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Summary

EGFR and HER2 receptors are crucial signaling molecules tyrosine kinase involved 
in human cancer. Aberrant signaling is associated with a variety of cancers, frequently 
with poor prognosis. Currently, EGFR and HER2 receptors are being targeted by 
small molecules, which offer a huge benefit to those patients afflicted by aggressive 
forms of cancer, improving their prognosis. Both human and canine cancers share 
molecular, biological, histopathological, and clinical similarities, including EGFR 
and HER2 expression in some forms of cancer. However, despite the use of one 
tyrosine kinase inhibitor approved to treat canine mastocytoma, canine cancers 
overexpressed EGFR and HER2 do not yet have targeted therapy, leading to high 
morbidity and mortality. Targeting EGFR and HER2 receptors in canine cancers 
using comparative approaches in human cancer could lead to better outcomes.
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Resumen

Inhibidores EGFR y HER2 como tratamientos potenciales  
en oncología veterinaria

El receptor de factor de crecimiento epidérmico (Epidermal growth factor receptor, 
EGFR) y el receptor 2 del factor de crecimiento epidérmico (HER2 epidermal 
growth factor receptor 2) son moléculas señalizadoras cruciales pertenecientes a la 
familia de proteínas tirosina quinasa involucradas en el cáncer en humanos. La seña-
lización aberrante de dichos receptores se encuentra asociada con una variedad de 
tumores, frecuentemente asociados a mal pronóstico. Actualmente, EGFR y HER2 
son tratados específicamente a través de pequeñas moléculas inhibidoras, las cuales 
ofrecen un gran beneficio a aquellos pacientes que padecen formas agresivas de 
cáncer, y de esta manera su pronóstico mejora. Tanto el cáncer en medicina humana 
como veterinaria comparte similitudes moleculares, biológicas, histopatológicas y 
clínicas, las cuales incluyen la expresión tanto de EGFR y HER2 en algunas formas 
de cáncer. Sin embrago, a pesar del uso de un inhibidor tirosina quinasa aprobado 
para el manejo del mastocitoma canino los tumores que se caracterizan por la sobre-
expresión de EGFR y HER2 aún no cuentan con un inhibidor específico, lo cual 
conduce a alta morbilidad y mortalidad.

Palabras clave: Cáncer humano, cáncer en veterinaria, EGFR, HER2, inhibidores.

Introduction

Cancer is the most important cause of death in dogs worldwide [1-3]. As observed 
in human patients EGFR and HER2 receptors, tyrosine kinase receptors that play 
a fundamental role in the control of fundamental transduction and signaling cellu-
lar pathways involved in cell survival, cell proliferation, angiogenesis, cell adhesion, 
cell motility, development, and organogenesis, their dysregulation can result in both 
development and progression of a variety of tumors [4, 5]. Their overexpression and 
amplification are associated with poor prognosis in both species, however by contrast 
with human medicine, small animal veterinary oncology lacks small molecule inhibi-
tors targeting EGFR and HER2, despite the evidence of in vitro activity in canine can-
cer cell lines of some approved EGFR and HER2 small molecule inhibitors for use in 
humans [6, 7], in which using inhibitors can provide better prognosis. The objective of 
this literature research was to review and discuss the role of EGFR and HER2 in the 
biology of both human and veterinary cancer, and the potential benefit of using EGFR 
and HER2 small molecule inhibitors in veterinary practice.
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egfr and her2 structure

EGFR (epidermal growth factor receptor) and HER2, belong to the ErbB subclass 
of tyrosine kinases receptors (RTKs), one of the most studied signaling proteins and 
signaling transduction pathways regulators in biology [8-11]. EGFR was the first HER 
receptor identified as tyrosine kinase receptors a revolutionary discovery [8]. The cod-
ing genes of these receptors are EGFR/ERBB1/HER1, ERBB2/HER2/NEU, and can 
be found in two different chromosomes [12]. Under normal conditions, EGFR and 
HER2 are expressed by epithelial, mesenchymal, neuronal, cardiac, and mammary tis-
sues [13-15].

The structure presents the typical kinase bi-lobed folding. The N-terminal lobe con-
tains mainly β-strands and a one α-helix, whereas the C-terminal lobe is mostly α-helical 
[16]. The two lobes are connected through a flexible hinge region and separated by a 
cleft functioning as docking site for ATP [16]. 

Globally, EGFR and HER2 consist of an extracellular domain, a single hydrophobic 
transmembrane α-helix, a juxtamembrane segment, and a catalytic domain with tyro-
sine kinase activity [12]. ErBb family members exist as monomers, the ligand binding 
to the extracellular domain results in the formation of either homo or heterodimers, a 
process that activates the catalytic cytoplasmic domain and the C-terminal phosphory-
lation initiates further downstream signaling pathways [8].

Although EGFR can HER2 is the preferred dimerization partner to all the other 
members, the heterodimers forming with HER1 and HER3 manifest a strong signal-
ing activity [8, 10, 17]. The binding domains of ErbB family are stimulated by eleven  
polypeptide growth factor ligands distributed in 4 subgroups, which results in the for-
mation of dimers [18]. In contrast to EGFR, HER2 receptors are unable to bind growth 
factors physiologically. However, HER2 can form functional homodimers under non-
physiological expression, an important phenomenon in carcinogenesis [19].

egfr and her2 signaling pathways

EGFR and HER2 signaling pathways correspond to complex networks, their specific-
ity and potency are determined by several factors, and however, the most important 
determinant is the variety of binding proteins associated with the carboxy-terminal tail 
from each member of the family [20]. The autophosphorylated sites are determined 
both by the ligand identity and by the heterodimer partner [20]. HER2 can binds to 
a much quantity of phosphotyrosine-binding proteins in contrast to other receptors 
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of the ErbB family [21]. Additionally, EGFR and HER2 heterodimers present higher 
affinity and broader specificity to various ligands than other heterodimeric receptor 
complexes in this family, and have slow rates of growth-factor dissociation, slow endo-
cytosis and more recycle to the cell surface [22, 23]. This confers potent mutagenic  
signaling [24] due to the recruitment of multiple signaling pathways [10]. Ras (Ras/
Raf/MEK/ERK1/2 pathway), phospholipase C (PLCγ), Shc-activated mitogen- 
activated protein kinase (MAPK) and STAT (signal transducer and activator of  
transcription) proteins, especially STAT3 and STAT5 pathway are common targets of 
all the family ligands and PI3K/AKT are activated by the majority of the active dimers 
[5, 8, 25, 26]. The activation of simultaneous signaling cascades, including the MAPK 
pathway, the stress-activated protein cascade, protein kinase C (PKC) and the Akt 
pathway results in activation of transcriptional activity in the nucleus [8]. This variety 
of process involves both the proto-oncogenes fos, myc and Sp1 and Egr1 a family of  
zinc-finger-containing transcription factors and GA-binding protein (GABP) one  
of the Ets family members [25]. 

EGFR and HER2 signaling pathways play fundamental roles in cell survival, cell  
proliferation, angiogenesis, cell adhesion, cell motility, development, and organogen-
esis [5, 25]. However, their aberrant signaling results in key events leading to cancer 
development and progression [18].

egfr, her2, and oncogenesis

EGFR and HER2 dysregulation represent a potent oncogenic trigger [12, 27, 28]. The 
underlying mechanisms leading to this dysregulated activity include extracellular and 
cytoplasmatic domains mutations, which cause increased biosynthesis and levels of 
ErbB proteins. These mechanisms are tumor-specific [28].

Through receptors deregulation matrix metalloproteinases (MMPs) process its ligands, 
facilitating autocrine activation and growth signals auto-sufficiency [1, 28]. Loss of 
suppressor genes functions results in EFGR and HER receptors recycling, phenomena 
that induces the insensibility to growth inhibition [12, 28]. PI3K and STAT signal-
ing inhibit apoptosis, a potent mechanism regulator of cellular survival, additionally, 
STAT and MAPK signaling provide to cells with unlimited replicative potential [12]. 
Both STAT3 activation and vascular endothelial growth factor (VEGFR) transactiva-
tion results in sustained angiogenesis [29]. Finally, PLCγ, MAPK and MMP pathways 
are associated with invasion and metastasis [12, 30].
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egfr and her2 expression in human cancers

When EGFR and HER2 are deregulated, they can become potent oncogenic triggers 
[5, 31]. Resulting effects from aberrant EGFR and HER2 signaling pathways induce 
the hallmarks of cancer (self-sufficiency in growth signals, inhibitory signals insensi-
tivity, apoptosis evasion, angiogenesis, unlimited replication, invasive potential, and 
metastasis) [31, 32]. Deregulated receptors induce self-ligands processing, and hence, 
can establish autocrine-signaling loops, which provides EGFR and HER2 the ability 
to generate their own growth signals [5]. Frequently, loss of regulation occurs because 
of degradation evasion, and gain sustained signaling. Evasion results whether from 
increased reutilization or reduced degradation [33, 34]. Additionally, the loss of func-
tion of tumor suppressor proteins and constitutively activated receptors [35] increase 
the effect of inhibitory signals insensitivity [5].

Both amplification or overexpression of EGFR are frequently observed in breast can-
cer, non-small lung cancer [36], colorectal, urinary bladder, pancreatic, ovarian [18], 
head and neck squamous cell carcinoma [37, 38], renal [39], hepatocellular carcinoma 
[40], stomach [41], glioma, meningioma [42, 43], glioblastoma [44], and astrocytoma 
[8, 20], and they are associated with progression of disease, radiotherapy resistance, 
and poor survival [45, 46].

On the other hand, both amplification and overexpression of HER2 has been doc-
umented in breast and stomach cancer [47], salivary ducts carcinoma [48], ovarian  
cancer, pancreatic, cervical, endometrium, colon, glioblastoma, head and neck,  
non-small cell lung cancer, hepatocellular carcinoma, urinary bladder carcinoma, and 
pediatric osteosarcoma in variable degrees [49-52]. Its expression has been associated 
with an aggressive phenotype, highly metastatic degree, and poor prognosis [52].

egfr and her2 expression in veterinary oncology

Despite the role of EGFR and HER2 is well characterized in human medicine, in veteri-
nary medicine is still in its early stages [53]. In veterinary oncology, several studies have 
documented the overexpression of EGFR and HER2 and its correlation with progno-
sis, however, these results have been in certain degree contradictory [54], hence further 
research is needed [5]. In veterinary cancer, EGFR expression has been demonstrated 
in a variety of cancer, including head and neck squamous cell carcinoma [55], hepato-
cellular carcinoma [56, 57] , astrocytoma [5, 43], and glioblastoma [58]. There is an 
increasing body of evidence about the function of EGFR either in normal and neoplas-
tic mammary tissue in dogs, and its potential as a pharmacological target [59]. 
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In canine mammary tumors, one of the most common in dogs a recent study reports the 
positive correlation between EGFR expression by immunohistochemistry with angio-
genesis, histological grade of malignancy, mitotic grade, and clinical stage in canine 
mammary tumors [60]. Another research evaluated EGFR immunohistochemical 
expression in 138 tumor specimens, and revealed overexpression in 38 tissues (42.2%), 
this finding was associated with age, and tumoral size, and showed a relation between 
overexpression and malignant behavior [61]. Based on 5 molecular phenotypes estab-
lished in breast cancer according to estrogens, progesterone, and HER2 status [62], in 
canine mammary tumors researchers have attempted to evaluate the potential of this 
system [62-64]. One of these studies have revealed 45 de 241 to triple negative (18.7%), 
32 (71.1%) was positive to EGFR, and 13 (28.9%) was negative, and they were associ-
ated with pathological parameters (grade III, central necrosis, lymphatic infiltration, 
and high mitotic index) [62]. Another recent research has quantified EGFR in canine 
mammary tumors using ELISA in 75 specimens of 45 affected patients and 8 controls 
and demonstrated a statistically significant difference between both groups and a cor-
relation with relapse, and distant metastasis during follow-up, and both reduced global 
survival and disease-free time. These findings provide the rationale to the implementa-
tion to therapeutic intervention, in particular in cases with aggressive behavior [65]. 

In HER2, its expression has been documented in diverse types of cancer in dogs,  
especially in canine mammary tumors, which exists larger emphasis, there exists a  
correlation between overexpression and malignant behavior [61, 66]. Additionally, 
certain evidence in other types of cancer, such as transitional cell carcinoma in urinary 
bladder [7, 67], and canine osteosarcoma, has also reported [68]. Clonal aberrations 
have been identified in the HER2 gene in some types of cancer in dogs [69]. 

egfr and her2 tyrosine kinase inhibitors

All small molecules EGFR and HER2 inhibitors,  gefitinib (Iressa®, AstraZeneca),  
erlotinib (Tarceva1, OSI Pharmaceuticals), lapatinib (Tykerb, GlaxoSmithKline), 
vandetanib (Caprelsa®, AstraZeneca), afatinib (Gilotrif, Boehringer Ingelheim), 
neratinib (Nerlynx, Puma Biotechnology, Inc), and dacomitinib (Vizimpro, 
Pfizer), belong to quinazoline scaffold binding and occupying adenine of adenosine  
triphosphate (ATP) pocket, and are one of the most largest groups of RTKs inhibitors 
approved [70]. The members of this group are classified in reversible belong to the first 
generation, and irreversible belong to the second generation. EGFR and HER2 inhibi-
tors are further categorized into four types based on the conformation of the binding 
pocket and the Asp-Phe-Gly (DFG) motif [71, 72] from type I to type V [70].
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First generation of egfr and her2 inhibitors

Lapatinib

Lapatinib distosylate monohydrate (Tykerb, GlaxoSmithKline) an oral small mole-
cule reversible inhibitor [73] that targets both EGFR and HER2, was approved by the 
FDA in March 2007 to be used in combination with capecitabine (Xeloda; Roche) 
for patients with metastatic breast cancer overexpressing HER2 and who have received 
prior therapy including an anthracycline, a taxane and trastuzumab [14]. Lapatinib 
binds the kinase ATP-binding cleft of EGFR on its inactive conformation in contrast 
to other HER family inhibitors (erlotinib and gefitinib) that exhibit type I inhibition  
mechanism [70], additionally uses an allosteric pocket formed by the conforma- 
tion change of the DFG motif [74]. Lapatinib binds with the inactive conformation 
of HER4 and HER2 due shares the same contacting residues between both [75], its 
EGFR, HER2, and HER4 inhibition leads to inhibition of substrate phosphoryla-
tion and blocks MAPK and PI3K/Akt and treated cells depending on tumor type can 
undergo either apoptosis or growth arrest [73]. 

Second generation of egfr and her2 inhibitors

Neratinib

Neratinib maleate (Nerlynx, Puma Biotechnology, Inc), is an irreversible small mol-
ecule inhibitor initially designed to target specifically HER receptor using a model of 
homology for the catalytic domain [76]. Neratinib binds covalently with a cysteine 
residue in the adenosine triphosphate (ATP)-binding pocket of HER receptor kinases 
(Cys773 in EGFR and Cys805 in HER2), which is tough as a property to compete  
with the high concentration of ATP and provide prolongs inhibition of kinase  
catalytic activity [77]. It is considered as a pan-HER inhibitor because the cysteine 
residue required for binding is conserved in these three HER receptors [78]. Neratinib 
inhibits phosphorylation of MAPK [77], retinoblastoma gene product, blocks cell 
cycle progression, cyclin D1 expression, increase p27 levels (an inhibitor of cell cycle 
progression), which result in G1-S arrest and an increase in cells with sub-G1 DNA 
content, associated with apoptosis [77].  Nerlynx® is indicated as adjuvant treatment of 
patients with early stage HER2-overexpressed following adjuvant trastuzumab-based 
therapy [79].

Afatinib

Afatinib, an aniline-quinazoline, is an oral, potent irreversible EGFR and HER2 
inhibitor oral. Quinazoline ring binds to catalytic domain as observed with  
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inhibitors EGFR and HER2 [80] [81] According to efficacy on in vitro and in vivo 
assays in lung cancer [82, 83] afatinib was approved in 2013 as Gilotrif ®, Boehringer 
Ingelheim Pharmaceuticals, Inc, to the therapy of non-small cell lung cancer. Its potency 
in vitro is better than gefitinib and lapatinib due to covalent nature [82]. Afatinib has 
been effective to a variety of cell lines of breast cancer (BT-474, SUM190-PT, SUM 
149-PT y T47D). In fact, this finding was crucial to elucidate its action against Her3, 
associated with the ability to confer cellular survival to cancer cells throughout the 
PI3K/Akt pathway [84]. Afatinib has demonstrated synergistic activity to mTOR 
inhibitor rapamycin and trastuzumab [83], and longer duration of action in vitro in 
contrast with reversible inhibitors erlotinib, gefitinib y lapatinib [82, 85]. Nowadays the 
potential role of afatinib as adjuvant therapy with paclitaxel in breast cancer is investi-
gated, however, the results have not yet released [86]. In breast cancer, afatinib has been 
administered because of HER2 inhibition with promising results in HER overexpress-
ing patients with combination to first-line therapies [87]. Adverse effects documented 
are very similar to those observed with lapatinib (diarrhea and skin reactions). 

Dacomitinib

Dacomitinib inhibits irreversibly EGFR, HER2, and HER4. Its preclinical efficacy 
was demonstrated only on EGFR T790M, and some HER2 cell lines [88-90]. In both 
phases, I and II, dacomitinib was safe and efficient in patients with non-small cell 
lung cancer, even compared with patients treated with erlotinib [91]. Adverse effects 
observed in different trials are diarrhea, dermatitis acneiform, and other types of skin 
toxicities, and stomatitis [91]. In 2018 was approved the first-line treatment of patients 
with metastatic non-small cell lung cancer (NSCLC) with epidermal growth factor 
receptor (EGFR) exon 19 deletion or exon 21 L858R substitution mutations.

Comparative oncology: opportunities  
for both species

The insights in the molecular and genomic research of cancer have improved the 
understanding about the similarities between humans and dogs and have led to the 
concept of comparative oncology, which has the objective to accelerate simultaneously 
the cancer drug development in both species [92]. Whole canine genome sequence 
and assembly released in 2005 and improved in 2014 has revealed strong similarities 
in genes implied in cancer development and progression [93, 94]. Additionally, it is 
widely accepted that both humans and dogs share certain features in cancer, includ-
ing determined risk factors, such as age, hormonal, environmental influence, histo-
logical types, overexpression of a variety of biomarkers such as cellular proliferation  
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(Ki67, AgNor), p53 mutations, EGFR, MMPs, cyclooxygenase 2 (COX2), molecular, 
clinical behaviors and outcomes, however also exist significant differences [95-98].

Tyrosine kinase inhibitors in veterinary oncology

Actually, in veterinary oncology only exists one small molecule inhibitor of RTKs 
approved to clinical use in canine patients by FDA, toceranib phosphate (Palladia, 
Pfizer Animal Health), an oral small molecule inhibitor targeting VEGFR2, plate-
let-derived growth factor receptor (PDGFRα) and c-kit [99]. Due Palladia has  
structural similarity with Sunitinib® an oral small molecule inhibitor targeting 
VEGFR2, VEGFR3, PDGFRα/β, KIT, CSF1R, FLT-3, and RET, probably has an 
additional activity to these molecules [100]. Toceranib phosphate was initially devel-
oped as an antiangiogenic drug, however, due to its wider pharmacological profile that 
includes KIT and FLT-3 causes antitumor activity [101].

Its first clinical efficacy in canine cancer patients was a phase 1 clinical trial, which 
included 57 dogs with diverse temporal types including sarcomas, carcinomas, mel-
anomas, myelomas, and mastocytomas. The response in 16 patients was observed:  
6 with complete response and 10 with partial response and stable disease. This study 
documented a biological activity of 54% [99].

After its FDA approved licensed in June 2009, has been utilized as an extra label in other 
temporal types that failed to standard treatments, including metastatic osteosarcoma, 
anal sacs adenocarcinoma, thyroid carcinoma, head, and neck carcinoma, and nasal car-
cinoma documented clinical benefit in 63 of 85 dogs [102]. Additionally, have been 
documented responses in a case of [103], synergistic activity with piroxicam in transi-
tional and squamous cell carcinoma and with vinblastin in mastocytoma [104, 105]. 

In combination with radiotherapy its efficacy was evaluated, was observed the objec-
tive response in 76.4%, 58.8% of canine patients achieved a complete response and 
17.6% partial response, which suggest clinical benefit [106].

Imatinib (Gleevec, Novartis) an oral small molecule inhibitor targeting Bcr/Abl, 
platelet-derived growth factor (PDGF) and stem cell factor (SCF) c-kit in human 
patients with chronic myelogenous leukemia (CML), myelodysplastic/myeloprolif-
erative diseases, aggressive systemic mastocytosis, hypereosinophilic syndrome and/
or chronic eosinophilic leukemia (CEL), dermatofibrosarcoma protuberans, and 
malignant gastrointestinal stromal tumors (GIST), demonstrated tolerance in canine 
patients [107-109].
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An interesting in vitro study with Gefitinib (Iressa1®, AstraZeneca), an oral small 
molecule inhibitor targeting EGFR, conducted in a cellular line of CMT (REM134) 
demonstrated a favorable effect in cellular proliferation, migration. Additionally, other 
small molecule inhibitors such as AG825, which targeting HER2 and GW583340, 
which targeting EGFR and ERBB2, have documented activity, with the potential use 
in veterinary oncology clinical trials [6].

Conclusions

As documented in human cancer, in canine patients the aberrant expression of EGFR 
and HER2 receptors constitute a potent oncogenic trigger, however in canine patients 
still clearly unresolved the expression patterns and the precise molecular structure, 
which limit its inclusion in validated clinical trials. Despite the increasing evidence of 
the biological activity of EGFR and HER2 small molecule inhibitors using in human 
medicine in canine cancer cell lines, their clinical use not have been yet received spe-
cial attention, in contrast to toceranib phosphate and masitinib mesylate in veterinary 
oncology. Actually, there is an increasing interest in developing targeted therapies in 
veterinary oncology. The in vitro efficacy documented regarding some small molecule 
tyrosine kinase inhibitors, can constitute an interesting starting point to initiate the 
investigation of therapeutic potential to target EGFR and HER2 in veterinary cancer 
and then improve the clinical outcomes, survival rates, and optimize health quality of 
life of these patients. Veterinary cancer high prevalence requires targeted therapies, and 
the routinely uses of EGFR and HER2 small molecules inhibitors represent an excel-
lent opportunity to address this worldwide problem that affects dogs.
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