Scientific research article / http://doi.org/10.15446/rcciquifa.v50n1.95463

Prediction of sulfamerazine and sulfamethazine solubility in some cosolvent mixtures using non-ideal solution models

Luz Elena Tinoco, Diana M. Galindres, Jhonny Osorio, Rossember E. Cárdenas*

Grupo de Fisicoquímica y Análisis Matemático, Facultad de Ciencias y Humanidades, Fundación Universidad de América, Avda Circunvalar No. 20-53, Bogotá D. C., Colombia.

* Corresponding author: rossember.cardenas@profesores.uamerica.edu.co

Received: 6 January 2021

Revised: 15 January 2021

Accepted: 18 January 2021

Summary

Introduction: Experimental Solubilities of sulfamerazine (SMR) and sulfamethazine (SMT) in some (methanol + water), (ethanol + water) and (1-propanol + water) cosolvent mixtures were collected from the literature at five temperatures from 293.15 to 313.15 K. Methodology: The results were analyzed with the van't Hoff, Apelblat modified, Buchowski-Ksiazaczak λh , van't Hoff-Yaws model, twoparameter Weibull function model. It was determined that the models that best describe the solubility of these sulfonamides in (alcohol + water) mixtures were the van't Hoff and Apelblat models, obtaining correlation indices greater than 0.99 in all cases. **Results:** The results obtained with the Modified Apelblat equation presents a high correlation index for the solubility of SMR and SMT in cosolvent mixtures, followed by the van't Hoff-Yaws model that presents a high fit of the estimated data with respect to the theoretical ones. According to the two-parameter Weibull function model, the solubility of SMR and SMT in the co-solvent mixtures shows important deviations from ideality, which is consistent with the literature. The results are discussed in terms of the solute-solvent interactions that occur in this system.

Keywords: Sulfamerazine, sulfamethazine, solubility, van't Hoff model, Apelblat modified model, Buchowski-Ksiazaczak λh model, van't Hoff-Yaws model, two-parameter Weibull function model.

Resumen

Predicción de la solubilidad de sulfamerazina y sulfametazina en algunas mezclas cosolventes utilizando modelos de solución no ideales

Introducción: las solubilidades experimentales de la sulfamerazina (SMR) y la sulfametazina (SMT) en algunas mezclas cosolvents (metanol + agua), (etanol + agua) y (1-propanol + agua), se revisaron en la literatura a cinco temperaturas de 293,15 a 313,15 K. Metodología: los resultados se analizaron con el modelo van't Hoff, Apelblat modificado, Buchowski-Ksiazaczak λh , van't Hoff-Yaws, y el modelo de la función Weibull de dos parámetros. Se determinó que los modelos que mejor describen la solubilidad de estas sulfonamidas en mezclas (alcohol + agua) son los modelos de van't Hoff y Apelblat, obteniendo índices de correlación superiores a 0,99 en todos los casos. Resultados: los resultados obtenidos con la ecuación de Apelblat modificada presentan un alto índice de correlación para la solubilidad de SMR y SMT en mezclas de cosolventes, seguido del modelo van't Hoff-Yaws que presenta un alto ajuste de los datos calculados con respecto a los teóricos. Según el modelo de la función de Weibull de dos parámetros, la solubilidad de la SMR y la SMT en las mezclas de cosolventes muestra importantes desviaciones de las ideales, lo que es coherente con la literatura. Los resultados se discuten en términos de las interacciones soluto-solvente que se producen en este sistema.

Palabras clave: Sulfametazina, sulfamerazina, solubilidad, modelo de van't Hoff, modelo de Apelblat modificado, modelo de Buchowski-Ksiazaczak λh , modelo de van't Hoff-Yaws, modelo de Weibull de dos parámetros.

Resumo

Predição da solubilidade de sulfamerazina e sulfametazina em algumas misturas de cosolventes usando modelos de solução não ideais

Introdução: as solubilidades experimentais de sulfamerazina (SMR e sulfametazina (SMT) em algumas misturas de cossolventes (metanol + água), (etanol + água) e (1-propanol + água), foram revisadas na literatura em cinco temperaturas de 293,15 a 313,15 K. **Metodologia:** os resultados foram analisados com o modelo van't Hoff, Apelblat modificado, Buchowski-Ksiazaczak λh , van't Hoff-Yaws e o modelo de

função Weibull de dois parâmetros. Determinou-se que os modelos que melhor descrevem a solubilidade dessas sulfonamidas em misturas (álcool + água) são os modelos van't Hoff e Apelblat, obtendo índices de correlação superiores a 0,99 em todos os casos. **Resultados:** os resultados obtidos com a equação de Apelblat modificada apresentam um alto índice de correlação para a solubilidade de SMR e SMT em misturas de cosolventes, seguido pelo modelo de van't Hoff-Yaws que apresenta um alto ajuste dos dados calculados em relação a teóricos. De acordo com o modelo de função Weibull de dois parâmetros, a solubilidade de SMR e SMT em misturas de cosolventes apresenta desvios significativos dos ideais, o que é consistente com a literatura. Os resultados são discutidos em termos das interações soluto-solvente que ocorrem neste sistema.

Palavras-chave: Sulfametazina, sulfamerazina, solubilidade, modelo van't Hoff, modelo Apelblat modificado, modelo Buchowski-Ksiazaczak λh, modelo van't Hoff-Yaws, modelo Weibull de dois parâmetros.

INTRODUCTION

Sulfamerazine (4-amino-*N*-(4-methylpyrimidin-2-il) benzene-1-sulfonamide) (figure 1) and sulfamethazine (4-amino-*N*-(4,6-dimethylpyrimidin-2-il) benzene-1-sulfonamide) (figure 2) are members of the sulfonamide family [1]. Sulfonamides are derived from *p*-amino-benzene-sulfonamide and are characterized by having a benzene nucleus with an amino group (-NH₂) and a sulfonamide group (-SO₂NH₂) [2]. These compounds have been used as chemotherapeutic agents for the prevention of bacterial infections in humans [3]. Additionally, they have been recognized as a starting point for the synthesis of new drugs due to the different pharmacological actions that they can carry out, such as: anti-cancer activity, anti-tumor effect, anti-inflammatory effect, among others [4].

Figure 1. Molecular structure of sulfamerazine.

Figure 2. Molecular structure of sulfamethazine.

The solubility data of different compounds, especially the ones with pharmaceutical applications, in neat solvents and their mixtures is a very important parameter influencing the design of the drug, its evaluation, as well as its application and future optimization. It is then understandable that many experiments are carried out in order to quantify this solubility in different solvents. Such efforts are undertaken also in the field of sulfonamides and one can include here the works of Delgado *et al.* [5-9], Cruz *et al.* [10], Kodide *et al.* [11], Martínez *et al.* [12, 13], Romdhani *et al.* [14], and Blanco *et al.* [15-17]. Alongside the experimental measurements, many theoretical solubility models have been developed for accurate prediction of solubility and for better understanding of the interactions occurring in solute-solvent systems [18-22].

At present, the development of mathematical models that allow predicting the solubility of bioactive substances in solvents of industrial/pharmaceutical interest is a line of research of great importance [23-26]. Thus, the development of models allows the development of more efficient industrial processes, which in turn reduce the environmental impact [27-29].

Thus, the objective of this work is to challenge the mathematical models of van't Hoff, Apelblat modified, Buchowski-Ksiazaczak λh , van't Hoff-Yaws model and two-parameter Weibull function model, from experimental solubility data, Sulfamethazine and Sulfamethazine using Python programming language.

Theoretical

Modified Apelblat Equation

The modified Apelblat equation, which is an empirical model derived from solid-liquid equilibrium [30, 31]:

$$\ln x_3 = A + BT^{-1} + C\ln T$$
 (1)

 x_3 refers to measured mole fraction solubility of drug in selected solvent at absolute temperature *T*, *A* and *B* reflect the variation in the solution activity coefficient, and C represents the influence of temperature on enthalpy of fusion [32].

van't Hoff-Yaws

The Yaws model are semi-empirical model included three-parameters extension that allow correlating the solubility with the temperature as follows [33]:

$$ln(x_3) = A + \frac{B}{T} + \frac{C}{T^2}$$
⁽²⁾

where A, B and C are adjustable parameters [34].

Two-parameter Weibull function model

There is little literature that explains the dependence of temperature on the activity coefficient in equilibrium solutions. The activity coefficient in a solution is a function of T and x, but in the direction of increasing temperature, the saturation concentration approaches unity while converging with the ideal case at the limit of Tm, and the following boundary conditions explain the equilibrium activity coefficient [35, 36]:

$$ln(\gamma_3)_{eq} = 0 \tag{3}$$

$$\left(\frac{\partial ln\gamma_3}{\partial(1/T)}\right)_{eq} = 0 \tag{4}$$

$$\left(\frac{\partial^2 ln\gamma_3}{\partial \left(1/T^2\right)}\right)_{eq} = 0 \tag{5}$$

At T = Tm

Svärd and Rasmuson [36] identified the necessary boundary conditions for prediction of compound solubilities by extrapolation at higher or lower temperatures to the melting point. They proposed a model that meets these boundary conditions and the mathematical formula used in the probability theory and statistics of the Weibull distribution was adopted. Equation 6 shows the temperature dependence of the activity coefficient of a solution in equilibrium:

$$\ln\gamma_{3})_{eq} = \frac{A}{T} \left(1 - e^{-\left(\frac{B}{T} - \frac{B}{T_{m}}\right)^{C}} \right)$$
(6)

where: A and B are adjustable parameters, C is a parameter that has to be above 2 in order to satisfy two boundary conditions in equation 2, Tm refers to the melting point of the substance.

van't Hoff Equation

The van't Hoff equation is also a semi-empirical equation, which reveals the relationship between the mole fraction solubility and the temperature in an ideal solution by taking the solvent effect into account [37].

$$\ln x_3 = A + \frac{B}{T} \tag{7}$$

A and B are parameters, which can be related to thermodynamic parameters such as dissolution enthalpy and dissolution entropy [38].

Buchowski-Ksiazaczak λb model

In 1980, based on the generalized relationship, the Buchowski-Ksiazaczak λh equation was first proposed, which contains two parameters and is widely used to correlate solubility data:

$$\ln\left[1 + \frac{\lambda(1 - x_3)}{x_3}\right] = \lambda h\left(\frac{1}{T} - \frac{1}{T_m}\right)$$
(8)

where λ and *h* are the two parameters of the λh model, and *Tm* represents the melting point of drug [18, 39, 40].

Results and discussion

The solubilities of sulfamerazine and sulfamethazine in mixtures of (methanol + water), (ethanol + water) and (1-propanol + water) were taken from Delgado and Martinez [6, 7, 41, 42].

odel, van't Hoff and Buchowski-Ksiazaczak	+ water) cosolvent mixtures.
, two-parameter Weibull function m), (ethanol + water) and (1-propano
l equation, van't Hoff-Yaws model,	famerazine in (methanol + water),
Table 1. The Apelblat modified	λb equations parameters for sul

יוא כל	uautous par	מווריינים זטו	n summers	~~~~	- TOTTIN	initial (line		mdord r) i		- COSOTA CITL		
	Moo	lified Apel	blat	^	/an't Hoff-}	Yaws	Weił	Iluc	van't	Hoff	λhr	nodel
\boldsymbol{w}_1	F	В	C	${V}$	В	С	V	В	F	В	r	р
						SMR 1-Proj	panol					
0.0	11.733	-4332.7	-1.443	1.218	-3395.8	-75706.3	1756.583	4790.2	-3902.5	2.066	0.004	1098107.6
0.1	207.504	-13160.4	-30.477	-12.321	5288.0	-1395432.3	1529.670	5741.3	-3918.6	2.856	0.008	515871.6
0.2	128.602	-9678.2	-18.525	-5.342	1735.6	-878682.6	1255.073	4178.3	-4084.0	4.288	0.023	176729.3
0.3	237.843	-14706.3	-34.627	-12.016	6317.1	-1595026.4	1061.762	1822.0	-4210.6	5.346	0.052	80894.9
0.4	258.769	-15576.6	-37.720	-13.414	7329.3	-1738227.0	948.087	1718.9	-4147.9	5.521	0.070	59160.0
0.5	-8.135	-3382.4	2.002	6.315	-4601.0	92695.2	855.882	1681.0	-3989.7	5.308	0.077	51839.0
0.6	479.454	-25188.8	-70.695	-30.623	17707.3	-3252548.9	780.317	4194.3	-3765.9	4.799	0.071	52700.6
0.7	-181.060	4804.3	27.610	18.108	-11921.1	1266047.4	723.333	4217.9	-3569.6	4.343	0.065	54143.5
0.8	169.983	-10775.3	-24.820	-9.125	4302.4	-1144589.1	715.266	4014.7	-3255.3	3.345	0.044	73386.4
0.9	191.497	-11789.1	-28.036	-10.943	5317.2	-1304296.6	779.124	3969.7	-3301.1	3.286	0.038	86090.1
1.0	110.035	-8330.5	-15.892	-4.912	1485.9	-757562.1	977.737	4157.0	-3532.3	3.393	0.027	128938.1
						SMR Meth	lanol					
0.0	11.733	-4332.7	-1.443	1.218	-3395.8	-75706.3	1756.583	4790.2	-3902.5	2.066	0.004	1098107.6
0.1	45.638	-6212.3	-6.251	0.018	-2105.2	-335401.6	1680.233	6083.9	-4373.0	3.847	0.008	516340.7
0.2	-164.225	2701.7	25.412	19.426	-12898.6	1196701.4	1553.577	1543.7	-4991.0	6.370	0.032	158011.0
0.3	-558.912	20641.6	84.194	48.794	-30586.4	3895071.0	1441.694	1474.0	-4890.6	6.438	0.041	118948.9

118728.4	73679.2	55990.3	44784.0	51720.4	57373.5	89196.2		1098107.6	291001.5	106580.9	82964.2	68567.3	55058.6	53586.1	51807.5	67579.1	75466.0	73745.7
0.038	0.056	0.070	0.085	0.066	0.055	0.029		0.004	0.016	0.047	0.055	0.061	0.072	0.069	0.069	0.048	0.043	0.049
5.529	5.273	5.175	5.155	4.163	3.441	1.784		2.066	5.222	6.887	6.156	5.536	5.223	4.690	4.421	3.479	3.458	4.155
-4470.3	-4134.5	-3963.8	-3852.6	-3467.1	-3188.2	-2638.5		-3902.5	-4742.6	-5048.4	-4594.2	-4221.9	-3978.2	-3723.3	-3584.8	-3279.0	-3319.5	-3623.7
1623.8	1783.0	1632.2	1582.9	4044.3	3816.6	3969.2		4790.2	3896.7	1493.9	1529.0	1681.7	1659.3	4134.3	4712.3	3941.5	3953.0	2998.7
1277.004	1008.556	873.057	769.548	676.185	618.454	575.828	lou	1756.583	1626.870	1458.665	1217.839	1019.852	871.392	770.688	714.500	697.835	744.558	835.163
2722413.1	-862791.0	2638811.2	3813062.5	889742.6	-1607687.2	249514.5	SMR Etha	-75706.3	-2669109.2	-1119243.7	494133.8	-904578.2	1323340.2	-769384.0	2196385.8	-1189175.1	-1355489.4	3395639.1
-22420.9	1550.7	-21370.8	-28994.6	-9330.6	7428.7	-4279.5		-3395.8	12856.1	2313.7	-7864.6	1746.6	-12712.8	1349.4	-18072.7	4581.4	5626.5	-25998.1
35.103	-4.087	33.866	46.577	13.818	-14.077	4.481		1.218	-23.772	-5.213	11.564	-4.304	19.628	-3.667	28.299	-9.503	-11.294	40.995
59.235	-19.586	56.848	82.066	18.875	-35.368	5.332		-1.443	-58.524	-25.436	9.854	-19.701	28.254	-17.167	47.448	-25.694	-29.581	74.652
13502.8	-10081.8	13276.7	21046.8	2262.6	-13903.5	-1016.3		-4332.7	-22500.8	-12785.5	-1617.7	-10195.4	4585.1	-8932.7	10805.8	-11055.5	-12286.5	19042.1
-392.259	136.814	-376.555	-545.947	-122.599	240.901	-34.039		11.733	398.233	177.760	-59.975	137.821	-184.483	119.973	-314.192	175.960	202.078	-497.214
0.4	0.5	0.6	0.7	0.8	0.9	1.0		0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0

 Table 1. (Continuation.)

Prediction of sulfamerazine and sulfamethazine solubility in cosolvent mixtures

The experimental solubility data calculations were correlated with Apelblat modified equation (1), Yaws model (2), two-parameter Weibull function model (4), van't Hoff (5), Buchowski-Ksiazaczak λh (6) using *Python 3.6* version using *Pandas* and *NumPy Library*, the parameters of the models were estimated with *SciPy Library* and plots were made with *Plotly Library*.

Table 1 and table 3 show the parameters of the equations of Apelblat modified, van't Hoff-Yaws, two-parameter Weibull function model, van't Hoff, Buchowski-Ksiazaczak λh , for the solubility of SMR and SMT in (methanol + water), (ethanol + water) and (1-propanol + water) cosolvents mixtures.

The figure 3, 4 and 5 show the experimental data *vs.* the estimated data of sulfamerazine in cosolvent mixtures, linear holdings are obtained. Table 2 shows correlation coefficients equal to 0.99, corroborating that these models show good agreement with the experimental solubility data.

Figure 3. Experimental solubility *vs* estimated solubility by van't Hoff, Apelblat modified, Buchowski-Ksiazaczak λh , van't Hoff-Yaws model and two-parameter Weibull function model of sulfamerazine in (methanol + water) mixtures.

Figure 4. Experimental solubility *vs* estimated solubility by van't Hoff, Apelblat modified, Buchowski-Ksiazaczak λh , van't Hoff-Yaws model and two-parameter Weibull function model of sulfamerazine in (ethanol + water) mixtures.

Figure 5. Experimental solubility *vs* estimated solubility by van't Hoff, Apelblat modified, Buchowski-Ksiazaczak λh , van't Hoff-Yaws model and two-parameter Weibull function model of sulfamerazine in (propanol + water) mixtures.

The values of the obtained equation parameters of the solubility studied were estimated by minimizing the value of the mean squared deviation (RMSD), equation 9, and the mean absolute percentage error (MAPE) shown in equation 10, as criteria to assess the quality of the fit and the comparison between the models. The difference between these two parameters is that MAPE express precision as a percentage, it measures the size of the absolute error in percentage. While the RMSD, it is a comparative measure between two sets of data, in this case the experimental and the estimated value.

$$RMSD = \sqrt[2]{\frac{1}{N} \sum_{i=1}^{N} \left(x_i^{est} - x_i^{exp}\right)^2}$$
(9)

where: x_i^{ext} is the estimated mole fraction value, x_i^{exp} is the experimental mole fraction value and N is the number of experimental points.

$$MAPE = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{\left(x_i^{est} - x_i^{exp} \right)}{x_i^{exp}} \right|^* 100$$
(10)

Table 2 shows the statistical measurements of sulfamerazine in cosolvents mixtures, when evaluating the mean absolute percentage error (MAPE) and the mean square deviation (RMSD) it is evidenced that the modified Apelblat and van't Hoff-Yaws model have lowest percentage in the three solvents, 1.1% in methanol and ethanol and 0.6% in propanol, therefore these models are the ones that have the best agreement with the experimental solubility data, in the same way the Buchowski-Ksiazczak model and van't Hoff model have equal MAPE values being a value of 1.5% in methanol, 1.2% in ethanol and 0.8% in 1-propanol. However, these values are very similar for the four models, which shows good agreement with the experimental data of solubility of sulfamerazine. Additionally, Two-parameter Weibull function model shows higher values for absolute percentage error in three solvents, it is the weakest model to correlate the solubility data of the SMR at different temperatures.

Table 2. Statistical measures by van't Hoff, Apelblat modified, Buchowski-Ksiazaczak λh , van't
Hoff-Yaws model and two-parameter Weibull function model of sulfamerazine in (methanol +
water), (ethanol + water) and (1-propanol + water) mixtures.

Model	MAPE %	RMSD * 105	R2
	Methanol		
Modified Apelblat equation	1.1	0.60	0.99973
Buchowski-Ksiazczak model	1.5	0.73	0.99960
van't Hoff model	1.5	0.73	0.99960
van't Hoff-Yaws model	1.1	0.60	0.99974
Two-parameter Weibull function	2.6	2.29	0.99614
	Ethanol		
Modified Apelblat equation	1.1	0.43	0.99973
Buchowski-Ksiazczak model	1.2	0.56	0.99954
van't Hoff model	1.2	0.56	0.99954
van't Hoff-Yaws model	1.1	0.43	0.99973
Two-parameter Weibull function	2.1	1.00	0.99854
	1-Propanol		
Modified Apelblat equation	0.6	0.23	0.99990
Buchowski-Ksiazczak model	0.8	0.41	0.99969
van't Hoff model	0.8	0.41	0.99970
van't Hoff-Yaws model	0.6	0.23	0.99990
Two-parameter Weibull function	2.6	0.99	0.99823

The figure 6, 7 and 8 show the experimental data *vs.* the estimated data of sulfamethazine y cosolvent mixtures, linear holdings are obtained. Table 4 shows correlation coefficients equal to 0.99, corroborating that these models show good agreement with the experimental solubility data. Table 3. The Apelblat modified equation, van't Hoff-Yaws model, two-parameter Weibull function model, van't Hoff and Buchowski-Ksiazaczak λb equations parameters for sulfamethazine in (methanol + water), (ethanol + water) and (1-propanol + water) cosolvent mixtures.

	Moo	dified Apel	lblat		van't Hoff-Y	aws	n	Veibull	van't f	Hoff	γh	nodel
\boldsymbol{w}_1	V	В	С	A	В	С	V	В	V	В	۲	4
						SMT 1-Propa	lon					
0.0	-29.735	-2645.3	4.938	5.595	-5459.2	199425.5	1785.7	17758299.2	-4169.4	3.511	0.004	941 865.3
0.1	-257.059	7864.0	38.817	22.989	-15676.3	1 783 934.1	1498.6	17 681 476.5	-3908.3	3.592	0.008	472 168.4
0.2	-431.979	15808.9	65.017	37.238	-23 708.1	3 001 369.3	1188.3	17460186.3	-3909.2	4.604	0.022	172 087.1
0.3	-560.615	21798.3	84.177	46.373	-29 055.3	3 838 862.1	1001.8	17165885.0	-3761.4	4.730	0.035	107 231.1
0.4	-854.144	35223.9	127.873	68.256	-42 230.8	5862557.5	864.2	16769658.0	-3592.3	4.627	0.044	80173.0
0.5	-408.747	15274.8	61.504	35.042	-22 059.1	2831894.2	765.4	16391865.3	-3380.4	4.258	0.047	70268.7
0.6	-278.147	9457.58	42.050	25.407	-16153.3	1 949 227.4	693.7	15991168.5	-3294.3	4.210	0.054	60 066.6
0.7	-247.743	8098.78	37.544	23.475	-14 883.2	1 757 892.8	640.2	15 651 579.0	-3290.8	4.374	0.064	50554.8
0.8	-184.613	5281.2	28.134	18.205	-11 683.4	1 278 195.5	621.5	15486345.3	-3256.2	4.322	0.065	49 007.6
0.9	-129.034	2946.9	19.732	13.631	-9207.1	935364.1	666.0	15839057.3	-3046.3	3.492	0.043	68737.1
1.0	-1170.531	50403.7	174.480	88.345	-55451.4	8025134.5	868.3	16811669.7	-2601.9	1.383	0.012	202 486.7
						SMT Methar	lou					
0.0	-29.735	-2645.3	4.938	5.595	-5459.2	199425.5	1785.7	17758299.2	-4169.4	3.511	0.004	941 865.3
0.1	129.514	-10010.8	-18.601	-4.783	1329.4	-863936.4	1647.8	17730292.1	-4377.9	4.637	0.009	496 244.4
0.2	-218.239	5588.4	33.340	22.461	-14730.99	1547498.0	1485.2	17 681 247.1	-4520.3	5.628	0.017	257011.1

125 117.8	61 829.6	33604.5	20 623.5	13 321.1	10973.7	12569.9	13241.8		941 865.3	384351.8	124134.9	54604.6	34295.0	27824.3	22390.7	23 334.4	28747.5	39176.2	57362.9
0.037	0.077	0.144	0.237	0.367	0.428	0.343	0.311		0.004	0.012	0.040	0.092	0.142	0.164	0.197	0.176	0.131	0.091	0.060
6.698	7.591	8.435	9.022	9.472	9.206	8.186	7.697		3.511	5.109	7.307	8.331	8.511	8.010	7.851	7.147	6.161	5.380	4.755
-4671.4	-4752.7	-4854.8	-4897.8	-4904.9	-4707.1	-4327.9	-4141.5		-4169.4	-4461.0	-4929.8	-5018.1	-4895.7	-4590.3	-4429.0	-4145.6	-3813.2	-3610.9	-3506.3
17 578 586.5	17 373 506.8	17074271.4	16700326.8	16034911.0	15 174 546.0	14502689.3	14064973.4		17758299.2	17720052.8	17639351.2	17427724.1	17117421.5	16695097.4	16171414.4	15707837.2	15431447.9	15783238.3	16255186.4
1307.7	1114.7	958.0	821.0	690.1	574.4	508.6	472.4		1785.7	1594.0	1378.3	1152.2	974.9	823.9	711.6	644.4	614.6	651.8	738.8
11 167.7	735315.2	-295 165.9	92 693.8	-91 772.1	2770010.5	1 291 516.8	-974832.5	SMT Ethano	199425.5	3 375 732.6	5281240.3	3 894 112.3	3751396.4	3 299 394.6	3 5 4 3 2 5 9 . 1	2682154.3	2174284.9	2 561 126.8	2 908 189.6
-4756.5	-9614.9	-2891.7	-5507.7	-4288.6	-22 954.2	-12 826.3	2293.7		-5459.2	-26736.9	-39744.3	-30 696.7	-29 619.1	-26340.7	-27 800.8	-21 829.6	-18 140.2	-20 500.9	-22 680.4
6.857	15.624	5.173	10.025	8.439	39.239	22.158	-2.918		5.595	41.808	64.651	50.640	49.224	43.836	46.371	36.280	29.750	33.211	36.342
-0.953	15.306	-6.039	1.715	-1.711	60.371	28.648	-21.202		4.938	72.437	113.991	84.652	82.016	71.981	76.716	57.933	47.275	54.939	63.684
-4973.8	-123.3	-6669.9	-4376.69	-5412.5	13 628.2	4382.4	-10567.0		-2645.3	17498.9	29 664.2	20664.7	20 002.0	17254.9	18838.7	13433.0	10540.2	13055.1	15818.4
13.143	-95.146	48.936	-2.496	20.927	-396.269	-184.256	150.052		-29.735	-481.298	-758.209	-560.132	-542.299	-475.383	-507.294	-381.898	-311.337	-363.547	-422.913
0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0		0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0

Table 3. (Continuation.)

Figure 6. Experimental solubility *vs* estimated solubility by van't Hoff, Apelblat modified, Buchowski-Ksiazaczak λh , van't Hoff-Yaws model, two-parameter Weibull function model of sulfamethazine in (methanol + water) mixtures.

Figure 7. Experimental solubility *vs* estimated solubility by van't Hoff, Apelblat modified, Buchowski-Ksiazaczak λh , van't Hoff-Yaws model, two-parameter Weibull function model of sulfamethazine in (ethanol + water) mixtures.

Figure 8. Experimental solubility *vs.* estimated solubility by van't Hoff, Apelblat modified, Buchowski-Ksiazaczak λh , van't Hoff-Yaws model, two-parameter Weibull function model of sulfamethazine in (1-propanol + water) mixtures.

Table 4 shows the statistical measurements of sulfamethazine in cosolvent mixtures, when evaluating the mean absolute percentage error (MAPE), the same behavior as for sulfamerazine is evidenced. The models that show the best relationship are the modified Apelblat model and the van't Hoff-Yaws model. There is a good correlation between the experimental results and those obtained theoretically in this study with these models. Subsequently, a good correlation is found with the data of the Buchowski-Ksiazczak model and van't Hoff model and finally for the Two-parameter Weibull function model the mean absolute percentage error has higher values in the case of the three solvents. For SMR and SMT, it is evident that for most models, the lowest MAPE values are found for the propanol.

Table 2 and table 4 show that in all cases the same behavior mentioned above was obtained for MAPE when the mean square deviation (RMSD) is analyzed, the following behavior is found: **RMSD:** Apelblat modified model = van't Hoff-Yaws model < Buchowski-Ksiazaczak λh = van't Hoff model < Two-parameter Weibull function model.

This statistical measure corroborates that the models that have the best fit with the experimental measures are Apelblat modified model and van't Hoff-Yaws model in all co-solvent mixtures.

Model	MAPE %	RMSD * 105	R2
	Methanol		
Modified Apelblat equation	1.2	2.06	0.99960
Buchowski-Ksiazczak model	1.3	2.28	0.99951
van't Hoff model	1.3	2.28	0.99951
van't Hoff-Yaws model	1.2	2.07	0.99960
Two-parameter Weibull function	5.3	8.20	0.99 368
	Ethanol		
Modified Apelblat equation	1.3	1.41	0.99957
Buchowski-Ksiazczak model	1.9	1.96	0.99917
van't Hoff model	2.0	1.98	0.99915
van't Hoff-Yaws model	1.3	1.41	0.99957
Two-parameter Weibull function	4.3	3.73	0.99698
	1-Propanol		
Modified Apelblat equation	1.0	1.21	0.99962
Buchowski-Ksiazczak model	1.6	1.81	0.99915
van't Hoff model	1.7	1.85	0.99912
van't Hoff-Yaws model	1.0	1.21	0.99962
Two-parameter Weibull function	4.0	4.24	0.99 537

Table 4. Statistical measures by van't Hoff, Apelblat modified, Buchowski-Ksiazaczak λh , van't Hoff-Yaws model, two-parameter Weibull function model of sulfamethazine in (methanol + water), (ethanol + water) and (1-propanol + water) mixtures.

Conclusions

The use of the Python programming language has proven to be very useful to determine the parameters of the different models developed in this research. The theoretical results, obtained through each of the mathematical models used, present small deviations with respect to the experimental data, also indicating the relevance of the mathematical models to calculate the solubility data of sulfamerazine and sulfamethazine in co-solvent mixtures.

Acknowledgements

The authors gratefully acknowledge support from the Faculty of Science and humanities and research direction of the Fundación Universidad de America. Further, Colciencias supported the doctoral fellowship [6172] to Diana M. Galindes.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

- R. Cohen-Adad, S. Lindenbaum, J.W. Lorimer, A.N. Paruta, R. Piekos, M. Salomon, Introduction to the series on solubility of solids in liquids: subseries on pharmaceuticals, in: 4-*Aminobenzenesulfonamides*, Elsevier, Rhode Island, 1989, pp. 1-523.
- 2. S. Mondal, S. Malakar, Synthesis of sulfonamide and their synthetic and therapeutic applications: Recent advances, *Tetrahedron*, **76**, 131662 (2020).
- 3. E.N. Krylov, M.S. Gruzdev, U.V. Chervonova, L.V. Virzum, D. Sarkar, Synthesis, reactivity, acidic and pharmaceutical properties of sulphonamides, in: *Sulfonamides: An Overview*, edited by D. Sarkar, Nova, Odisha, 2020.
- 4. D.R. Delgado, G.A. Rodríguez, F. Martínez, Thermodynamic study of the solubility of sulfapyridine in some ethanol + water mixtures, *J. Mol. Liq.*, **1**77, 156-161 (2013).
- D.R. Delgado, O. Bahamón-Hernandez, N.E. Cerquera, C.P. Ortiz, F. Martínez, E. Rahimpour, A. Jouyban, W.E. Acree, Jr., Solubility of sulfadiazine in (acetonitrile + methanol) mixtures: Determination, correlation, dissolution thermodynamics and preferential solvation, *J. Mol. Liq.*, **322**, 114979 (2021).
- 6. D.R. Delgado, O.A. Almanza, F. Martínez, M.A. Peña, A. Jouyban, W.E. Acree, Jr., Solution thermodynamics and preferential solvation of sulfamethazine in (methanol + water) mixtures, *J. Chem. Thermodyn.*, **97**, 264-276 (2016).
- 7. D.R. Delgado, F. Martínez, Solution thermodynamics and preferential solvation of sulfamerazine in methanol + water mixtures, *J. Solut. Chem.*, **44**, 360-377 (2015).
- 8. D.R. Delgado, F. Martínez, Solubility and preferential solvation of sulfadiazine in methanol + water mixtures at several temperatures, *Fluid Phase Equilib.*, **379**, 128-138 (2014).
- 9. D.R. Delgado, D.I. Caviedes-Rubio, C.P. Ortiz, Y.L. Parra-Pava, M.Á. Peña, A. Jouyban, S.N. Mirheydari, F. Martínez, W.E. Acree, Jr., Solubility of sulphadia-

zine in (acetonitrile + water) mixtures: measurement, correlation, thermodynamics and preferential solvation, *Phys. Chem. Liq.*, **58**, 381-396 (2020).

- A.M. Cruz-González, M.S. Vargas-Santana, C.P. Ortiz, N.E. Cerquera, D.R. Delgado, F. Martínez, A. Jouyban, W.E. Acree, Jr., Solubility of sulfadiazine in (ethylene glycol + water) mixtures: Measurement, correlation, thermodynamics and preferential solvation, *J. Mol. Liq.*, **323**, 115058 (2021).
- K. Kodide, P. Asadi, J. Thati, Solubility and thermodynamic modeling of sulfanilamide in 12 mono solvents and 4 binary solvent mixtures from 278.15 to 318.15 K, J. Chem. Eng. Data, 64, 5196-5209 (2019).
- F. Martínez, A. Gómez, Thermodynamic study of the solubility of some sulfonamides in octanol, water, and the mutually saturated solvents, *J. Solut. Chem.*, 30, 909-923, (2001).
- 13. F. Martínez, C.M. Ávila, A. Gómez, Thermodynamic study of the solubility of some sulfonamides in cyclohexane, *J. Braz. Chem. Soc.*, 14, 803-808 (2003).
- A. Romdhani, F. Martínez, O.A. Almanza, M.A. Peña, A. Jouyban, W.E. Acree, Solubility of sulfacetamide in (ethanol + water) mixtures: Measurement, correlation, thermodynamics, preferential solvation and volumetric contribution at saturation, *J. Mol. Liq.*, **290**, 111219 (2019).
- J.H. Blanco-Márquez, Y.A. Quigua-Medina, J.D. García-Murillo, J.K. Castro-Camacho, C.P. Ortiz, N.E. Cerquera, D.R. Delgado, Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides, *Rev. Colomb. Cienc. Quím. Farm.*, 49, 234-255 (2020).
- J.H. Blanco-Márquez, D.I. Caviedes Rubio, C.P. Ortiz, N.E. Cerquera, F. Martínez, D.R. Delgado, Thermodynamic analysis and preferential solvation of sulfamethazine in acetonitrile + water cosolvent mixtures, *Fluid Phase Equilib.*, 505, 112361 (2020).
- J.H. Blanco-Márquez, C.P. Ortiz, N.E. Cerquera, F. Martínez, A. Jouyban, D.R. Delgado, Thermodynamic analysis of the solubility and preferential solvation of sulfamerazine in (acetonitrile + water) cosolvent mixtures at different temperatures, *J. Mol. Liq.*, 293, 111507 (2019).

- R.E. Cárdenas, L.E. Tinoco, D.M. Galindres, A. Beltrán, C.D. Oviedo, J. Osorio, Prediction of sulfadiazine solubility in some cosolvent mixtures using non-ideal solution models, *Rev. Colomb. Cienc. Quím. Farm.*, 49, 822-842 (2020).
- A. Aydi, I. Dali, K. Ghachem, A.Z. Al-Khazaal, D.R. Delgado, L. Kolsi, Solubility of Hydroxytyrosol in binary mixture of ethanol + water from (293.15 to 318.15) K: Measurement, correlation, dissolution thermodynamics and preferential solvation, *Alex. Eng. J.*, 60, 905-914 (2021).
- 20. M.d.M. Muñoz, D.R. Delgado, M.Á. Peña, A. Jouyban, F. Martínez, Solubility and preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in propylene glycol + water mixtures at 298.15 K, *J. Mol. Liq.*, **204**, 132-136 (2015).
- Z.J. Cárdenas, D.M. Jiménez, G.A. Rodríguez, D.R. Delgado, F. Martínez, M. Khoubnasabjafari, A. Jouyban, Solubility of methocarbamol in some cosolvent + water mixtures at 298.15 K and correlation with the Jouyban-Acree model, *J. Mol. Liq.*, 188, 162-166 (2013).
- 22. D.M. Cristancho, D.R. Delgado, F. Martínez, Meloxicam solubility in ethanol + water mixtures according to the extended Hildebrand solubility approach, *J. Solut. Chem.*, **42**, 1706-1716 (2013).
- D.R. Delgado, E.M. Mogollon-Waltero, C.P. Ortiz, M. Peña, O.A. Almanza, F. Martínez, A. Jouyban, Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1,4-dioxane (1) + water (2)} mixtures, *J. Mol. Liq.*, 271, 522–529 (2018).
- D.J.W. Grant, M. Mehdizadeh, A.H.L. Chow, J.E. Fairbrother, Non-linear van't Hoff solubility-temperature plots and their pharmaceutical interpretation, *Int. J. Pharm.*, 18, 25-38 (1984).
- 25. A.R. Holguín, D.R. Delgado, F. Martínez, Indomethacin solubility in propylene glycol + water mixtures according to the Extended Hildebrand Solubility Approach, *Lat. Am. J. Pharm.*, **31**, 720-726 (2012).
- D.R. Delgado, M.Á. Peña, F. Martínez, Preferential solvation of some sulfonamides in 1,4-dioxane + water co-solvent mixtures at 298.15 K according to the inverse Kirkwood-Buff integrals method, *Rev. Acad. Colomb. Cienc. Exact. Fis. Nat.*, 38, 104-114 (2014).

- B.J. Boyd, C.A.S. Bergström, Z. Vinarov, M. Kuentz, J. Brouwers, P. Augustijns, M. Brandl, A. Bernkop-Schnürch, N. Shrestha, V. Préat, A. Müllertz, A. Bauer-Brandl, V. Jannin, Successful oral delivery of poorly water-soluble drugs both depends on the intraluminal behavior of drugs and of appropriate advanced drug delivery systems, *Eur. J. Pharm. Sci.*, 137, 104967 (2019).
- 28. S. Kalepu, V. Nekkanti, Insoluble drug delivery strategies: Review of recent advances and business prospects, *Acta Pharm. Sin. B*, **5**, 442-453 (2015).
- 29. Q. Bu, B. Wang, J. Huang, S. Deng, G. Yu, Pharmaceuticals and personal care products in the aquatic environment in China: A review, *J. Hazard. Mater.*, **262**, 189-211 (2013).
- 30. S.V. Blokhina, M.V. Ol'khovich, A.V. Sharapova, I.B. Levshin, G.L. Perlovich, Thermodynamic insights to solubility and lipophilicity of new bioactive hybrids triazole with thiazolopyrimidines, *J. Mol. Liq.*, 114662 (2020), doi: 10.1016/j. molliq.2020.114662.
- A. Noubigh, M. Habib-Oueslati, Measurement and modeling of the solubility of vanillin constituent of olive mill wastewater in binary water + ethanol solvents mixtures between 278.15 K and 308.15 K, *Aust. J. Basic Appl. Sci.*, 8, 396-403 (2014).
- 32. R. Heryanto, M. Hasan, E. Chan-Abdullah, A. Cahyo-Kumoro, Solubility of stearic acid in various organic solvents and its prediction using non-ideal solution models, *ScienceAsia*, **33**, 469-472 (2007).
- 33. Q. Jia, D. Lei, S. Zhang, J. Zhang, N. Liu, K. Kou, Solubility measurement and correlation for HNIW•TNT co-crystal in nine pure solvents from T = (283.15 to 318.15) K, *J. Mol. Liq.*, 114592 (2020), doi: 10.1016/j.molliq.2020.114592.
- D. Yang, L. Fu, D. Shi, J. Li, Q. Zhang, Solubility of 3,7,9,11-tetraoxo-2,4,6,8,10pentaaza[3.3.3] propellane (TOPAP) in different pure solvents at temperatures between 273.15 and 318.15 K, *J. Chem. Eng. Data*, 61, 3277-3285 (2016).
- M.A.M. Khan, L. Ahrné, J.C. Oliveira, F.A.R. Oliveira, Prediction of water and soluble solids concentration during osmotic dehydration of mango, *Food Bioprod. Process.*, 86, 7-13 (2008).
- M. Svärd, Å.C. Rasmuson, (Solid + liquid) solubility of organic compounds in organic solvents - Correlation and extrapolation, *J. Chem. Thermodyn.*, 76, 124-133 (2014).

- A.M. Romero-Nieto, D.I. Caviedes-Rubio, J. Polania-Orozco, N.E. Cerquera, D.R. Delgado, Temperature and cosolvent composition effects in the solubility of methylparaben in acetonitrile + water mixtures, *Phys. Chem. Liq.*, 58, 722-735 (2020).
- A.M. Romero Nieto, N.E. Cerquera, D.R. Delgado, Measurement and correlation of solubility of ethylparaben in pure and binary solvents and thermodynamic properties of solution, *Rev. Colomb. Cienc. Quim. Farm.*, 48, 332-347 (2019).
- 39. A. Książczak, J.J. Kosinski, Vapour pressure of binary, three-phase (S-L-V) systems and solubility, *Fluid Phase Equilib.*, 44, 211-236 (1988).
- 40. A. Książczak, K. Moorthi, I. Nagata, Solid-solid transition and solubility of even n-alkanes, *Fluid Phase Equilib.*, **95**, 15-29 (1994).
- 41. D.R. Delgado, F. Martínez, Solubility and solution thermodynamics of sulfamerazine and sulfamethazine in some ethanol + water mixtures, *Fluid Phase Equilib.*, **360**, 88-96 (2013).
- 42. D.R. Delgado, F. Martínez, Solubility and solution thermodynamics of some sulfonamides in 1-propanol + water mixtures, *J. Solut. Chem.*, **43**, 836-852 (2014).

How to cite this article

L.E. Tinoco, D.M. Galindres, J. Osorio, R.E. Cárdenas, Prediction of sulfamerazine and sulfamethazine solubility in some cosolvent mixtures using non-ideal solution models, *Rev. Colomb. Cienc. Quím. Farm.*, **50**(1), 292-313 (2021).