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Resumen

Las pruebas de ráıces unitarias son una práctica común en procesos estocásti-
cos observables y se encuentra literatura abundante sobre este tema. Sin
embargo, en ocasiones, aunque el problema es el mismo, los procesos de
interés son latentes o no observables. En este art́ıculo se obtienen distribu-
ciones emṕıricas de las estad́ısticas de prueba usuales de ráıces unitarias para
el componente de tendencia de algunos modelos estructurales particulares,
basadas en predicciones óptimas (como los datos observados) del proceso es-
tocástico de tendencia. Se encuentra que estas pruebas estad́ısticas tienden
a ser más potentes que las pruebas usuales de Dickey-Fuller.

Palabras claves: Modelos estructurales, ráıces unitarias, procesos no obser-

vables.

Abstract

Testing for unit roots is a common practice in observable stochastic processes
and there is abundant literature on this topic. However, sometimes, one is
faced with the same problem but in the case where the processes of inter-
est are latent or unobservable. In this paper, empirical distributions of the
usual unit-root test statistics are obtained for the trend component of some
particular structural models, which are based on optimal predictions (as the
observed data) of the trend stochastic process. It is found that these statis-
tical tests tend to be most powerful than the usual Dickey-Fuller tests.

Keywords: Structural models, Unit roots, Unobservable process.

1. Introduction

Usually, the well known unit-root tests are applied to observable stochastic
processes in order to decide if, at least, a first difference of the underlying process
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is needed to get stationarity. This is the case, for example, of the works of Dickey &
Fuller (1979), Phillips & Perron (1988) and Kwiatkowski, Phillips & Shin (1992).

Sometimes, the processes which we are interested in are unobservable; for ex-
ample: (1) in some countries, the Gross National Product (GDP) is not observed at
high-frequency periods of time, quarters say, and we might be interested in know-
ing if the quarterly process is integrated of order one; (2) in the Harvey’s (1989)
structural models approach, the so-called trend component can be assumed to be
a random walk and we might be interested in testing this assumption without
using tests on the variance error terms; and (3) in the unobserved components
models of Schmidt & Phillips (1992) and Kaiser & Maravall (2001), it is assumed
that the component processes obey ARIMA models, in particular, that they can
be integrated of order one; thus, we could be interested in checking directly that
assumption.

At present, there is abundant literature about the topic of testing for the
presence of unit roots in observable processes, but in the case of unobservable
processes only Kwiatkowski et al. (1992), Schmidt & Phillips (1992) and Harvey
(2001) have addressed the problem. These authors have worked in a state-space-
model context and they have tested if the variance of the so-called system-equation
error terms is zero, in order to check if this decision would imply that the observable
process is stationary. In this paper, and as a first step in the direction of obtaining
a more general result in the future, we propose to use an optimal prediction,
in the minimum mean square error (MMSE) sense, of the unobservable trend
process as the data at hand, and then to apply the Dickey-Fuller test statistic. We
remark here that this approach is a common practice in applied work. In terms of
Harvey’s (1989) structural models, one way of obtaining this optimal prediction is
via the fixed-interval smoother. Then, we shall proceed to find the test statistic
distribution via Monte Carlo simulations, in order to compare with the well-known
Dickey-Fuller distribution.

The paper is organized as follows. In Section 2, we present some basic theoreti-
cal background. Section 3 includes the simulation results for two simple structural
models, the so-called random walk plus noise model and the local linear trend
model. Section 4 shows an application of the results to the analysis of the monthly
Colombian real production index in the sample period 1983:01-1996:12. Finally,
Section 5 concludes.

2. Theoretical background

Here, we present a brief summary about the concepts of state space models,
structural models and unit-roots testing. The interested reader can see Harvey’s
(1989) and Fuller’s (1996) books for more precise details.
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2.1. State space models

Let {Yt} be a univariate stochastic process that obeys the so-called observation

equation:
Yt = ztγt + εt , t = 0,±1,±2, . . . ,

where zt is a p–dimensional deterministic row vector, γt is a p–dimensional random
vector and {εt} is a univariate noise process with var(εt) = ht. The stochastic
process {γt} can be unobservable and its dynamic is given by the so-called system

equation:
γt = Ttγt−1 + ηt

where Tt is a deterministic matrix of dimension p× p and {ηt} is a p–dimensional
noise process with var(ηt) = Qt. These two equations define a state space model
for the process {Yt}.

Given a set of observations y1, . . . , yn from the process {Yt}, two main esti-
mation problems arise in the context of state space models: (1) to predict γt for
each t = 1, . . . , n with base on y1, . . . , yn, assuming that the model matrices zt,
ht, Tt, and Qt are known and that we know an initial prediction of γ0, with min-
imum mean square error P0 (a matrix). (2) to estimate eventual unknown fixed
parameters in the model matrices. The second problem is solved by means of the
maximum likelihood approach and the first one by means of a recursive prediction
algorithm that is termed fixed-interval smoother. This is given by the following
expressions: let γt|s be the optimal prediction of γt with base on y1, . . . , ys, where
s = 1, 2, . . . , n, and let Pt|s be its mean square error matrix. Then, for each
t = n − 1, . . . , 1:

γt|n = γt|t + P ∗
t (γt+1|n − Tt+1γt|t)

and
Pt|n = Pt|t + P ∗

t (Pt+1|n − Pt+1|t)P
∗
t

where P ∗
t = Pt|tT

′
t+1P

−1

t+1|t. The quantities γt|t and Pt|t are computed via the

Kalman filter Harvey (1989) and Pt+1|t is the mean square error matrix of the
one-step prediction Harvey (1989).

The most important point to be taken into account, here, is that the fixed-
interval smoothed gives us the tools for predicting the potential unobservable
process {γt}, and, in this way, we can generate “observations” for it.

2.2. Structural models

Essentially, a structural model for the process {Yt} is given by the equation

Yt = µt + st + ct + εt

where µt, st, ct, and εt represent unobserved components. Tipically, µt is the
trend component, st is the seasonal component, ct represents a cycle, and εt is the
irregular or noise component. Harvey (1989) has developed an important work
for the analysis of these models. As examples, we have the so-called random walk
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plus noise (RWPN) model and the local linear trend (LLT) model. The first one
is given by the equations

Yt = αt + εt

αt = αt−1 + ηt

where {εt} and {ηt} are Gaussian zero-mean white noise processes, with variances
σ2

ε and σ2
η, respectively, and {εt} is mutually independent of {ηt}, in the sense that

finite-dimensional vectors of variables of each process are mutually independent.
In the second, the structural equation is the same as before but, now, the trend
component is given by

αt = αt−1 + βt−1 + ηt

βt = βt−1 + λt

where {ηt} and {λt} are Gaussian zero-mean white noise processes with respective
variances σ2

η and σ2
λ and {εt}, {ηt} and {λt} are mutually independent. Here, βt

plays the role of a time-varying slope.

A structural model can be cast into the state space form. Indeed, consider for
example the LLT model and define γt = (αt, βt)

′, zt = (1, 0), ηt = (ηt, λt)
′, and

Tt =

(

1 1
0 1

)

Using the fixed-interval smoother we can obtain optimal predictions for the
unobserved components of a strucutral model. In particular, one has predictions
for the trend αt and the slope βt in the LLT model. These kind of predictions will
be the base for the anlayses in Section 3.

2.3. Unit roots testing

One way of understanding the problem of testing for unit roots in a stochastic
process is through autoregressive models. In his pionering work, Fuller (1996)
put the problem under the following scheme: let us assume that the process {Yt}
follows the AR(1) model:

Yt = ρYt−1 + at

where |ρ| ≤ 1 and {at} is a zero-mean white noise process with variance σ2. If
ρ = 1, {Yt} is nonstationary but its first difference is stationary. To test the null
hypothesis of nonstationarity of {Yt}, i.e., H0 : ρ = 1, Dickey & Fuller (1979)
proposed the statistic

τ =
(

s−2

n
∑

t=2

Y 2
t−1

)1/2

(ρ̂ − 1)

where

s2 =
1

n − 2

n
∑

t=2

(Yt − ρ̂Yt−1)
2
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and ρ̂ is the least squares estimator of the autoregressive coefficient ρ. Tables with
the main percentiles of the test statistic distribution, for different sample sizes, are
found in Fuller’s (1996) book. The reader is invited to consult that book and its
tables for more details about the testing strategy.

3. The simulation study

We shall consider the RWPN and LLT models defined in the preceding section.
In the case of the RWPN model, the design of the simulation experiment was the
following: we simulated the noise processes {εt} and {ηt}, 10000 times each, for
the sample sizes n = 25, 50, 100, 250, 500, 2000. For comparison purposes with the
Dickey-Fuller tables, the sample size 2000 is assimilated to the ideal sample size
∞ that was written in the Dickey & Fuller’s (1979) tables. In each case, we com-
puted firstly (simulated) observations for process {αt} and then we obtained the
corresponding time series for process {Yt}. With these time series, we obtained
the predicted process {α̂t} using the fixed-interval smoother, and then we com-
puted the corresponding Dickey-Fuller statistic for each predicted process in each
sample-size case. In this way, we obtained the empirical distribution of the τ sta-
tistic under the null hypothesis that the process {αt} has one unit root. In Table
1 we present this distribution, where the table entries correspond to the values of
the test statistic. These are the figures needed for the comparison with the Dickey
& Fuller’s (1979) distribution.

Table 1: Empirical quantiles for the τ statistic in the RWPN model

Quantile order(/100) Sample size

25 50 100 250 500 2000

1.00 −2.10 −1.89 −1.79 −1.68 −1.72 −1.68

2.50 −1.75 −1.61 −1.50 −1.44 −1.45 −1.44

5.00 −1.44 −1.37 −1.28 −1.24 −1.26 −1.23

10.0 −1.15 −1.09 −1.05 −1.00 −1.02 −1.00

50.0 0.00 −0.01 0.01 0.03 0.04 0.02

90.0 1.78 1.78 1.78 1.86 1.80 1.82

95.0 2.30 2.34 2.35 2.42 2.30 2.36

97.5 2.80 2.86 2.87 2.92 2.79 2.80

99.0 3.36 3.48 3.45 3.47 3.43 3.28

We can see in this table that (1) the shown quantiles are greater than those of
Dickey & Fuller (1979) for all of the sample sizes considered and (2) the empirical
distribution is centered around 0. The first fact signals that using the Dickey-
Fuller quantiles for testing the null hypothesis of unit root in {αt}, based on the
predicted processes, could led to accept more frequently this null hypothesis. The
second indicates that the distribution of the test statistic tends to be translated
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towards the right, when compared to that of Dickey & Fuller (1979).

Returning to the first remark above, this fact could be interpreted as a loss of
power of the conventional Dickey-Fuller test. In fact, we have computed the power
of the test using our found empirical quantiles in the following way: we consider
the system equation αt = ραt−1+ηt, for ρ = 0.8, 0.9, 0.95, 0.99, and repeat for each
value of ρ the simulation experiment as indicated above for the same sample sizes
considered. The main findings were the following (see Table 4 in the Appendix,
where the entries are the power values): (1) the more the sample size and the
farther ρ is from 1, the more powerful the test is, in the sense of obtaining relative
frequencies of rejection close to 1, whatever the level is. (2) for values of ρ close to
1, the frequency of rejection tends to be small, as expected. For example, for the
sample size n = 250 and level 0.05, the null hypothesis is rejected only in 16% of
the cases if ρ = 0.99, and for ρ = 0.95 it is rejected in the 89% of the simulations.

Using the Dickey & Fuller’s (1979) quantiles, we also computed the power
of the test for the same simulated experiment and we found the following general
facts for any conventional level (see Table 5 in the Appendix): (1) for small sample
sizes our suggested test is most powerful than the Dickey–Fuller one, (2) for large
sample sizes, the power of both tests are practically equal to 100%.

Now, the random walk plus noise model is modified in the sense of including a
drift in the process {αt}, that is to say, the system equation becomes:

αt = a + αt−1 + ηt

where a is a constant. The values 1, 5, 10, −1, −5, and −10 were considered for
a and the simulation experiment was repeated under the same conditions than
before. In Table 2 we present the empirical distribution found in this case. As can
be seen there, the empirical distribution differs from that of the non-drift model
and, in particular, the quantiles values are smaller than those of the non-drift case.
This also happens with the conventional Dickey–Fuller quantiles. Comparing the
found quantiles with those of Dickey & Fuller (1979), we found that the empirical
ones are less than those ones. With respect to the power of the test in this case,
we found that this is also greater than that of the Dickey–Fuller test (see Table 7
in the Appendix), especially when ρ is far from 1 and the sample size is large.

It is important to note here that, strictly speaking, little numerical differences
among the quantiles values for each drift were found and that the values reported
in Table 2 are the medians of those figures. For example, for n = 25 the 0.01
quantiles obtained for each of the drifts considered (drift value in parenthesis)
were −3.72(−10), −3.86(−5), −4.04(−1), −4.02(1), −3.79(5), and −3.79(10). Its
median value is −3.79. These little numerical differences are due to the influence
of each drift in the point prediction of αt, but as is known, the intercept term in
the system equation is not determinant for the stochastic dynamic of the process
{αt}. Hence, we can take a smoothed value of these different figures in order to
have a unique value.

Now we consider the LLT model. The goal here is to check for the presence of a
unit root in the stochastic process {βt}. Notice that if this is case, the process {Yt}
is I(2). Once more again, we proceeded via simulation to find the corresponding
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Table 2: Empirical distribution of τ in the case of the RWPN model with drift

Quantile order(/100) Sample size

25 50 100 250 500 2000

1.00 −3.787 −3.562 −3.564 −3.573 −3.501 −3.443

2.50 −3.104 −3.008 −2.970 −2.974 −2.964 −2.942

5.00 −2.616 −2.524 −2.503 −2.527 −2.483 −2.469

10.0 −2.034 −1.971 −1.947 −1.963 −1.974 −1.942

50.0 −0.083 −0.048 −0.053 −0.025 −0.029 −0.021

90.0 1.841 1.887 1.875 1.876 1.906 1.896

95.0 2.410 2.421 2.450 2.427 2.451 2.430

97.5 2.859 2.914 2.936 2.892 2.904 2.910

99.0 3.499 3.498 3.485 3.414 3.455 3.443

distribution for the τ statistic using the predicted process {β̂t}, which is obtained
by means of the fixed-interval smoother, where now the state vector is given by
(αt, βt)

′. As can be seen, our interest is the second component of this vector. In
Table 3 we present the empirical distribution, where we can note the following
facts: (1) the distribution is centered around 0.22 for any of the sample sizes
considered, and this differs of the central-tendency value for the RWPN model.
(2) comparing with the same model, the distribution range is greater, which shows
more dispersion in this case. (3) the empirical quantiles are less than those of the
Dickey-Fuller statistic, as was also found for the RWPN model with drift.

In Table 8 in the Appendix we present the results on the test power study. As
before, the larger the sample size and farther from 1 the coefficient of βt−1 is, the
most powerful the test is. Using the Dickey-Fuller quantiles for implementing the
test, we found that the test loss power, as can be seen in Table 9 in the Appendix.

4. An empirical application

We consider the monthly Colombian real production index (RPI) in the time
period 1983:01-1996:12, with T = 168 observations. The time series is plotted in
Figure 1 and the data are available from the authors upon request. Initially, we
take the logarithmic transformation and then we deseasonalized the time series
using the X11 procedure implemented in the SAS package. As can be seen in
that Figure, one is led to specify two models; namely, the LLT model and the
RWPN model with drift. Using Koopman, Harvey, Doornik & Shephard (1995)
STAMP package for the analysis of the models, we found that the second model is
appropriate for describing the dynamical behavior of the process. The estimated
parameters were σ̂2

ε = 0.032, σ̂2
η = 0.012, and â = 1.0. The model residuals

exhibited good behavior at the light of conventional statistical tests.
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Table 3: Empirical distribution for the τ statistic in LLT model

Quantile order(/100) Sample size

25 50 100 250 500 2000

1.00 −2.13 −1.76 −1.47 −1.43 −1.35 −1.35

2.50 −1.69 −1.41 −1.27 −1.21 −1.17 −1.18

5.00 −1.38 −1.18 −1.07 −1.04 −1.00 −0.98

10.0 −1.07 −0.91 −0.87 −0.82 −0.80 −0.80

50.0 0.23 0.20 0.20 0.22 0.23 0.24

90.0 2.20 2.22 2.26 2.24 2.29 2.25

95.0 2.74 2.84 2.90 2.91 2.89 2.87

97.5 3.27 3.42 3.45 3.53 3.44 3.45

99.0 3.82 4.12 4.04 4.21 4.14 4.16

For testing the null hypothesis of a unit root in the trend process {αt}, we
predicted it by means of the fixed-interval smoother and then we computed the
corresponding test statistic finding that τ̂ = −2.49. Hence, at the 5% level the
null is not rejected (see Table 2). It is important to note here that we need to do
an interpolation between the sample sizes 100 and 250. The decision implies that
the deseasonalized process {ln(RPIt)} has a unit root, but the most important
conclusion here is that the unobservable underlying trend component of this major
Colombian macroeconomic variable (in logs) is I(1). In Figure 2 we present the
predicted trend, where it is clear the influence of the drift.

Figure 1: Colombian real production index for the sample period 1983:01-1996:12
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Figure 2: Predicted trend for the Colombian real production index

5. Conclusions

We have found a way for checking assumptions made directly on the unobserv-
able trend component of an structural process, as that of having unit roots. The
main finding is that the usual Dickey-Fuller test statistic distribution is not appro-
priate for checking the null of a unit root in the trend process, when predictions
of it are used as the observed data.

The proposed statistical tests have power close to 1 for large sample sizes and
from this point of view, we can say that they are very adequate. Comparing
their performance with the Dickey-Fuller tests, the proposed ones tend to be most
powerful, especially in small or moderate sample sizes.

The approach followed here can be used for obtaining similar statistical tests
for other structural models, in Harvey’s (1989) philosophy, including unobservable
seasonal components and cycles. Nevertheless, some theoretical work remains to
be done for checking the convergence in distribution of the proposed test statistics.
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On the next pages we present Tables 4-9.
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Table 4: Unit root test power using the empirical distribution for the RWPN model

Significance level (%) Sample size

25 50 100 250 500 2000

ρ = 0.80

1 0.07 0.34 0.93 1.00 1.00 1.00

2.5 0.18 0.57 0.98 1.00 1.00 1.00

5 0.34 0.77 0.99 1.00 1.00 1.00

10 0.56 0.91 1.00 1.00 1.00 1.00

ρ = 0.90

1 0.03 0.07 0.32 0.98 1.00 1.00

2.5 0.07 0.17 0.57 1.00 1.00 1.00

5 0.16 0.31 0.76 1.00 1.00 1.00

10 0.28 0.54 0.90 1.00 1.00 1.00

ρ = 0.95

1 0.02 0.03 0.08 0.52 0.97 1.00

2.5 0.04 0.07 0.19 0.75 0.99 1.00

5 0.09 0.14 0.33 0.89 1.00 1.00

10 0.17 0.27 0.54 0.96 1.00 1.00

ρ = 0.99

1 0.01 0.01 0.01 0.04 0.07 1.00

2.5 0.03 0.03 0.04 0.09 0.18 1.00

5 0.06 0.06 0.08 0.16 0.31 1.00

10 0.12 0.12 0.15 0.29 0.52 1.00



34 Eliana R. González & Fabio H. Nieto

Table 5: Unit root test power for the RWPN model using Dickey–Fuller quantiles

Significance level (%) Sample size

25 50 100 250 500 2000

ρ = 0.80

1 0.02 0.04 0.30 1.00 1.00 1.00

2.5 0.05 0.14 0.61 1.00 1.00 1.00

5 0.11 0.29 0.85 1.00 1.00 1.00

10 0.24 0.56 0.97 1.00 1.00 1.00

ρ = 0.90

1 0.01 0.01 0.02 0.41 1.00 1.00

2.5 0.02 0.03 0.08 0.73 1.00 1.00

5 0.04 0.07 0.21 0.92 1.00 1.00

10 0.10 0.18 0.47 0.99 1.00 1.00

ρ = 0.95

1 0.00 0.00 0.00 0.02 0.33 1.00

2.5 0.01 0.01 0.02 0.10 0.68 1.00

5 0.03 0.02 0.04 0.27 0.90 1.00

10 0.06 0.07 0.14 0.58 0.98 1.00

ρ = 0.99

1 0.00 0.00 0.00 0.00 0.00 0.99

2.5 0.01 0.00 0.00 0.00 0.01 1.00

5 0.02 0.01 0.01 0.01 0.03 1.00

10 0.04 0.03 0.03 0.04 0.10 1.00
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Table 6: Unit root test power for the RWPN model with drift

Significance level (%) Sample size

25 50 100 250 500 2000

ρ = 0.80

1 0.03 0.03 0.06 0.59 1.00 1.00

2.5 0.09 0.11 0.25 0.94 1.00 1.00

5 0.21 0.27 0.55 1.00 1.00 1.00

10 0.28 0.32 0.59 1.00 1.00 1.00

ρ = 0.90

1 0.07 0.12 0.18 0.42 0.88 1.00

2.5 0.16 0.26 0.41 0.80 0.99 1.00

5 0.30 0.47 0.67 0.95 1.00 1.00

10 0.35 0.54 0.73 0.98 1.00 1.00

ρ = 0.95

1 0.06 0.19 0.49 0.81 0.94 1.00

2.5 0.14 0.34 0.71 0.96 0.99 1.00

5 0.25 0.52 0.85 0.99 1.00 1.00

10 0.33 0.59 0.92 1.00 1.00 1.00

ρ = 0.99

1 0.02 0.05 0.26 0.97 1.00 1.00

2.5 0.04 0.10 0.40 0.99 1.00 1.00

5 0.09 0.18 0.55 1.00 1.00 1.00

10 0.12 0.24 0.60 1.00 1.00 1.00
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Table 7: Unit root test power for the RWPN model with drift using Dickey–Fuller
quantiles

Significance level (%) Sample size

25 50 100 250 500 2000

ρ = 0.80

1 0.05 0.06 0.11 0.72 1.00 1.00

2.5 0.09 0.12 0.22 0.90 1.00 1.00

5 0.14 0.20 0.37 0.97 1.00 1.00

10 0.22 0.31 0.46 0.99 1.00 1.00

ρ = 0.90

1 0.10 0.18 0.25 0.53 0.95 1.00

2.5 0.16 0.28 0.39 0.73 0.99 1.00

5 0.23 0.38 0.53 0.86 1.00 1.00

10 0.39 0.50 0.64 0.92 1.00 1.00

ρ = 0.95

1 0.09 0.26 0.57 0.87 0.97 1.00

2.5 0.14 0.36 0.69 0.94 0.99 1.00

5 0.19 0.45 0.78 0.97 1.00 1.00

10 0.27 0.54 0.87 0.95 1.00 1.00

ρ = 0.99

1 0.02 0.07 0.31 0.98 1.00 1.00

2.5 0.04 0.11 0.39 0.99 1.00 1.00

5 0.06 0.15 0.47 0.99 1.00 1.00

10 0.11 0.24 0.54 1.00 1.00 1.00
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Table 8: Unit root test power for the LLT model

Significance level (%) Sample size

25 50 100 250 500 2000

ρ = 0.80

1 0.05 0.20 0.72 1.00 1.00 1.00

2.5 0.11 0.38 0.86 1.00 1.00 1.00

5 0.21 0.55 0.93 1.00 1.00 1.00

10 0.33 0.61 0.96 1.00 1.00 1.00

ρ = 0.90

1 0.02 0.08 0.25 0.94 1.00 1.00

2.5 0.06 0.16 0.44 0.97 1.00 1.00

5 0.11 0.28 0.64 0.98 1.00 1.00

10 0.23 0.39 0.76 1.00 1.00 1.00

ρ = 0.95

1 0.02 0.04 0.07 0.49 0.95 1.00

2.5 0.04 0.08 0.15 0.69 0.98 1.00

5 0.07 0.14 0.28 0.82 0.99 1.00

10 0.12 0.27 0.41 0.94 1.00 1.00

ρ = 0.99

1 0.01 0.01 0.02 0.04 0.09 0.85

2.5 0.03 0.04 0.04 0.08 0.18 0.94

5 0.05 0.07 0.08 0.15 0.31 0.97

10 0.10 0.08 0.09 0.27 0.42 0.99



38 Eliana R. González & Fabio H. Nieto

Table 9: Unit root test power in the LLT model using Dickey–Fuller quantiles

Significance level (%) Sample size

25 50 100 250 500 2000

ρ = 0.80

1 0.02 0.01 0.03 0.64 1.00 1.00

2.5 0.03 0.03 0.10 0.91 1.00 1.00

5 0.06 0.07 0.28 0.98 1.00 1.00

10 0.09 0.12 0.34 1.00 1.00 1.00

ρ = 0.90

1 0.01 0.00 0.00 0.04 0.70 1.00

2.5 0.02 0.01 0.01 0.20 0.95 1.00

5 0.03 0.03 0.05 0.47 0.99 1.00

10 0.05 0.04 0.06 0.62 1.00 1.00

ρ = 0.95

1 0.01 0.00 0.00 0.00 0.03 1.00

2.5 0.01 0.01 0.00 0.01 0.18 1.00

5 0.02 0.01 0.01 0.06 0.48 1.00

10 0.04 0.02 0.04 0.08 0.57 1.00

ρ = 0.99

1 0.00 0.00 0.00 0.00 0.00 0.01

2.5 0.01 0.00 0.00 0.00 0.00 0.07

5 0.02 0.00 0.00 0.00 0.00 0.25

10 0.04 0.02 0.02 0.02 0.01 0.29


