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Summary

Ultrasonic velocity, density and viscosity of Lacosamide were measured in various 
alcohols at 298.15 K. From these measured experimental data, various acoustical 
parameters such as Specific acoustical impedance (Z), Adiabatic compressibility 
(кs), Intermolecular free path length (Lf), Rao’s molar sound function (Rm), Molar 
compressibility (W), van der Waals constant (b), Solvation number (Sn), Thermal 
conductivity (Kbm), Relaxation strength (r) have been calculated for understanding 
the molecular interactions occurring in the solution.
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Resumen

Investigación ultrasónica de lacosamida en varios alcoholes a 
298,15 K

Se midieron la velocidad ultrasónica, la densidad y la viscosidad de soluciones de 
lacosamida en varios alcoholes a 298,15 K. A partir de estos datos experimentales, 
se calcularon varios parámetros acústicos para comprender las interacciones molecu-
lares que ocurren en la solución, tales como la impedancia acústica específica (Z), la 
compresibilidad adiabática (кs), la longitud del camino libre intermolecular (Lf), la 
función molar de sonido de Rao (Rm), la compresibilidad molar (W), la constante de 
van der Waals (b), el número de solvatación (Sn), la conductividad térmica (Kbm), y 
la fuerza de relajación (r).
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Introduction

Ultrasonic technology has a wide range of applications in the fields of biology [1-3], 
pharmacy [4], polymer [5, 6], civil engineering [7], nuclear power generation [8], sono-
chemistry [9], medical [10], material science [11], agriculture [12], navigation system 
[13] etc. Due to its non- destructive nature [14], it is also used in various industries 
such as plastic [15], cement [16], soap [17], paper [18], petrochemicals [19], glass [20], 
food [21], dairy [22] etc. Further, ultrasonic and related thermodynamic parameters of 
solid substances provide useful information related to structure of molecules, molecular 
packing and inter and intra molecular interactions [23]. In liquid mixtures [24, 25] and 
solutions [26], these parameters help to interpret type of molecular interactions [27].

Lacosamide is an amino acid derivative; N-methyl-D-aspartic acid and is non-hygro-
scopic white to yellow crystalline compound of molecular weight 250.294 g.mol–1 and 
of molecular formula C13H18N2O3. It is R-enantiomer of IUPAC name (R)-2-acet-
amido-N-benzyl-3-methoxy propionamide [28]. 

The preclinical and clinical result of the drug has demonstrated an excellent anticon-
vulsant activity [29-32] and is used for the treatment of both epilepsy and diabetic 
neuropathic pain [33]. Further, drug was found to be more potent than sodium chan-
nel blocking drug phonation and barbiturate phenobarbital [34] and is used in combi-
nation with other agents as therapy of partial onset seizures. 

Ultrasonic study of drugs in various solvents are provide valuable information related 
to interactions of drug with the solvent which is useful to prepare appropriate con-
centrated dose for tablets, injection and oral dose in appropriate solvents [35-37]. 
The ultrasonic data and related thermoacoustic parameters are also useful to study the 
pharmacodynamic and pharmacokinetics of drugs [38].

In the present study, various acoustical properties of lacosamide in various alcohols 
have been studied at 298.15 K over a wide range of concentrations by measuring ultra-
sound velocity, density and viscosity. The results are interpreted to understand the 
interactions of lacosamide in alcohols. The evaluated data may be useful for further 
research and development of drug lacosamide.

Experimental

The solvents selected for the study were alcohols such as methanol, ethanol, 1-pro-
panol, 1-butanol and1-pentanol.The drug lacosamide was recrystallized before use.  
Figure 1 shows the structure of lacosamide.
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Figure 1. Molecular structure of lacosamide.

The solutions of lacosamide of various concentrations were prepared in all selected 
alcohols by using weight balance (Mettler Toledo AB204-S, Switzerland).

Measurements of ultrasonic velocity and density

The Ultrasonic velocity and density of all the pure alcohols and solutions were mea-
sured at 298.15 K using Anton Paar density and sound velocity meter (Model DSA 
5000M). The accuracy of ultrasound velocity and density are ±0.5 m.sec–1 and  
±0.005 kg.m–³ respectively.

Measurements of viscosity

The Ubbelohde viscometer with 25 ml capacity was used for the viscosity measure-
ment. In the viscometer, milli Q-water/pure solvent/solution were filled, and flow 
time of liquid was measured at 298.15 K. The digital stopwatch (Model: RACER 
HS–10W), with an accuracy of +0.01 second was used to determine flow time of solu-
tions. The temperature stability was maintained by circulating water from a thermostat 
(NOVA NV-8550 E, accuracy of ± 0.1 K around the viscometer. The accuracy of vis-
cosity is ± 0.05 %. Using the flow time of water and solution/ pure solvent and viscos-
ity of standard water sample, viscosity of solvent/ solution was determined according 
to equation:
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where η1 and η2 are viscosities of water and solution/pure solvent, respectively. t1 and 
t2 are the flow time for water and sample solution/pure solvent whereas ρ1 and ρ2 are 
density of water and solution/pure solvent, respectively.
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Results and discussion

The experimental data of density, viscosity and sound velocity of pure solvents are 
given in table 1 along with theoretical values taken from literature. 

Table 1. Experimental values of density, sound velocity and viscosity of pure solvents at 298.15 K*. 

Liquid Density (kg·m–3) Viscosity (mPa·s) Ultrasonic velocity (m·s–1)

Methanol 787.37 (787.20)a 0.549 (0.545)a 1104.90 (1104.00)a

Ethanol 805.94 (790.00)b 1.124 (1.105)c 1204.92 (1207.00)b

1-Propanol 800.22 (800.80)d 1.946 (1.943)d 1206.13 (1205.80)e

1-Butanol 807.88 (806.60)f 2.581 (2.585)g 1243.92 (1240.60)f

1-Pentanol 811.67 (811.00)h 3.348 (3.412)i 1275.32 (1275.33)h

*The values in parenthesis are from literature (a: [39], b: [40], c: [41], d: [42], e: [43], f: [44], g: [45], h: [46], 
i: [47]).

Table 2 shows the experimental data of density, viscosity and sound velocity of all the 
solutions in different solvents. It is clear from table 2 that ultrasonic velocity increases 
with increase in concentration in all selected alcohols. Further, it is minimum for 
methanol and maximum for 1-pentanol.

Table 2. Experimental values of density, viscosity, and ultrasound velocity of lacosamide in different 
alcohols at 298.15 K.

Conc. (M) Density (kg·m–3) Viscosity (mPa·s) Ultrasonic velocity (m·s–1)

Methanol

0.00 787.37 0.5499 1104.90

0.01 788.59 0.5697 1105.91

0.02 789.45 0.5761 1107.06

0.04 791.28 0.5854 1109.10

0.06 792.77 0.5957 1110.96

0.08 794.75 0.6073 1112.85

0.10 796.88 0.6141 1115.16

(Continued)
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Table 2. Experimental values of density, viscosity, and ultrasound velocity of lacosamide in different 
alcohols at 298.15 K.

Conc. (M) Density (kg·m–3) Viscosity (mPa·s) Ultrasonic velocity (m·s–1)

Ethanol
0.00 805.94 1.1240 1204.92
0.01 807.38 1.1370 1205.85
0.02 808.17 1.1602 1206.64
0.04 810.36 1.1855 1208.05
0.06 812.05 1.2213 1209.29
0.08 813.65 1.2682 1210.60
0.10 815.21 1.3041 1211.73

1-Propanol
0.00 800.22 1.9466 1206.13
0.01 800.95 1.9922 1207.09
0.02 802.08 2.0498 1208.18
0.04 803.80 2.1091 1209.72
0.06 805.36 2.1572 1211.04
0.08 806.91 2.1945 1212.64
0.10 808.29 2.2424 1213.89

1-Butanol
0.00 807.29 2.5816 1243.92
0.01 807.88 2.6056 1244.15
0.02 808.55 2.6409 1244.75
0.04 810.12 2.6903 1245.62
0.06 811.56 2.7506 1246.56
0.08 812.91 2.8218 1247.62
0.10 814.00 2.8812 1248.57

1-Pentanol
0.00 811.67 3.3484 1275.32
0.01 812.10 3.3921 1275.99
0.02 813.25 3.4493 1276.43
0.04 814.40 3.5172 1277.37
0.06 816.09 3.5771 1278.23
0.08 817.31 3.6457 1279.30
0.10 818.78 3.6944 1280.17
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The graphical presentation of concentration dependence of ultrasonic velocity in dif-
ferent alcohols is shown in figure 2. It is clear from figure 2 that there is linear increase 
of ultrasonic velocity with concentration in all the alcohols. The order of ultrasound 
velocity in alcohols is: methanol > ethanol > 1-propanol > 1-butanol > 1-pentanol. 
However, there is overlapping in velocity values for ethanol and 1-Propanol. This may 
be due to the fact that the ethanol in the present study used was only 99% pure. So, the 
presence of impurity affects the velocity. Overall, ultrasound velocity increases with 
increase in CH2 group of alcohols.
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Figure 2. The variations of sound velocity of lacosamide with concentrations in alcohols at  
298.15 K. ♦: Methanol; ▀: Ethanol; ▲:1-Propanol; ●:1-Butanol; ♦:1-Pentanol.

From the experimental data of density (ρ), viscosity (η) and sound velocity (U ), follow-
ing acoustical parameters were calculated.

Specific acoustical impedance (Z) [48]:

             Z U= ⋅r  (2)

Adiabatic compressibility (кs) [49]:

            s U
=

1
2r

 (3)

Intermolecular free path length (Lf):

        L K Kf J S= ⋅ 1 2/  (4)

where KJ is the Jacobson constant (= 2.0965 × 10–6) at 298.15 K.
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Rao’s molar sound function (Rm) [50]:

        R M Um =







r

1
3  (5)

where M is the molar mass of solution and can be calculated by following equation: 
M M W M W= +1 1 2 2 .

Molar compressibility (W):
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Van der Waals constant (b):
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where R is the gas constant (8.3143 J.K–1.mol–1) and T is absolute temperature.

Solvation number (Sn):
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where X is the number of grams of solute in 100 g of the solution. M1 and M2 are the 
molar masses and кal and кa are adiabatic compressibility of solvent and solution respec-
tively.

Thermal conductivity (Kbm) [51]:

    K N
M

k Ubm
A

B=
⋅






3

2
3r  (9)

where NA is the Avogadro’s number (6.0221 × 1023), kB is the Boltzmann constant  
(kB = 1.38064852 × 10–23 m2.kg–2.K–1) and M is the molar mass of solution.

Relaxation strength (r):

         r U
U

= −
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 (10)
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where U¥ = 1.6 × 103 m.s–1

Some of these evaluated acoustical parameters are reported in table 3. The variation 
of specific acoustical impedance with concentration is shown in figure 3. The specific 
acoustical impedance is the measurement of opposition in acoustical flow by acoustic 
pressure in the solution [52]. It is observed from figure 2 that specific acoustical imped-
ance (Z) increases with increase of concentration. Further, as CH2 group increases in 
alcohols, Z increases i.e., it is maximum in 1-pentanol and minimum in methanol. The 
increase in specific acoustical impedance indicates the existence of solvent-solute inter-
actions in solutions. 

Table 3. Some evaluated acoustical parameters of lacosamide in different alcohols at 298.15 K.

Conc.
(M) r Rm

(m10/3·s–1/3·mol–1) Sn
Kbm

(W·K–1·m–1) W b
(m3·mol–1)

Methanol

0.00 0.5231 4.207 x 10–4 - 0.2759 7.812 x 10–4 5.725 x 10–5

0.01 0.5222 4.292 x 10–4 7.4 0.2725 7.973 x 10–4 5.944 x 10–5

0.02 0.5212 4.380 x 10–4 7.7 0.2692 8.136 x 10–4 6.170 x 10–5

0.04 0.5194 4.553 x 10–4 8.0 0.2629 8.459 x 10–4 6.627 x 10–5

0.06 0.5179 4.726 x 10–4 8.5 0.2570 8.783 x 10–4 7.096 x 10–5

0.08 0.5162 4.895 x 10–4 8.6 0.2516 9.099 x 10–4 7.570 x 10–5

0.10 0.5142 5.062 x 10–4 8.7 0.2466 9.411 x 10–4 8.055 x 10–5

Ethanol

0.00 0.4329 6.083 x 10–4 - 0.2398 1.129 x 10–3 1.190 x 10–4

0.01 0.4320 6.157 x 10–4 5.1 0.2381 1.143 x 10–3 1.217 x 10–4

0.02 0.4313 6.236 x 10–4 6.1 0.2363 1.157 x 10–3 1.245 x 10–4

0.04 0.4299 6.386 x 10–4 6.4 0.2329 1.186 x 10–3 1.300 x 10–4

0.06 0.4288 6.540 x 10–4 6.9 0.2295 1.215 x 10–3 1.356 x 10–4

0.08 0.4275 6.693 x 10–4 7.3 0.2263 1.243 x 10–3 1.413 x 10–4

0.10 0.4264 6.845 x 10–4 7.7 0.2232 1.272 x 10–3 1.470 x 10–4

(Continued)
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Table 3. Some evaluated acoustical parameters of lacosamide in different alcohols at 298.15 K.

Conc.
(M) r Rm

(m10/3·s–1/3·mol–1) Sn
Kbm

(W·K–1·m–1) W b
(m3·mol–1)

1-propanol

0.00 0.4317 7.993 x 10–4 - 0.2002 1.482 x 10–3 1.876 x 10–4

0.01 0.4308 8.067 x 10–4 4.2 0.1991 1.495 x 10–3 1.908 x 10–4

0.02 0.4298 8.137 x 10–4 4.6 0.1982 1.509 x 10–3 1.938 x 10–4

0.04 0.4284 8.280 x 10–4 5.1 0.1962 1.535 x 10–3 2.000 x 10–4

0.06 0.4271 8.422 x 10–4 5.5 0.1943 1.562 x 10–3 2.062 x 10–4

0.08 0.4256 8.565 x 10–4 5.6 0.1924 1.589 x 10–3 2.125 x 10–4

0.10 0.4244 8.708 x 10–4 5.8 0.1905 1.616 x 10–3 2.189 x 10–4

1-butanol

0.00 0.3956 9.874 x 10–4 - 0.1805 1.830 x 10–3 2.742 x 10–4

0.01 0.3953 9.940 x 10–4 5.5 0.1798 1.842 x 10–3 2.774 x 10–4

0.02 0.3948 1.001 x 10–3 6.3 0.1791 1.855 x 10–3 2.807 x 10–4

0.04 0.3939 1.013 x 10–3 6.8 0.1777 1.879 x 10–3 2.871 x 10–4

0.06 0.3930 1.026 x 10–3 6.7 0.1764 1.903 x 10–3 2.936 x 10–4

0.08 0.3920 1.039 x 10–3 6.7 0.1751 1.927 x 10–3 3.001 x 10–4

0.10 0.3910 1.052 x 10–3 6.8 0.1738 1.952 x 10–3 3.068 x 10–4

1-pentanol

0.00 0.3647 1.178 x 10–3 - 0.1655 2.182 x 10–3 3.739 x 10–4

0.01 0.3640 1.184 x 10–3 4.5 0.1650 2.193 x 10–3 3.774 x 10–4

0.02 0.3636 1.189 x 10–3 4.7 0.1646 2.203 x 10–3 3.805 x 10–4

0.04 0.3626 1.201 x 10–3 5.4 0.1637 2.226 x 10–3 3.872 x 10–4

0.06 0.3618 1.212 x 10–3 5.4 0.1628 2.246 x 10–3 3.937 x 10–4

0.08 0.3607 1.224 x 10–3 5.5 0.1619 2.269 x 10–3 4.005 x 10–4

0.10 0.3598 1.235 x 10–3 5.5 0.1611 2.290 x 10–3 4.071 x 10–4
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Figure 3. The variations of specific acoustical impedance of lacosamide with concentrations in        
alcohols at 298.15 K. ♦: Methanol; ▀: Ethanol; ▲:1-Propanol; ●:1-Butanol; ♦:1-Pentanol.

The variation of adiabatic compressibility (кs) and intermolecular free path length (Lf) 
with concentration are given in figures 4 and 5 respectively. Both these parameters are 
observed to decrease with concentration. Further, as number of CH2 group increases, 
these parameters decrease. The decrease of intermolecular free path length suggests 
that distance between solute i.e., lacosamide and solvent molecules decreases with con-
centration. So, when distance decreases, velocity increases (figure 2). 

The compressibility of the solution is mainly due to free solvent molecules around 
solute i.e., drug molecules. So, when there is strong interaction between solvent and 
lacosamide molecules, compressibility decreases which is the case in present study. 
By increase in concentration of lacosamide, molecular associations are enhanced and 
newly formed aggregates cause adiabatic compressibility to decrease.

Table 3 shows the decrease in relaxation strength (r) also with concentration which 
also suggests the predominance of solvent-solute interactions in studied solutions. 

It is also observed from table 3 that Rao’s molar sound function (Rm), molar compress-
ibility (W) and van der Waals constant (b) increase with increases in concentration. 
The variation of Rao’s molar function (Rm) with concentrations is also shown in figure 
6 for all the studied alcohols and is found to increase linearly. The least square equation 
and correlation coefficient (γ) values for some of the evaluated parameters are given 
in table 4. It is observed that for Rao’s molar sound function, van der Waals constant 
and molar compressibility, correlation coefficient is almost unity. This indicates that 
although there are interactions between drug molecules with alcohol molecules, there 
is no complex formation.
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The type of interactions of lacosamide drug with alcohols is further confirmed by 
another parameter known as solvation number (Sn). This gives information regarding 
structure forming or structure breaking capacity of a solute in different solvents. The 
solvation number can be positive or negative. For the studied alcohols, solvation num-
ber of lacosamide is plotted against concentrations as shown in figure 7. It is observed 
from figure 7 and table 3 that the solvation number is positive for all the alcohols.  
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Figure 4. The variations of adiabatic compressibility of lacosamide with concentrations in alcohols 
at 298.15 K. ♦: Methanol; ▀: Ethanol; ▲:1-Propanol; ●:1-Butanol; ♦:1-Pentanol.
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Figure 5. The variations of intermolecular free path length of lacosamide with concentrations in 
alcohols at 298.15 K. ♦: Methanol; ▀: Ethanol; ▲:1-Propanol; ●:1-Butanol; ♦:1-Pentanol.
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For all the alcohols, it increases with increase in concentration. However, in some cases, 
it becomes almost constant at higher concentrations. The positive solvation number 
indicates structure forming tendency of lacosamide in alcohols. This again proves 
strong molecular interactions between lacosamide and alcohol molecules.
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Figure 6. The variation of Rao’s molar sound function of lacosamide with concentrations in alco-
hols at 298.15 K. ♦: Methanol; ▀: Ethanol; ▲:1-Propanol; ●:1-Butanol; ♦:1-Pentanol.
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Figure 7. The variations of solvation number of lacosamide with concentrations in alcohols at 
298.15 K. ♦: Methanol; ▀: Ethanol; ▲:1-Propanol; ●:1-Butanol; ♦:1-Pentanol.
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The thermal conductivity of solution is also found to decrease linearly with concen-
tration as given in table 3. The variation in thermal conductivity with concentration 
is attributed to various factors such as Brownian motion, clustering etc. [51]. The 
decrease of thermal conductivity with concentration is similar to decrease of intermo-
lecular free path length. As solute-solvent interaction increases with concentration, 
thermal conductivity is found to decrease which may be due to decrease in Brownian 
motion. In different alcohols, order of thermal conductivity is: methanol > ethanol 
> 1-propanol > 1-butanol > 1-pentanol i.e., it decreases with increase of CH2 groups  
of alcohol. 

The predominance of solute- solvent interactions in studied alcohols is further proved 
by the increases in viscosity with concentration which is shown in table 2. The experi-
mental viscosity data have also been analyzed using the Jones-Dole equation [53]:

                
h
h0

1
21= + +AC BC  (11)

Where  and 0 are the viscosity of solutions and pure solvents, respectively. C is the 
molar concentration of lacosamide. The parameters A and B are characteristic of sol-
vents and lacosamide. The coefficient A represents the contribution from interionic 
electrostatic forces and is a measure of solute-solute interactions whereas B is an 
empirical parameter which gives information related to ion solvent interactions and 
structure factors [54]. The values of A and B parameters have been evaluated from the 
intercept and slope of plots of (η/η0 – 1). C1/2 vs. C1/2 and are reported in table 5. It is 
observed that A values are small and are negative for two alcohols whereas B values are 
positive and for some alcohols, it is larger as compared to other alcohols. However, no 
regular trend is observed for both A and B coefficients in selected alcohols. The smaller 
or negative A values proves that ion-ion interactions i.e. solute-solute interactions 
are weak in studied solutions whereas positive B coefficient indicates the presence of 
strong solute-solvent interactions [55] i.e., structure forming tendency of lacosamide 
[56]. Thus, evaluated acoustical parameters and Jones-Dole coefficients both confirm 
the structure forming tendency of lacosamide in studied alcohols.
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Conclusions

In the solutions of drug lacosamide in studied alcohols, solute-solvent interactions 
dominate. These interactions increases from methanol to 1-pentanol i.e., interactions 
increase with increase in CH2 group of alcohols. Thus, lacosamide exhibited structure 
forming tendency in studied alcohols due to predominance of solute- solvent interac-
tions.
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