococcus aureus is one of the major bacterial pathogens of medical interest [1]. 
Although it is estimated that approximately 20% of the general human population are 
persistently colonized with S. aureus, this microorganism can cause a wide variety of 
clinical complications ranging from self-limited superficial infections to severe bacte-
remia or pneumonia [2]. Various classes of antimicrobials are used for the treatment 
of these infections, such as β-lactams, macrolides, lincosamides and quinolones [3]. 
In addition, with the emergence of penicillin- and oxacillin-resistant strains since the 
1960s, the use of vancomycin (glycopeptide) has also become common. Methicillin-
resistant S. aureus (MRSA) strains, which are resistant to all β-lactams, were initially 
only detected in hospital settings [4]. However, since 1990, reports of resistant strains 
within the community have been described [5]. In the United States, the mortality 
rate from MRSA-associated infections outnumber those caused by HIV/AIDS and 
tuberculosis combined [6]. The colonization rate in American hospital settings is quite 
variable, and in some cases may affect up to 85% of patients [7]. In Brazil, 31% of S. 
aureus isolates from hospitalized patients are characterized as MRSA [8].

Macrolides and lincosamides are therapeutic options for the treatment of MRSA infec-
tion; however clinical failure of therapy has been reported when the strains harbor the 
erm gene. This gene encodes clindamycin-induced resistance and cross-resistance to 
erythromycin, conferring the macrolide-lincosamide-streptogramin B (MLSB) resis-
tance  phenotype [9]. In general, exposure to subinhibitory antibiotic concentrations 
is related to MLSB resistance. In this context, wastewater is an important environment 
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for the development of bacterial resistance as it harbors a complex bacterial commu-
nity, receives residues of several antimicrobials and is considered a hotspot for gene 
exchange, including the exchange of genes that confer antimicrobial resistance (e.g., 
erm, blaampc, norA, acrABC, tetK, mecA and blaZ) [10, 11]. 

According to previous studies, the prevalence of S. aureus in wastewaters is low com-
pared to clinical environments [12]. However, it should be highlighted that wastewater 
treatment plants (WWTPs) may be an important reservoir and source of MSLB-resis-
tant S. aureus [13, 14]. Thus, considering the possibility of bacterial exchange between 
the clinical and environmental settings, investigation of the presence of resistant  
S. aureus strains in WWTPs is of great relevance as it may contribute to containing 
the spread of these microorganisms [13]. While many studies have investigated the 
resistance of enterobacteriaceae present in WWTPs, there is limited information on 
antibiotic-resistant S. aureus in this environment, which is of importance in develop-
ing countries [14]. Thus, we aimed to investigate the susceptibility of S. aureus isolates 
recovered from of a community WWTP in Brazil to several clinically important anti-
microbials. In addition, the presence of clindamycin-induced resistance and penicillin-
ase production was studied in isolates to determine the potential for this environment 
to act as a reservoir and source of MSLB- and penicillin-resistant S. aureus.

Materials and methods

Sample collection and recovery of Staphylococcus aureus

The area selected for this study was the city of Divinópolis (Minas Gerais), located in 
southeast Brazil (232 945 inhabitants). One liter of both raw sewage (RS) and effluent 
(EF) were collected from the Rio Pará WWTP (geographical coordinates: 20º08’20”S 
and 44º53’02”W) on June 8, 2015. The WWTP studded adopts the conventional 
activated sludge treatment system and receive domestic sewage generated by approxi-
mately 10% of the population from Divinópolis, been that their effluent is discharged 
in the Pará River. All samples were stored in sterilized polypropylene bottles and trans-
ported on ice to the laboratory within 2 h of collection. The sample collection was 
authorized by Companhia de Saneamento de Minas Gerais (Copasa), a publicly owned 
company responsible for the collection and treatment of sewage and water supply in 
the state of Minas Gerais (Brazil). 

For the isolation of S. aureus, 100 µL of RS and EF were plated directly onto mannitol salt 
agar (Labm, Brazil) in duplicate after being serially diluted (10-1 to 10-5) in a sterile saline 
solution 0.85% (NaCl). The plates were incubated at 37 ºC for up to 48 h. After this incu-
bation period, plates that had grown 20 to 200 colonies were selected for determination  
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of the number of colonies forming units (CFU) per milliliter of RS and EF. Mannitol-
fermenting colonies, which are yellow in color, were selected, inoculated in brain heart 
infusion (BHI) broth (Difco, India) and incubated at 37 °C for 24 h. Subsequently, 
the isolates were repeatedly streaked onto the same agar to check their purity. We 
also considered tests for cata lase, coagulase and DNase, in addition to Gram staining,  
to confirm the species identification (S. aureus is positive for all these proves) [15]. The 
colonies isolated and identified as S. aureus were stored in nutrient broth containing 
25% glycerol at -80 ºC until further use.

Determination of antibiotic susceptibility profile

The antimicrobial susceptibility profile was determined by the disc diffusion method 
according to the recommendations of the Clinical Laboratory Standard Institute [16]. 
The following antimicrobials (DME Sensidisc, Brazil) were tested: β-lactams (penicil-
lin, PEN), macrolides (erythromycin, ERT), lincosamides (clindamycin, CLN), and 
quinolones (ciprofloxacin, CIP; ofloxacin, OFX; norfloxacin, NOR). Cefoxitin disk 
(DME Sensidisc, Brazil) was used to predict the oxacillin susceptibility profile. Staphy-
lococcus aureus ATCC 29213 was used as control. 

Inducible clindamycin-resistance assay

The D-test was performed according to the CLSI (2017) [16] to phenotypically deter-
mine resistance to MSLB. Briefly, the antimicrobials clindamycin (2 μg) and erythro-
mycin (15 μg) were placed at a distance of 15-26 mm on the surface of Mueller-Hinton 
agar (Alere, USA) which had been inoculated with each S. aureus isolate. The plates 
were then incubated at 35 ± 2 °C for 16-18 h. Verification of flattening in the eryth-
romycin inhibition halo resembling the letter “D” indicates inducible resistance to 
clindamycin (figure 1). Staphylococcus aureus ATCC25923 and S. aureus ATCC29213 
were used as controls.

Penicillinase production

Penicillinase production was investigated in all S. aureus isolates by the penicillin zone-
edge method according to the CLSI (2017) [16]. This test is based on the appearance 
of the inhibition zone edge surrounding the penicillin G disk (DME Sensidisc, Brazil) 
after the disc-diffusion assay. The result was defined as negative when the appearance 
of the edge was fuzzy, resembling a “beach”, and as positive when the edge was sharp 
like a “cliff ”. Staphylococcus aureus ATCC25923 and S. aureus ATCC29213 were used 
as controls.
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Results and discussion

Methicillin-resistant S. aureus is one of the most prevalent multidrug-resistant micro-
organisms that cause infection in both the community and in health-care settings. 
Macrolides and lincosamides are therapeutic options for the treatment of MRSA-
infections; however, resistance to these antibiotics has increased in recent years 
[17]. This phenomenon in S. aureus has rapidly emerged, mainly due to exposure to  
subinhibitory antibiotic concentrations combined with the acquisition of antibiotic- 
resistance genes, such as those of the erm family [18, 19]. Wastewater treatment plants 
combine these two factors, as well as having a nutrient-rich environment that favors 
microbial proliferation [10]. However, despite the importance of WWTPs in the  
dissemination of antimicrobial resistance, there is little available information concern-
ing the impact of this environment on MSLB resistance in S. aureus. Furthermore, only 
few studies have evaluated the influence of domestic WWTPs on antimicrobial resis-
tance in developing countries, and the dynamics of this phenomenon remain to be 
fully elucidated in these regions [10, 14]. Thus, in this study we aimed to evaluate the 
resistance profile as well as the phenotypic characteristics related to the clindamycin-
induced resistance and penicillinase production in S. aureus isolated from a full-scale 
domestic WWTP in Brazil. 

Figure 1. Representation of a positive result in the phenotypic test for inducible MLSB resistance 
(D-test) in S. aureus isolates. 1 - Erythromycin. 2 - Clindamycin.
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Microbiological analyses revealed 260 and 20 CFU/mL of S. aureus from RS and EF 
samples, respectively. In fact, several studies have revealed that, although there is often 
a high level of microbes present in the initial stages of wastewater treatment, microor-
ganisms are either eliminated or reduced in final stage [12, 20]. Similar to this study, the 
sewage treatment employed in WWTPs in Spain (88.3%) [21] and Germany (99.9%) 
[22] also showed high clearance rates for Staphylococcus. The drastic reduction in the  
S. aureus population after wastewater treatment can, at least in part, be explained by  
the retention time of the effluent. According to Li et al. (2015) [23], the retention time 
of effluent has a negative effect on the survival of S. aureus because it disrupts important 
cell surface properties such as the zeta potential, hydrophobicity, and charge density. 

A total of 35 different colonies (33 from RS and 2 from EF) were isolated on the man-
nitol agar, and these were included in the antimicrobial susceptibility tests and for 
phenotypic identification of resistance. As observed in table 1, in general the isolates 
showed high sensitivity to the antimicrobials tested except penicillin, which showed 
a considerable resistance rate (40.6%, 13/32) (figure 2). In accordance with our data, 
a high percentage of penicillin-resistant S. aureus in domestic WWTPs has also been 
found in Tunisia (100%) [24], Portugal (57.1%) [25] and Spain (40.62%) [21]. 

Despite previous studies having indicated the presence of MRSA in WWTPs [14, 
13, 26-28], our study did not identify any isolates with this phenotype (figure 2). 
Gram-negative bacteria are the predominant infectious agents in Latin America and 
the Caribbean, while Gram-positive bacteria are more frequent in the USA, Europe, 
and countries of the Pacific region [26]. Thus, it is expected that the selective pressure  
driving the spread of MRSA will be less frequent in Latin countries such as Brazil. Cor-
roborating this hypothesis, MRSA isolates are most common in WWTPs in the USA 
[13, 14], Australia [27], Taiwan [28] and Spain [21].

One of the most interesting findings from the current study was the low level of 
resistance to quinolones observed among the isolates. These antibiotics are partially 
metabolized by humans and animals, remaining active in the aquatic environment, and 
they are not removed by the treatments normally performed in WWTPs [29]. Thus, 
quinolone-resistant strains can be easily found in this environment. In this study, of the  
S. aureus isolates tested, none showed resistance to levofloxacin and norfloxacin, 
and only one isolate from EF was resistant to ofloxacin (3.1%, 1/32). Similarly, most  
S. aureus isolates were sensitive to erythromycin (91.4%, 32/35) (figure 2). In the 
past decade, the clinical use of erythromycin has been limited and is often substituted 
with other antibiotics due to their better pharmacokinetic proprieties and fewer side 
effects [30]. Thus, the low rate of erythromycin resistance reported in this study can 
be explained by reduced selective pressure related to this antibiotic. In turn, although 
clindamycin-resistant S. aureus was uncommon in the WWTP studied, it should be 
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Table 1. Summary of resistance profile and identification phenotypic of inducible MSLB resistance 

and penicillinase production from S. aureus isolated in a full-scale domestic wastewater treatment 
plants (WWTP).

S. aureus isolated
Antimicrobial resistance profilea Phenotypic testsb

ERT CLN PEN LEV NOR OFX OXA D-test Penicillinase

Raw sewage

SA1BEB S S S S S S S - +

SA2BEB S I S S S S S - +

SA3BEB S I R S S S S - +

SA4BEB S S S S S S S - +

SA5BEB S S R S S S S - +

SA6BEB S S S S S S S - +

SA7BEB S S S S S S S - +

SA8BEB S S R S S S S - +

SA1CEB S S R S S S S - +

SA2CEB S S S S S S S - +

SA3CEB S S S S S S S - +

SA4CEB S R R S S S S - +

SA5CEB S I S S S S S - +

SA6CEB S I S S S S S - -

SA1DEB S I R S S S S - +

SA2DEB S I S S S S S - +

SA5DEB S I S S S S S - +

SA7DEB S I S S S S S - +

SA8DEB S I S S S S S - +

SA1EEB I I R S S S S - +

SA2EEB S I R S S S S - +

SA5EEB S I S S S S S - +

SA1FEB S I S S S S S - -

SA2FEB S S S S S S S - +

SA5FEB S I R S S S S - +

(Continued)
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Table 1. Summary of resistance profile and identification phenotypic of inducible MSLB resistance 

and penicillinase production from S. aureus isolated in a full-scale domestic wastewater treatment 
plants (WWTP).

S. aureus isolated
Antimicrobial resistance profilea Phenotypic testsb

ERT CLN PEN LEV NOR OFX OXA D-test Penicillinase

SA6FEB R I S S S S S + -

SA2GEB R I NT NT NT NT S - NT

SA3GEB I S NT NT NT NT S - NT

SA4GEB S I R S S S S - +

SA7GEB S S S S S S S - -

SA8GEB I S R S S S S - -

SA2HEB R I NT NT NT NT S + NT

SA3HEB S I S S S S S - +

Effluent

SA3AEF S I R S S S S - +

SA6AEF S S R S S R S - +
aS: susceptible; R: resistant; I: intermediate. bpositive test (+); negative test (-). NT: not tested; ERT: 
erythromycin; CLN: clindamycin; PEN: penicillin; CIP: ciprofloxacin; OFX: ofloxacin; NOR: norfloxacin; 
OXA: oxacillin.

40

30

20

10

0

N
um

be
r o

f i
so

la
te

s

Susceptible Intermediate Resistant

ER
T

C
LN PE

N

O
FX LE

V

N
O

R

M
ET

Figure 2. Susceptibility profile of Staphylococcus aureus isolated from a full-scale domestic wastewater 
treatment plants (WWTP). ERT: erythromycin; CLN: clindamycin; PEN: penicillin; OFX: ofloxa-
cin; LEV: levofloxacin; NOR: norfloxacin; MET: methicillin.
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noted that 20 isolates (57.1%) showed an intermediate level of susceptibility to this  
lincosamide, which highlights the possibility of the spread of resistance within this  
environment (figure 2). Goldstein et al. [13] reported that sewage represents an 
important route of dissemination of MLSB-resistant S. aureus, and the most common 
resistance gene related to this phenotype was identified to be ermC. The family of 
erythromycin ribosomal methylase (erm) genes encodes an adenine-specific N-methyl-
transferase that methylates the 23S region of rRNA, conferring resistance to all macro-
lides, lincosamides, and streptogramin B [19].

Erythromycin-induced MSLB resistance was investigated by D-zone test. Two of 35 
isolates tested, both derived from RS, were found to be D-test-positive (5.7%). This 
finding corroborates a study by Hess & Gallert [22], which reported that inducible 
MLSB resistance (D-test-positive) in S. aureus from sewage (14-19%) occurs at a lower 
frequency than constitutive MLSB resistance (62.2-75.5%). Penicillinase production 
was also investigated in 32 S. aureus isolates by the penicillin zone-edge method. A 
total of 27 isolates were found to produce penicillinase, although several of these 
(55.5%) were susceptible to penicillin. According to Kaase et al. [31] the penicillin 
zone-edge test is the most sensitive phenotypic method for penicillinase detection, but 
some species that not showed genetic determinants to this beta-lactamase, might have 
positive result in test. Thus, the inconsistencies between the findings in this study high-
light the need to confirm, by molecular methods, whether blaZ gene is present in the 
positive isolates. 

In summary, MRSA isolates were absent, and we found a reduced rate of resistance to 
erythromycin in full-scale domestic WWTPs studded. The high frequency of resis-
tance to penicillin, in turn, suggests the indiscriminate use of this antibiotic in the 
region of station. In addition, the high rate of intermediate sensitivity to clindamycin  
among the isolates suggests that domestic sewage can contribute to the advance-
ment of MLSB-resistant S. aureus. However, future studies should be performed to 
better understand the dynamics of this phenomenon, especially in WWTPs from  
other regions of Brazil.
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