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Abstract

When the usual hypotheses of normality and constant variance do not
hold (e.g. in binomial or Bernoulli processes), the problem of choosing ap-
propriate designs creates problems to researches when pursuing a sequential
exploration of process. This paper is based on De Zan (2006), where the au-
thor proposes two criteria to evaluate design strategies, that take the amount
of information as the main evaluation tool. One into account the information
of the fitted model, and the other explores the information that is contained
on the approximation of a set of the best conditions of factors found on a
fitted model. An example of how these strategies work is also given through
a simulation using R software.

Key words: Factorial Design, Response Surface Design, Sequential Design
of Experiments, Generalized Linear Model, Logistic Regression, Fisher In-
formation Matrix.

Resumen

Cuando los supuestos habituales de normalidad y varianza constante no
se cumplen (e.g. en procesos de Bernoulli o binomiales), el problema de la
elección de diseños adecuados ocasiona cierta dificultad a los experimenta-
dores, especialmente cuando lo que se persigue es una exploración secuencial
del proceso. Este artículo está basado en De Zan (2006), en donde se pro-
ponen dos criterios para evaluar estrategias de diseño. Una de ellas toma en
cuenta la cantidad de información contenida en el modelo ajustado, mientras
que la otra explora la información contenida en las mejores condiciones de
experimentación encontradas en el modelo ajustado. Se desarrolla un ejem-
plo simulado con el paquete R acerca de cómo funcionan estas estrategias.

Palabras clave: diseño factorial, metodología de superficie de respuesta,
diseño de experimentos secuenciales, modelo lineal generalizado, regresión
logística, matriz de información de Fisher.
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1. Introduction

1.1. Classical Response Surface Methodology

Since the very seminal work of Box & Wilson (1951), and for more than five
decades, many researchers and practitioners of Response Surface Methodology
(RSM) have widely contributed to the natural development of this matter. RSM
has achieved special acceptance within industrial applications, quality improve-
ment of processes and industrial processes in general, among others.

Four complete references that reinforce the extensive use of these applications
are: Box & Draper (1987), Box & Draper (2007), Khuri & Cornell (1996) and
Myers & Montgomery (2002). Some of the most recent updated aspects on this
topic are also described in Myers (1999), Myers et al. (2004) and Atkinson (2006).
Future lines of research are well detailed there, as well.

Although RSM problems have been developed in a very cohesive manner com-
plete way, the scope of the majority of contributions are focused on the normal
linear model1. The study of processes with abnormal distributions in the context
of RSM is a relatively new problem, especially when some considerations related to
the choosing of “good” designs arise. There are many contributions whose focus is
on the analysis of experiments –strictly speaking– while the design does not seem
to reach the same level of development (for instance Myers & Montgomery (2002),
Myers et al. (2001a), Myers et al. (2004) and Khuri (2006) for more details).

1.2. Non-normal Models and GLMs

When the classical hypotheses of statistical modeling do not apply, especially
when the usual assumptions of normality and constant variance do not hold, many
problems for which there are several solutions from the point of view of experi-
mental designs arise.

One of the first attempts to cope with this departure from the usual hypotheses
is to transform the data (e.g. using Box-Cox family of transformations). These
transformations work adequately when a specific hypothesis is tested, in the sense
that a transformed variable could fit better to the classical approach of design
and analysis than if it were not transformed. Nevertheless, some authors point
out that there is no one transformation that can cope completely with all of the
deviations from the usual scope at the same time. Also, it is said that sometimes
many transformations do not make sense from a physical point of view, or may
carry on some additional problems when analyzed statistically. For further details
see Montgomery (2005) and Myers et al. (2001b).

The seminal work of Nelder & Wedderburn (1972) was the beginning of a new
well-integrated approach for the problem of non-normal distributions, namely the
Generalized Linear Models (GLMs). Several authors have later contributed to
extend the applications of these models. Among the most referenced works there

1See for example Khuri & Mukhopadhyay (2006).
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are: Lindsey (1997), McCullagh & Nelder (1989), Dobson (2002) and Myers et al.
(2001a).

The result of this endeavor was successful. A new class of statistical models
now can be considered and analyzed from a common and solid point of view,
which is well accepted in the context of modern statistical modeling. In Myers
et al. (2001a) the authors use the GLM approach to analyze given dataset for
binomial and Poisson factorial designs. Other valuable contributions –see Lewis
et al. (2001b) and Lewis et al. (2001a)– focus on some implications of analysis
as well as, for example, how to obtain confidence intervals for the parameters
on factorial designs when the response follows binomial and Poisson distributions.
When the main goal of a study is not the analysis, but in the design of experiments,
it is well known that the choice of design depends on the unknown parameters.
See Cox & Reid (2000), Khuri & Mukhopadhyay (2006) and Atkinson (2006) for
more details.

Compared with classical regression models (e.g. normal linear models), the ran-
dom component of GLMs is characterized by a certain relaxation of the assumption
of additive error of the former. For a n-dimensional vector of independent obser-
vations of the response, say y = (y1, y2, . . . , yn)′, the usual model has the form
Y = x′β + ε, where x is a vector of known explanatory variables, β a vector of
unknown parameters and ε the error term. In this case, the density function of Y
is fY (y) = fε(y−x′β) (Firth 1991). In the case of GLM, errors do not necessarily
follow a normal distribution but belong to the exponential family distributions.
So, the density function of the response can be written as fY (y) = f(y;x′β), where
x continues to appear only through the linear predictor, η = x′β (see Equation
8). As a result, the mean of Y is determined by η and it is conventional to write
g(µ) = η, or µ = g−1(η). This function g(·) is known as link function, as it links
the mean, µ, and the linear predictor, η.

Thus, it is widely said that GLMs are a very suitable approach to deal with
non-normality and non-constant models at the same time, and so the problem of
the choice of designs is projected on this class of models too. According to what we
mentioned before, GLMs can be completely characterized by their density function
or by the likelihood function (Firth 1991). For example, let’s consider a response
variable that belongs to the exponential family of distributions, whose generic
likelihood function is:

L(θ, φ; y) = exp

{
yθ − c(θ)

φ
+ h(y, φ)

}
(1)

for a single observation y, where c(·) and h(·) are taken as known functions. The
quantities θ and φ are also known, and they are so called “natural” and “dispersion”
parameters, respectively. Among some important properties GLMs have been
related to the variance–covariance matrix of the response (McCullagh & Nelder
1989). The form of the variance of the observations for a given level of x, varies
as a function of the mean of the distribution that data come from:

V (y | xi) = φV (µ) (2)
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where µ = E(y | x). The function V (µ) is the so called “variance function”, which
is conditional to x as well as µ. This function is associated with the specific
distribution considered (e.g., for the normal distribution, we have V (µ) = 1 and
φ = σ2). From Equation (2), we can see that V (µ) depends on the parameters of
the model considered. Taking into account this aspect, iterative class of procedures
have to be carried out on the way of estimating those parameters (e.g. Fisher
scoring, Newton-Raphson, etc.). Thus, the estimation of β is usually expressed
as:

β̂ =
(
X′ŴX

)
−1(

X′Ŵy
)

(3)

where X is the usual design matrix and Ŵ is the estimated diagonal matrix
of “weights” (Myers et al. 2001a), given by Ŵ = diag{ŵ1, . . . , ŵn}, whose i-th
element is given by:

ŵi = V̂ (yi | xi)
−1 (4)

for i = 1, . . . , n. Recalling Equation (2) and provided that µ = g−1(x′β), the
dependence of the variance function on the parameters on the “weights” of the
variance–covariance matrix of Ŵ can be seen:

ŵi =
(
φV (µ̂i)

)
−1

=
(
φV

(
g−1

(
x′

iβ̂
)))

−1

(5)

From Equation (4), the dependence of the “weights”, wi, on the unknown pa-
rameters is an obstacle when choosing the “proper” matrix design X that leads to
“good designs”. This aspect is also clearly seen on the corresponding asymptotic
variance–covariance matrix of β, which is approximated (Khuri & Mukhopadhyay
2006) by:

V
(
β̂

)
≈

1

φ

(
X′ŴX

)
−1

(6)

From Equation (6), an implicit “structural” consequence also follows: although

the design matrix X could be orthogonal, the presence of the matrix Ŵ does
not imply that V(β̂) should be diagonal. If we compare this situation with the
linear case, this dependence on the unknown parameters conditions the choosing
of optimal designs. In fact, considering a normal model, say y ∼ N(µ, σ2), and
whose i-th observation can be represented as a linear function of its parameters,
say yi = x′

iβ+εi, the quality of its variance–covariance matrix depends only on the

choice of the design matrix, X, that is: V(β̂) = σ2(X′X)−1. When designing the
experiment, orthogonality of X also gives some desirable statistical properties for
the estimates of the parameters of the model. For a complete characterization of
GLMs, see McCullagh & Nelder (1989), Dobson (2002) or Cordeiro & De Andrade
Lima Neto (2004) among others.

1.3. Models for Binary Data

There are many processes –particularly in the industry– where a quality char-
acteristic is modeled by a set of control factors. Processes with binary responses
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can be modeled within the scope of GLMs, since Bernoulli or binomial distribu-
tions belongs to the exponential family. For example, we can consider a random
variable with binomial distribution, say y ∼ binomial(m,π), where y is the number
of “successes” out of m trials of a Bernoulli process, with a probability of success
π = P (y = 1). If the different values of π are put on the context of designed exper-
iments, some experimental conditions can be considered as a function of a set of
factors, represented by a k-dimensional vector of factors, say x1, . . . , xk, whereas
the i-th observed response, πi, could be associated to the i-th experimental condi-
tion considered. Although we consider k known factors, there must be n different
experimental conditions, n > k, to perform the experiment properly. If we use the
logistic function to model the dependence relationship between π and the set of n
different experimental conditions, this is usually stated as:

π(xi,β) =
exp(x′

iβ)

1 + exp(x′

iβ)
(7)

where xi represents the i-th experimental condition considered and β is the usual
column vector of unknown parameters, β = (β0, β1, . . . , βk)′. From the usual
theory, this model is clearly non-linear and its distribution cannot follow a normal
form since it has an upper bound for proportions (e.g. 100%). Regarding the
logistic model for the probability of success given on Equation (7), the usual way
to define the linear predictor for the model is by defining a suitable link function.
In this paper, we will use the logit link function, defined as ln

(
π

1−π

)
, where π =

π(xi,β), as in Equation (7) (Collett 2002). Given this, it is easy to say that if
we can apply the logit link function to (7), the resulting linear predictor will be
η = x′β, where η = logit(π). We can say that the response π(x,β) has been
“linearized” by means of the link function. For example, if we consider k = 2
factors, the second order complete model for the linear predictor can be written
as:

η = β0 + β1x1 + β2x2 + β12x1x2 + β11x
2
1 + β22x

2
2 (8)

For a given design, e.g. given by its design matrix X, and regarding Equation
(6), each one of the elements of the matrix W are given by:

wi = V (yi|xi)
−1 = (miπi(1 − πi))

−1. (9)

where mi is the number of trials of the i-th experimental run, chosen from a
Bernoulli process, with probability of success πi, which is modeled as a function
of x and β, as in Equation (7).

From Equation (9), the probability of success depends on the values of the
parameters. If a different link function is chosen (e.g. probit, complementary
log-log, etc.), the situation is analogous (Myers et al. 2001a). Thus, it is clear
that since the asymptotic variance-covariance matrix depends on the values of the
parameters, optimal designs are difficult to achieve when abnormal responses.
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2. The Choice of Designs

2.1. General Scope

The problem of what kind of designs, taken sequentially, may be suitable for
a given process when an unknown relationship links the response to a set of fac-
tors has been studied deeply. When the errors are supposed to follow a normal
distribution and linearity is presumably a good choice for the proposed model,
optimal designs may also be obtained (Pukelsheim 1993). However, when other
error structures arise in the data, the normal classical linear scope does not seem
to be adequate (Collett 2002).

2.2. Looking for “good” Designs

Returning to the binary data family of problems, an experimenter may want
to build empirical models for probabilities (e.g. for proportions) in terms of some
control variables. For example, the experimenter may be interested in how to
deal with the set up of the control factors so that the proportion of successes can
be optimized (e.g. maximized). If a specific set up for these factors is found,
we can link this situation with the one that is described by a single factorial
design approach. We can call this situation a “static design”, since a single design
can show the experimenter what levels of factors are most suitable in order to
optimize the proportion of good outcomes. Having this initial situation in mind,
a basic question may be formulated: “How could experimenters deal with this

problem when the nature of the process does not follow the classical assumptions

of normality and linearity?”. GLMs can offer an authoritative answer to this
question. Classical factorial designs can be taken into account to find the best set
up of the process to obtain the best outcome. We can say that the single-design
solution for this situation has been studied and solved adequately. For example,
Lewis et al. (2001b), Lewis et al. (2001a) and Myers et al. (2001a) describe the
usual extension to factorial designs to solve this single-design solution.

At this point, we can divide this problem into a two–fold way. Both sides of
the problem have special interest depending on the objective of experimentation.
On one hand, the experimenter may be interested in finding the best design for
a single experimental run. There are some approaches that we will summarize in
the next section that consist of some contributions that some authors have made
to clarify this problem. And on the other hand, the experimenter may want to set
up specific strategies to sequentially explore a process, given a specific number of
observations (e.g. fixed budget).

2.3. Optimal Single–Designs

An introduction on the problem of dealing with the choice of the “best” design is
introduced by Khuri (1993, 2001). The author states the problem of the parameter
dependence for GLMs when a sequential approach of optima conditions is followed.
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A very good statistical scope is described here, especially from the point of view
of the analysis of experiments.

In Atkinson (2006) a general formulation for optimal single–design problems
is described in detail. Binomial models are also detailed for single and multiple
variable cases. For the first case, the optimum allocation for a single variable
design is explained from the D-optimum point of view. When the two-variables
case (p = 3) is considered (e.g. with an associated linear predictor of the form
ηi = β0 + β1x1 + β2x2), the author evaluates four sets of parameter values for
the same experimental region. From the D-optimal point of view, the author
discusses and explains point allocations for obtaining optimal designs. Although
optimal configurations for a single design are explained here, the approach for
sequential designs still remains unsolved.

Two articles, as Robinson & Khuri (2003) or Khuri & Mukhopadhyay (2006),
propose a valuable graphical technique –the so called quantile dispersion graphs

(QDGs)– whose details are exposed and analyzed. The first paper states some
principles on the general formulation of the problem and two examples of the
logistic model are examined as well. With relevance to the second one, an example
using the Poisson distribution is also analyzed. The use of the mean-squared
error of prediction (MSEP) as a basic criterion leads to the graphical approach of
comparing and evaluating designs. Both papers focus on the same strategy: to
minimize the MSEP(x) function over an experimental region, specially focused on
the bias as a function of the mean, evaluated on different experimental runs, xi.
As a result, these graphs provide an assessment of the overall prediction capability
of a given design through a visual display of the MSEP.

In summary, the problem of finding optimal designs for a single experiment is
being treated from more than one point of view, and its results are a very valu-
able contribution to further exploring the problem of dealing with the parameter–
dependence problem.

2.4. A Viewpoint for Sequential Designs

In this article, we propose a scope to investigate different scenarios in the choice
of a suitable strategy of exploration for an unknown process from the viewpoint of
RSM. The specific problem that we present here is when the problem of sequential
choice of designs is applied to processes whose main interest is modeling the pro-
portion of success with a set of control factors. Since the associated distribution
can be a binomial one, the toolkit that we use is the GLM approach. Thus, the
next challenge to the experimenter may be expressed with other questions: “How

could one design a sequential strategy to learn about the operation of a system with

binary response, when certain objectives are persecuted?”, and more specifically:
“How could RSM and GLM be linked using the latter as a methodological support?”.
Taking into account the lack of precise and complete antecedents connecting RSM
and GLM from a sequential experimentation point of view, we have been prompted
to follow this form. We consider, as a particular strategy, the one in which the
experimenter has a fixed number of observations to be made, in what is labeled as
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“strategy of fixed budget”. Thus, the objective will be to quantify the information
gained once we have used all the budget available. In both cases, our plan is to
carry out 2-level factorial and sequential designs.

3. A Proposal for Sequential Designs

3.1. Resharpening the Problem

We will turn our attention to processes in which a certain characteristic should
be explained by a set of factors. For example, let’s consider a typical Bernoulli
process, with its only possible outcomes as yi = 1 and yi = 0. When associated to
these outcomes, a binomial distribution may be linked with them in the following
way: the probabilities of success and non-success can be stated as P (yi = 1) = πi

and P (yi = 0) = 1 − πi, respectively. When mi identical trials of this process
are drawn, a number of successes yi can be counted, each one of them with the
probability of success being equal to πi.

Let’s now put the projection of this problem into the context of classical ex-
perimental design. In order to do this, we consider three basic aspects, among
others:

1. First: a number of experimental conditions, n, can be defined to run the
experiment. If mi trials of Bernoulli observations are considered for every
experimental run, we can define a proportion of successes pi = yi

mi

, where
yi is the number of successes observed on the mi trials considered. Thus,
each experimental condition is a combination of levels of the set of factors
considered.

2. Second: since the number of successes yi that can be observed on each
experimental condition is a random variable, then the associated proportion
pi is a random variable too, and

3. Third: since each value pi is the observed proportion of mi binary trials,
and since its outcome depends on the experimental condition considered, the
proportion itself cannot be controlled but it can be explained as a function
of the control factors xi.

Following classical experimental design, the next step is to define a proper
model that can link the nature of the proportion as a response with the set of
control factors as explicative variables. Since the greatest interest in the literature
has been in logistic models for binary data (Atkinson 2006) we will use this model
to link these variables. In these kinds of processes, a typical issue is to find out
what levels of the factors considered lead achieving a goal for the response (e.g.
maximize or minimize). Following the context of the problem described, we will
follow the maximization objective for the proportion of successes.
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3.2. Design Strategies

3.2.1. First Outline

In this article, we propose a design strategy like the one that consists of the
choice of the levels of 3 variables, named w, L and S, that leads to a specific
sequence of designs in order to select the “best” strategy of experimentation for
a process. If ψ is a set of these 3 proposed variables, we can say that D(ψ)
defines the design strategy mentioned before. In the following sections, we present
a proposed methodology based on the definition of two statistical criteria, named
T1 and T2, both based on the amount of information on fitted models obtained
after a fixed experimental budget was used. The evaluation of both criteria leads
the experimenter to have an objective basis from which to decide what is the best
alternative to perform a RSM–based exploration of a process in which a proportion
is used as a response. Thus, we will examine a typical sequence of experimental
designs whose quality is examined by means of the evaluation of these two criteria.

Although the response variable is a proportion, we follow a classical RSM–based
methodology, which is the usual way to attain optima conditions. Some extensions
of it are exploited here for logistic models. Response surfaces for binomial models
are evaluated from a two–way viewpoint: (a) on one hand, the GLM approach to
deal with non-normal models, in particular for those that are modeled by logistic
regression ones, and (b) on the other one, experimental design scope is focused
here in its classical way, using two-level factorials designs and adapting the classical
methods of RSM. The choice of the levels of these 3 evaluation variables defines
different strategies to evaluate experimental designs. In summary, for a given
scenario of evaluation variables, the goal will be to find the best design strategy in
order to achieve the maximum value of the binomial response, when a set of two
factors are defined to perform this exploration. In next sections, we progressively
describe all the elements this strategy.

3.2.2. Main Components of the Strategy

The approach that we propose here starts with the definition of the following
items:

1. Response: all the observations come from binomial processes as proportions,
pi (see Tables 1, 2 and 3). For simplicity, the number of trials of Bernoulli
observations has been fixed as mi = 100 for each experimental condition. As
stated before, the variable of interest is the probability of success, explained
by second order models.

2. Factors : we consider complete second-order linear predictors of 2 factors, x1

and x2, each of them at 2 levels and fixed.

3. Factorial designs: for the observation of the proportions at different factor
levels, factorial designs at 2 levels have been considered.
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4. Theoretical surface: the process that generates the data is represented by a
theoretical surface, whose form has been simulated computationally in R (R
Development Core Team 2006) by considering complete second order logistic
models. We will refer to this surface as π(x,β), indicating that there is an
explicit dependence on the factors vector, x, and on the unknown parameters
vectors, β, as well.

5. Fixed budget : this is an outer constraint that we have fixed in order to
compare different strategies of exploration and to find the best one. This
number has been stated in n = 1500 binary observations, which is the one
that the experimenter has at the beginning of the experimentation.

The first consideration about our proposal brings the experimenter into the
following situation: how to gain the best information quality of the design of an

experiment having a fixed budget to experiment. As a starting point, we have
considered the fixed budget as the one that consists of 15 experimental points
available. We assign a scheme of 3 successive two–level factorials, each of them
consisting of 5 design points: four on the vertices of the region defined by the two
levels of the factors and the last design point assigned to the center of the factorial.
For all of these experimental conditions, a number of proportions of successes
are observed. Following a sequential definition of successive designs –driven by
classical RSM approaches of exploration, e.g steepest path– logistic models are
also fitted to data. At end of this exploration (e.g. when all the budget has been
used and when a final model has been fitted) two evaluation criteria are also defined
in order to measure the quality of the designs, which leads the experimenter to
achieve the maximum conditions for the response. Figure 1 shows the evolution of
the sequential factorials, exploring the surface from the first design (with center
O1) to the third and last one (with center O3). The fitted model is represented
here by its contour levels, each one of the form w · πmax = constant, whose details
will be described in the next section.

3.2.3. Evaluation Variables

As stated before, we have defined 3 variables to perform the evaluation of
different design strategies. We will consider each variable at 5 levels, which we
describe as follows.

• The “center variable”, w: the definition of this variable aims to define the
experimental center point for the first design. See Figure 2. If the maximum
value for π(x;β) is πmax, then w is defined as a fraction of this maximum
value. When w = 0 and when w = 1 the surface π(x;β) will be bounded
between two planes, respectively: the factors plane (π = 0) and the top
bound plane (π = πmax). Then, w defines an intermediate plane between
these two bounds, so that the theoretical surface is cut with a parallel plane
to the factors one at the height w·π(x;β). This intersection defines a contour
line that is projected on the factors plane of the form π(x;β) = constant, in
which the first experimental center will be located.
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Figure 1: Evolution of sequential designs for a fixed value of w, L and S. The main
arrow represents the sequential approximation to maxima conditions of the
response, as in classical RSM approach.

• The “side variable”, L: this variable refers to the length of the “side” of a
square of side L. Factorials will represent sequential experimental regions
on the factors’ plane, each one of them with usual limits, (−1) and (+1) for
each side of length L, expressed in coded units (see Figure 1).

• The “leap variable”, S: this variable is the modulus of the vector that sepa-
rates two experimental centers one from the other, the same way as in clas-
sical RSM. The notation Sij refers to the leap vector that connects centers
Oi and Oj , whose direction is given by φi.

Figure 1 shows how do L and S look.

Having defined a set of 5 levels for the 3 evaluation variables, the main objective
will be to determine which are the ones that lead to the maximum probability of
success for a given strategy. If ψ = (w,L, S)′ is the vector that summarizes these
3 evaluation variables, then the design strategy is defined by D(ψ) = D(w,L, S).
Thus, the goal will be to choose values for ψ to achieve the maximum value
for π(x,β). This value of ψ will define the “best” design strategy, D∗(ψ) =
D∗(w,L, S), which will be objectively evaluated from the point of view of T1 and
T2, as we will see next.
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Figure 2: Generating a contour to place the first center point from w.

3.3. Description of the Strategy

On the study of this proposed design strategy in terms of ψ, we will describe
now 4 consecutive stages in order to facilitate a more complete development and
evaluation of the problem. As a result, the last stage (number IV , as we will see
immediately) defines the problem completely. This point of view basically consists
of the random generation of observed values for the response on the design points,
for which logistic models are fitted. In this sense, the idea is to evaluate different
strategies based on different configurations for ψ. After this, all strategies will be
measured and compared with each other, choosing the one that best satisfies the
two criteria proposed to measure the quality of the associated designs.

1. Stage I: one case study, all variables fixed. The starting situation lies in a
fixed budget of n = 15 design points. Observations of a binomial response
–with m = 100 trials each– are generated at each design point. These 15
design points are arranged on 3 successive 22 factorial designs of 5 design
points each: 4 design points for vertices and a center point on every one.
These 5 design points and these two factors considered may be allowed to
fit a 5-parameter model, e.g. a model with 2 first-order terms, 1 for the
interaction and 1 for the second-order term. More than 1 central point
could also be taken in order to have a potential measurement of curvature,
(e.g. a complete second-order model with p = 6 parameters). In Figure 2,
points labeled with C1, D1, E1 and F1 illustrates these 4 design points for
the vertices of the first factorial, whereas O1 indicates the center point for
the first design, as well. This set of 15× 100 = 1500 points will be identified
as a “case study”. If we follow the classic RSM approach, a first model of
5 parameters can be fitted for these 5 design points by means of the GLM
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approach. To do this, we use the logit link. The resulting estimates define the
direction of the steepest path in the same way as in classical RSM. The first
leap, S12, defines the second experimental center, around which the second
factorial is set up. For fitting the second model, we considered both first
and second design points. Thus, having 5+5 = 10 design points, a complete
second order model, whose estimates define the direction of the second leap,
S23, is fitted. Having this point as the third experimental center, these new
5 design points leads to the use of the whole the budget available. In this
situation, a final model is fitted with all the information available, that is,
for all the 15 design points. For all this model fitting, a fixed level for ψ
–that is, single fixed values for w, L and S– has been considered.

2. Stage II: fifteen cases study, all variables fixed. This second stage consists
of a first generalization of previous Stage I. That is, starting with the same
experimental center point and using the same levels for the evaluation vari-
ables, we have ran 15 times the generation of design points, using the same
values of w, L and S. As a result, 15 cases study were evaluated with respect
to fitting 15 corresponding models for each one. The sequential exploration
of the theoretical surface and the model fitting are both analogous to the
procedure of Stage I. Having all the information of the final fitted models
for each case study, we propose two criteria of quality fitting: (a) Criterion
I: the maximization of a Fisher Information Matrix determinant–based cri-
terion for the last fitted model, and (b) Criterion II: the maximization of
the information related to the location of the point of the fitted model that
maximizes the theoretical model. Both are described as follows.

a) First criterion: The resultant fitted model for every one of the 15 case
studies is of the form of expression (7), with the estimated values of β
instead of the original ones, that is:

π̂(xi, β̂) =
exp(x′

iβ̂)

1 + exp(x′

iβ̂)
(10)

The variance–covariance matrix of these estimates, V̂(β̂), provides a
first measurement of how well the model fits for a single case study. Pro-
vided that all the estimates of the parameter vector are of the inverse
of V̂(β̂) is asymptotically equal to the the Fisher Information Matrix

(abbreviated from here as “FIM”) of this model. That is IF = X′ŴX,

where Ŵ is the estimated matrix of “weights”, whose i-th element is
given by Equation (9), being π̂i = π̂(xi, β̂), as in expression (10). Tak-
ing the determinant of this FIM, this measurement is concentrated in
only one figure. A logarithmical transformation of this determinant is
taken next, so the quantity log det(IF ) is finally taken as a proposed
measurement for each one of the 15 case studies generated for a single
level of w, L and S. As a global measurement of all these 15 runs –that
is, for the 15 case studies– we take the average of all of them which
leads to another unique measurement of how good it fits. We call this
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the T1 statistic, which will be used as the first criterion of evaluation of
fitted models. For a general number of cases study, say G, this statistic
is defined as:

T1 =
1

G

G∑

i=1

log det(IF )i, 0 ≤ T1 ≤ +∞ (11)

The motivation of defining T1 as in (11) is to have a representative
measurement (e.g. the average) of how much information is contained
on a single design strategy D(ψ). Since every value of the latter defines
an index of the quality of design strategy, it will be relatively easy to
compare different values of w, L and S for different explorations of the
process, and thus, to look for the “best” design strategy, D∗(w,L, S), if
there was any. As mentioned before, we will take G = 15.

b) Second criterion: This second measurement starts with the “best” con-
ditions that the fitted model can give for a certain chosen strategy. In
particular, and given the fitted model by (10), the fitted surface will
reach a maximum when the factors have a certain value x̂max, so that
∂π̂(x,β̂)

∂x
= 0, if x = x̂max. Evaluating this value x = x̂max on the true

surface given by π(x,β), a comparison with the “best” operative con-
ditions can be made. That is, provided that π(xmax,β) leads to the
best approximation to the maxima conditions in the theoretical model,
the best experimental conditions obtained from a fitted model will be
π̂(x̂max, β̂). For example, Figure 3 shows all these measures for the
single factor problem. In this Figure, two models can be identified:
on the left hand, the true one, labeled with π(x,β), and on the right

hand, the fitted one, π̂(x, β̂). The best theoretical condition is given by
the maximum point, π(xmax,β), whereas the best one obtained for the

fitted model is represented by π̂(x̂max, β̂). Evaluating this fitted max-
imum condition x̂max on the theoretical model, it results in the value
π(x̂max,β). As the point x̂max moves towards the true maximum point
xmax, the maximum response also tends to π(xmax,β), which is the
maximum theoretical value that the response can achieve. If πi(x̂,β)
characterizes the i-th case study, we can summarize all the 15 cases
study considered by means of taking the average of them. For a general
number of G case studies, we define this T2 statistic as:

T2 =
1

G

G∑

i=1

πi(x̂,β), 0 ≤ T2 ≤ 1 (12)

As it was explained for T1, this T2 statistic follows an analogous moti-
vation too, now for the “best” experimental condition obtained by the
process of model fitting, that is x̂. To perform a coherent comparison
between both criteria, T2 was thought of as a function related also to ψ
in order to compare it with T1. This comparison is then performed by
looking at which levels of these variables w, L and S are the ones that
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maximize each criterion. So, using this result T2, the second proposed
criterion to evaluate the quality of the design strategy will be examined
next.

Figure 3: General scheme for the second criterion, T2, for the single factor problem.

3. Stage III: fifteen case studies, w fixed and L and S variables. In this next
stage, 5 levels are now considered for both L and S, keeping w fixed. This
extension leads us take into consideration now a scenario of 25 cases, each one
developed the same way as in the previous stages. These 25 generalizations
are made in the same way as the ones described in Stage II. This scheme
is summarized in a 25 × 2 matrix, that is called the “LS matrix”. Each
row of it defines one of the 25 cases considered, and for each one, 15 runs
are evaluated. As a result of this generalization, both measurements are
obtained as in the previous Stage. Either T1 and T2 are calculated for every
one of the 25 cases considered here.

4. Stage IV: fifteen case studies, with w, L and S all variables. This final stage
aims to end the generalization started in the previous ones. Five levels of w
are now considered here, so that for every row of the LS matrix defined in
Stage III, there are 5 different experimental conditions, each one given for all
the 5 levels of w considered. Having all the 5× 25 = 125 cases, we calculate
T1 and T2 for each one.

As a result of this 4 stage–development, we have now summarized the situation
as follows: (a) We started with 5 frames, each one of them characterized by a single
level for w and 5 levels for L and S, respectively. Thus, each frame consists of 25
points on a 5×5 grid for L and S. (b) Values of T1 and T2 are calculated for every
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frame. Then, 5 grid frames –each one for every level of w considered– have been
obtained, that consist of 5 × 5 values for either T1 and T2. Finally, and since we
are evaluating all the strategies considered in terms of vector ψ, we have taken as
“best” strategies the ones that maximizes both T1 and T2. In the next section we
illustrate the procedure for a worked example.

4. Examples

4.1. Setting Up the Problem

A simulated process of random generation of data is considered here. The
idea with this is to study in detail the behavior of a real process characterized
by Bernoulli observations. Then, an RSM approach will be developed following
the strategy we have mentioned before. We will describe now the four stages
mentioned in previous section for a simulated example obtained with R. These
stages are developed here in order to measure the quality of designs for various
strategies. This next example is explained for a single value of the evaluation
variables. An extension of it will be considered later, including all the levels of w,
L and S, as well.

4.1.1. The True Surface

Two factors, x1 and x2, have been considered when generating the true pro-
cess surface. It is then described by means of a second order model for these two
factors, whose linear predictor is of the form given by expression (8). The lev-
els of each one of the fixed constants βj of the generation process, j = 1, . . . , 6,
were chosen randomly. Thus, the resulting value of this column vector was β =
(2, 2,−2,−2,−2, 2)′, which leads to the expression of the theoretical surface, ex-
pressed by the logistic model given by expression (13), and whose graphical form
is represented in Figure 4:

π(x,β) =
exp(2 + 2x1 − 2x2 − 2x2

1 − 2x2
2 + 2x1x2)

1 + exp(2 + 2x1 − 2x2 − 2x2
1 − 2x2

2 + 2x1x2)
(13)

In order to obtain only configurations of this vector that correspond to maxima
situations, all the models obtained were filtered according to the criteria of eigen-
values classification. Since second order polynomials were considered for the linear
predictor, we retained those where both eigenvalues had a negative sign. Thus,
the complete characterization of this surface can be summarized by: (a) Eigen-
values: λ1 = −1.0 and λ2 = −3.0. Both negative signs confirm that the surface
has a maximum. (b) Coordinates of the stationary point: xmax = (x1S , x2S)′ =
(0.3333,−0.3333)′. (c) Value of the response at xmax : π(xmax, β) = 0.93504. The
surface is given, therefore, by Equation (13), and it represents a true process from
which all the data of the experiment (e.g., proportions) is obtained. Since its values
are bounded between 0 and 1, this surface can be thought of as a generator of pro-
portions as responses (e.g. y is the number of successes obtained from a binomial
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Figure 4: The theoretical surface, representative of the process studied.

distribution indexed by its size m and its probability of success π). Putting this
response variable in the context of the design of experiments, it can be modeled
using the logistic function as π(x1, x2,β) = π(x,β), where β is the 6 × 1 vector
of unknown parameters that appear in (13). Following this way, then the surface
represents how π varies on the design points of the factors plane. Specifically, the
shape of this figure is associated with the form of the logistic model previously de-
fined in Equation (13) and Figure 4. The objective will be, then, to select different
sequential designs that lead to the attainment of maxima conditions for π(x,β).

4.1.2. The First Design Point

Having defined a way to represent the real process by the theoretical surface,
the next step is to start exploring it from the point of view of sequential experimen-
tal designs. It is clear that the nonlinear nature of the real model –see expression
(13)– forces the experimenter to perform a sequential exploration of the true pro-
cess. This is because he or she knows neither how this process works, nor the
form in which the factors explain the response variable. A one-shot experiment,
in which the whole budget was used, is definitely not a wise way to proceed, espe-
cially at the beginning of the experimentation (see Box et al. (2005), for example).
We develop the exploration of this surface by the use of factorial designs at two
levels. We will describe here how we adapted this methodology to the problem.

The first step is to define a way to set up a design point into an operability
region of the true process. In order to do it systematically, we localize this point
over a certain contour level of the theoretical surface. Figure 2 illustrates this
situation. A particular contour line arises when a certain value for the variable w
defines a plane that intersects the surface in a parallel way to the factor’s plane.
πmax being the maximum value that the surface can take, then the equation of
this horizontal plane can be expressed as w · πmax = constant, which is also an
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analytical form of the contour line projected on the factor’s plane. As a starting
point, we have set up the value of w in 5%. This situation can be also illustrated
in Figure 2. The corresponding contour level will be, then, the locus in which
the first design point will be set up. In order to define another way to generate
a first design point systematically, we connected the origin of the factor’s plane,
x0 = (x01;x02)

′ = (0; 0)′, with the coordinates of the maximum point of the
surface, xmax = (x1 max;x2 max)

′. As a result, these points define a segment line
R1 that intersects the contour level in two symmetric points around xmax.

4.1.3. Levels for Evaluation Variables

As stated before, a value for the “center variable”, w, is needed for the definition
of the contour level that will contain the center point for the first design. For
example (see Figure 2), small values for w will lead to the definition of bigger
contour lines and thus small values for π(x,β). In the same way, the neighborhood
of the maximum will also be around large values of w, since the studied case is
a maximum. Because it is reasonable that the experiment probably starts on
regions far away from the optimum conditions (Box & Draper 1987), it can be also
reasonable to start experimenting on regions in which the values for the response
are “small” too. Connecting this situation with w, relatively small values for this
“center variable” are considered as a real representation for the beginning of the
experiment. For this situation, then, we have defined the following levels for
w : w1 = 5%, w2 = 10%, w3 = 15%, w4 = 20% and w5 = 25%, because they can
reasonably represent the situation at the beginning of a typical experimentation,
especially here, since the studied case is a maximum.

On the left side of Figure 5 it can be seen how the point O1 has been chosen
as the first design point, which is over the contour line, labeled on the right figure
as “CL at w = 0.05”.

Figure 5: Left: the determination of the first experimental point, O.1 for a 5% contour
level. Right: the first factorial design at two levels, with side L and with O.1

as its center. (The graphical notation O.1 refers to O1, C.1 to C1, etc.)
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In the same figure, the distance between both points O1 and X.Max, labeled as
d.OM, was also automatically calculated with R and it is equal to 1.3762. For the
determination of the levels for the second evaluation variable, L, we take the fourth
part of d.OM and define it as an initial basic distance. We define 5 levels for L as
a fraction of this distance. These are of the form l×0.25 d.OM, where l represents
the fraction mentioned before. Large values for l may lead to make a relatively
wide mapping of the factors region, while small ones will map small regions. In
order to have a relatively informative range of variation, we have considered the
following levels for L : L1 = 0.6 × 0.25 d.OM, L2 = 0.8 × 0.25 d.OM, L3 = 1.0 ×
0.25 d.OM, L4 = 1.2 × 0.25 d.OM and L5 = 1.4 × 0.25 d.OM.

For the selection of levels of S the same logic is followed: small values for it
may lead the experimenter to consider relatively many leaps to reach the maxima
conditions, while large ones, few steps. In this sense, we evaluate the following
levels for S : S1 = 0.2×d.OM, S2 = 0.4×d.OM, S3 = 0.6×d.OM, S4 = 0.8×d.OM

and S5 = 1.0 × d.OM.

In summary, for a given process (see Equation 13) a fixed value for w determines
the position of the first experimental center. Once this point is set up, there is an
associated distance, d.OM that leads to set up the other two evaluation variables,
L and S. For the first one, each level is taken as multiples of the fourth part
of d.OM, whose “weights” are: 0.60, 0.80, 1.00, 1.20 and 1.40. And for the last
one, S, its associated levels are taken directly as submultiple of d.OM, with the
following “weights”: 0.20, 0.40, 0.60, 0.80 and 1.00. Therefore, w = 0.05 determines
d.OM = 1.37624, and thus all levels for L and S are taken as the coordinates of
respective vectors, as defined before:

L = (L1, L2, L3, L4, L5)
′ = (0.20644, 0.27525, 0.34406, 0.41287, 0.48168)′ (14)

S = (S1, S2, S3, S4, S5)
′ = (0.27525, 0.55049, 0.82574, 1.10099, 1.37624)′ (15)

4.2. An Example Considering a Single Row of LS(w)(w)(w)

4.2.1. A Single Experimental Run

Considering both vectors L and S, we define the LS matrix, dim(LS) = 25×2,
which depends on the level of w considered. This matrix is the one that contains
all the levels for both variables L and S, and that will be evaluated in different
design strategies. Since five levels for L and S are considered, every row of this
LS matrix is of the form LiSi, for i = 1, . . . , 5. Besides which, and since five levels
of w are considered, the complete scope of experimentation considers five matrices
LS, named: LS(0.05), LS(0.10), LS(0.15), LS(0.20) and LS(0.25).

For example, if we consider the true surface defined as in (13), and if w = 0.05,
then the first design point, O.1, is automatically located on the 0.05 ·π(xmax,β) =
const. contour level. The calculated distance from this point to the maximum
is d.OM = 1.3762. Figure 5 shows this situation for this specific value of w.
Immediately, the associated levels for L and S are the same as in expressions (14)
and (15), respectively. Therefore, arranging both vectors in terms of its levels, we
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obtain the LS(0.05) matrix, consisting of 25 rows of the different combinations of
levels for L and S that we defined previously.

Now we can arrange all the aspects described before in order to build the first
factorial as a beginning of the evaluation of different design strategies for π(x,β).
We define now the first factorial design, which consists of 5 design points for both
factors x1 and x2 (see the right side of Figure 5). This first factorial consists, then,
of 4 vertices –that we can call: C.1, D.1, E.1 and F.1– and a central point, O.1.
For these 5 design points, the value of the “true” response is determined using the
“true” model defined in (13). The layout of this first design with the levels for
both factors is represented on the first four columns of Table 1 for L = 0.2064.

Table 1: The layout for the first design, which contains the true response, π(x,β) for
every design point. It also contains the observed responses, y, or the number
of successes on a fixed size M, or pr, and the observed proportion of successes.

Design Point x1 x2 π(x, β) M y pr

C.1 1.20323 −1.40966 0.04581 100 5 0.05

D.1 1.40966 −1.40966 0.01360 100 2 0.02

E.1 1.40966 −1.20323 0.04581 100 6 0.06

F.1 1.20323 −1.20323 0.13312 100 13 0.13

O.1 1.30645 −1.30645 0.04675 100 7 0.07

In order not to deal with theoretical data, but with real ones, we perform a
random generation process for the responses, using the true response as the ex-
pected value of a binomial process. This is indexed by m and π(x,β), x being
every one of the design points given on the first three columns of table 1. Re-
garding the nature of the process being studied, all these generated responses can
be assumed to be observations from a binomial process, whose probabilities of
success are the dependant variable on the 2 factors-model described in Equation
(13). Therefore, a random generation of data of the form yi ∼ binomial(mi, πi)
can be stated this way, in which yi are the number of successes observed on mi

trials of a binomial process with probability πi = π(xi1, xi2;β), for each one of
the design points described before. Figure 6 illustrates a scheme of the aspect of
generated observations of the response based on the expected value for a gener-
ical point x0. Having the expected value of the true response at that point, say
π(x0,β), and using the R command rbinom(n,size,prob), this notation refers
to n as the number of observations that will be generated; size is the number
of trials considered and prob represents the probability of success for each trial,
chosen for the generation of data. This probability is the one that is modeled with
the logistic model given in Equation (13). The same figure shows how random
values were generated around this last one.

On the definition of the proportions as the responses, we have fixed the “index”
(McCullagh & Nelder 1989), mi, of the binomial distribution as 100. So, this
situation is equivalent to the observation of 100 single trials of a Bernoulli process
with probability of success begin equal to the one described in Equation (13). The
fifth and sixth columns of Table 1 reflect the results of this situation, so the sixth
one is the number of observed “successes” in every experimental condition following
the generation process described in this way. Finally, dividing the column of
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rbinom(n,size,prob)

Figure 6: The random process of generating data around expected values.

observed successes y by the index M, it results into a vector of observed proportions
pr for each one of all the 5 experimental conditions defined.

All these 5 points of Table 1 –labeled as column “pr” on it– can be fitted with
a suitable model for proportions, such as the logistic model described in (7).

Since we have that pri = π̂(xi,β) are the observed proportions for every design

point, the logistic model for this first design is of the form pri = exp(ηi)
exp(1+ηi)

, where

ηi = 2+2xi1−2xi2−2x2
i1−2x2

i2+2xi1xi2 is the linear predictor, as described before.
Provided that we have 5 points for the first design, this linear predictor has to be
defined with a maximum of p = 5 parameters. Thus, for every design point, the
response variable pri is expressed in terms of the linear predictor for the two factors
considered, x1 and x2, as in Equation (13). The nature of this Equation leads to
the performance of likelihood-based methods for the estimation of the unknown
parameters βj . As we mentioned before, GLMs uses this approach. In this article
we use the logit link for the observed proportions. So, the model can be expressed
as a function of the linear predictor. Using the glm() function of R, the program
calculates the ANOVA table. As a result, and since we have p = 5, the program
gives the maximum-likelihood estimates for β, that is, β̂ = (β̂0, β̂1, β̂2, β̂12, β̂11)

′,
in which its standard errors and p-values are also obtained by R. Replacing these
estimates on the true one, the fitted model can be expressed as:

pr = π̂
(
x, β̂

)
=

exp (η̂)

1 + exp (η̂)
(16)

The estimated vector β̂ provides a way to find the direction of steepest path
for the fitted model. Deriving from Equation (16) with respect to both factors,
the direction of the leap vector S –which is, the third evaluation variable– can be
determined as:

S = (S12 cosϕ1;S12 sinϕ1)
′ = (s1; s2)

′ (17)

whose direction, ϕ1, is calculated in the same way as in classical RSM, that is
ϕ1 = arctan s2

s1

. In this example, we choose the first level of S –defined before–
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for the modulus of this vector, so it will be S12 = 0.2752474. The direction of this
vector is also calculated and is given by ϕ1 = 95.27759◦, so its components are:
s1 = −0.02531755 and s2 = 0.27408057.

Now, if P1 represents any of the 5 coordinates of the points of the first factorial,
the first leap vector –which is denoted by S12– can be added vectorially to them,
so that the second design can be obtained as a sum of the form P2 = P1 + S12,
where P2 corresponds to the coordinates of the second design points. Table 2
illustrates this new design.

Table 2: The layout and main results of both first design (points C.1, D.1, E.1, F.1,
O.1) and second one (points C.2, D.2, E.2, F.2, O.2), both arranged as two
sequential designs.

Design Point x1 x2 π(x, β) M y pr

C.1 1.20323 −1.40966 0.04581 100 5 0.05

D.1 1.40966 −1.40966 0.01360 100 2 0.02

E.1 1.40966 −1.20323 0.04581 100 6 0.06

F.1 1.20323 −1.20323 0.13312 100 13 0.13

O.1 1.30645 −1.30645 0.04675 100 7 0.07

C.2 1.17791 −1.13558 0.19745 100 11 0.11

D.2 1.38435 −1.13558 0.07473 100 6 0.06

E.2 1.38435 −0.92915 0.18168 100 19 0.19

F.2 1.17791 −0.92915 0.38311 100 38 0.38

O.2 1.28113 −1.03237 0.19273 100 27 0.27

For this new second design, we proceed in the same way as in the first one.
Keeping the same true model –given by (13)– and the same index for the bino-
mial trials, we have to generate mi = 100 Bernoulli observations, each one with
probability of success given by (13), whose design points, xi, are the ones from the
second factorial. The number of observed successes will be represented by yi and
the associated proportion of them will be pri =

y
i

100 , for i = 1, . . . , 5. As a result,
an extended table of 10 rows is also obtained, following the same structure as Table
1 but with 5 new rows, that correspond with points labeled as C.2, D.2, E.2, F.2,
with O.2 as the second center point. All this is shown on Table 2.

The second fitted model now will contain all the information of the true re-
sponse, provided by both designs. The way of fitting this second model is analogous
to the first one, except now there are 10 degrees of freedom, which come from both
designs. A complete second-order linear predictor of p = 6 parameters can now
be considered and the way of fitting it follows the same logic as in the first de-
sign. Estimations of the parameters and also their standard errors and p-values
are also obtained using the glm() R command in the same way as before. Now

having the estimates β̂j , j = 1, . . . , 6 for this second model, the second leap, S23

can be determined the same way as in the first factorial. This second leap is then
characterized by its angle ϕ2 = 95.8756◦ and by its components, s1 = −0.0280901
and s2 = 0.2738103.

Following all these steps for the third factorial, the third design is obtained.
At this time, all the available budget has been used. That is, the three defined
designs contain the information given by 1500 experimental points, each one of
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5 × 100 Bernoulli observations. Thus, we set up the analysis fitting a final model
for the three models, so that it contains all the information of the 1500 points.
The linear predictor for it has p = 6 parameters, and a final vector of estimates
β̂ is also obtained. Table 3 shows all the experimental area covered by these 3
designs and their associate values for the true response and for the fitted one.

Table 3: The layout and main results of the three sequential designs.

Design Point x1 x2 π(x, β) M y pr

C.1 1.20323 −1.40966 0.04581 100 5 0.05

D.1 1.40966 −1.40966 0.01360 100 2 0.02

E.1 1.40966 −1.20323 0.04581 100 6 0.06

F.1 1.20323 −1.20323 0.13312 100 13 0.13

O.1 1.30645 −1.30645 0.04675 100 7 0.07

C.2 1.17791 −1.13558 0.19745 100 11 0.11

D.2 1.38435 −1.13558 0.07473 100 6 0.06

E.2 1.38435 −0.92915 0.18168 100 19 0.19

F.2 1.17791 −0.92915 0.38311 100 38 0.38

O.2 1.28113 −1.03237 0.19273 100 27 0.27

C.3 1.14982 −0.86177 0.47800 100 49 0.49

D.3 1.35626 −0.86177 0.25623 100 34 0.34

E.3 1.35626 −0.65534 0.42746 100 44 0.44

F.3 1.14982 −0.65534 0.64570 100 66 0.66

O.3 1.25304 −0.75856 0.45789 100 46 0.46

It can be seen on Table 3 that the sequential generation of successes increase
from the first design to the last one (see column labeled as y), just as the migration
from the first experimental region to the third one. This situation is coherent in
the sense of the sequential exploration of the true response and the sequential
designs that the experimenter conducts to successive “best” approximations to the
maximum. Using the glm() function of R, the fitted model for all these 15 design
points is shown on Table 4. The fitted linear predictor for this model can be
expressed as η̂ = 9.750339− 4.59569x1 + 5.137089x2.

Table 4: The ANOVA table for the fitted model of the 15 design points.

Estimate Std. Error z value Pr(> |z|)

(Intercept) 9.750339 0.6450672 15.115229 0.000

x.01 −4.595690 0.4332252 −10.608014 0.000

x.02 5.137089 0.6567979 7.821416 0.000

x.12 0.000000 0.0000000 0.000000 0.000

x.11 0.000000 0.0000000 0.000000 0.000

x.22 0.000000 0.0000000 0.000000 0.000

4.2.2. Several Experimental Runs

So far, we have defined a strategy of experimentation consisting of the definition
of 3 successive two level-factorial designs for single levels of w, L and S, respec-
tively. Linking all the 3 designs in the way described before, the whole planned
budget is used at the end of the third fitted model. Thus, a complete second order
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linear predictor for the logistic model is obtained for all the 15 design points. As
stated before, this set of 15 design points constitutes one “case study” of design
points.

In order to consider some variation on the observed response, now we run 15
times each case study using the same levels of w, L and S. That is, for every se-
quence of 5 points-designs, a random number of successes (and then, proportions)
is generated, so that different paths of approximation to maxima conditions are
obtained. For each one of these paths, a scheme of 3 sequential designs is also
obtained, and then, a respective second order complete model is fitted. Therefore,
if a design strategy is defined by a single row of the LS(0.05) matrix, its i-th row
works as the generator of 15 random approximation paths to the maxima condi-
tions. Associated to each one, a fitted model of maximum p = 6 parameters is also
obtained. For simplicity, we call every single experimental run as “one case study”,
whereas all the 15 experimental runs are labeled as “fifteen case studies” or “one
data frame”, as well. The next natural step is to compute the two criteria of eval-
uation, T1 and T2, as they were defined in expressions (11) and (12), respectively,
for a single data frame.

1. First criterion. We have that the observed FIM for a single data frame is
given by

∑15
i=1 log deti(X

′WX). The notation deti(X
′WX) states that for

each one of the 15 cases study considered, there are particular values for the
design matrix, X, and also for the matrix of “weights”, W. So, there is also
an associated FIM for every one of the 15 fitted models, whose determinant
is the one described before. For each one of the 15 cases study, the estimated
matrix of “weights”, Ŵi, has the form Ŵi = diag

{
miπ̂i(1− π̂i)

}
, where π̂i =

π̂
(
xi, β̂

)
is calculated on the last model of each case study. We determine

π̂ by the consideration of its maximum likelihood estimation, which is the
proportion of observed successes. That is: π̂i =

y
i

100 . Therefore, for every
case study, the observed FIM is calculated following this way. We can extend
this procedure to all the “data frame” by means of the calculation of the same
measure for every “case study” and then calculating the average of them, that
is T1 =

∑15
i=1 deti

(
X′ŴX

)
. Table 5 shows the calculation of T1 for all the

15 case studies generated from w1, L1 and S1, that can be seen on the second
column of the same table.

2. Second criterion. For this second criterion, the calculation of T2 is completely
analogous as in the first one. For each one of the 15 case studies, the quantity
π(x̂,β) is shown on the third column of Table 5. On the determination of
each one of them, the following steps has been made: (a) the vector of

estimates of the unknown parameters, β̂; (b) the value of x that makes the

fitted model π̂
(
x, β̂

)
to reach a maximum, which is x̂; and (c) the value of

the real process evaluated on x̂, that is π(x̂,β).

As we can see in Table 5, this design strategy can be summarized on both
criteria: T1 = 0.818991 and T2 = 0.706840. These indicators condense the amount
of information that can be obtained by choosing levels w1, L1 and S1 for the three
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Table 5: The calculation of T1 and T2 for all the 15 cases study generated by w = w1,
S = S1 and L = L1.

Case Study T1 T2

SC.01 0.664814 0.898778

SC.02 1.481098 0.682047

SC.03 0.849250 0.628167

SC.04 0.856407 0.899190

SC.05 0.680511 0.445337

SC.06 0.961489 0.756512

SC.07 0.584377 0.927986

SC.08 0.587970 0.748809

SC.09 −0.066011 0.658838

SC.10 1.937709 0.652120

SC.11 0.678024 0.714656

SC.12 0.677629 0.611532

SC.13 0.619965 0.628572

SC.14 1.041491 0.579345

SC.15 0.729993 0.770705

Mean 0.818991 0.706840

evaluation variables on the attainment of optima conditions for the process given
by Equation (13). These measurements can give an insight on how good the design
strategy selected, has been.

By observing both values of T1 and T2, they have no information itself in the
sense that they are measurements of only one design strategy, that is the one given
by w1, L1 and S1. Now, the next natural step may suggest to consider all the rest
of rows of LS(0.05) matrix and to calculate both T1 and T2 for each one. This
may lead us to have a more precise idea of how this design strategy –the one that
takes LS(0.05)– works.

4.3. An Example Considering a Complete LS Matrix

This section presents a generalization of what has been done before using one
row of the LS(w) matrix. That is, the determination for both T1 and T2 now is
performed the same way as in the last section. We now perform 15 experimental
runs for every one of the rows of LS(0.05) matrix, then calculating both values T1

and T2 for each one of the 25 data frames contained on the LS(0.05) matrix.

For a clearer representation of how T1 and T2 behave on all 25 rows of LS(0.05),
we build a 2-dimensional grid chart, which consists of two orthogonal axes, named
L and S, that are divided into 5 levels the same way as shown on (14) and (15).
Focused on the 25-points grid, in which every one is a pair of the form LiSi, for
i = 1, . . . , 5, then the idea is to build two charts, one for each T1 and T2, so that
the value of both quantities are shown on them. For example, every row of the
LS(0.05) matrix corresponds to one design strategy, that is summarized on both
T1 and T2. Thus, if all the 5× 5 points –that are the same 25 rows of the matrix–
are represented on the corresponding 5× 5 grid, then the value of T1 for each row
is shown each point, and similarly to T2. Therefore, and for a single matrix of the
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form LS(w), one grid chart made this way is a useful tool to compare all the values
of T1 (and also T2), so that it can be seen there what are the coordinates on the
chart that leads to the maximum value of it. In summary, it is analogous to find
the design strategy –given by a certain pair LiSi– that makes the maximum value
of the amount of information obtained from each one of the 25 design strategies
considered on a single LS(w) matrix. For example, when w = 0.05, both grid
charts of T1(L, S) and T2(L, S) are shown on Figure 5.

Figure 7: A representation of grid charts for LS(0.05). In both charts, the values for L

and S that correspond to maxima values for T1 and T2 are labeled as “MAX”.

Figure 7 shows that higher values for T1 and T2 are obtained for higher levels
for both L and S when w = 5%. Since each one has been calculated for 15 runs,
we finally find that the maximum value for the first criterion is T1 = 18.313401,
for L = L4 and for S = S5. For the second criterion, we have T2 = 0.931704, for
L = L5 and S = S4.

4.4. An Extended Example Considering Five LS Matrices

After evaluating a complete LS matrix for w = 0.05, and since we have defined
5 levels for w, we have calculated all the 5×5 pairs LiSi for the five corresponding
LS matrices, that is, for w = (0.05, 0.10, 0.15, 0.20, 0.25)′. As a result, and for
every one of these 5 matrices, a grid-chart similar to Figure 7 is obtained. In
each chart, the maximum value of both T1 and T2 is also determined. We can
summarize now all these in two new charts, one for each T1 and T2, on which we
present the maxima values obtained for both measurements, for every one of the
levels considered for w.

Figure 8 shows maxima values for both T1 and T2, evaluated on all the levels
of w considered. On this figure, it can be seen that higher values of max(T1) and
max(T2) are obtained for small levels of w. In particular, when w = 0.10 values of
both measurements rises their maxima values, that are max(T1) = 19.37509 and

Revista Colombiana de Estadística 31 (2008) 261–291



Experimental Sequential Designs for Logistic Regression Models 287

Figure 8: A comparison among values of max(T1) and max(T2) for LS(w) matrices,
when w = (0.05, 0.10, 0.15, 0.20, 0.25)′.

max(T2) =0.931817. An important fact is that both criteria coincide on attaining
a maximum value for smaller levels of w. This situation seems to be more clear
on the left side of Figure 8.

Figure 9: Two typical sequential designs resulting for two design strategies: one with
w = 5% (on the left) and the other one with w = 10% (on the right).

4.4.1. Comparison of Two Cases

Provided that “best” values for both measurements are obtained for small levels
of w, we now present two figures of how the exploration of the true process evolved
from the first factorial design to the third one. When L and S take their maxima
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levels among all considered, that is L = 0.449 and S = 1.283, and when w = 0.10,
the resultant experimental path is presented on Figure 9. On the left side of this
figure, it appears as the aspect of the row of the corresponding LS(0.10) matrix
defined by L = L5 and S = S5, that also lead to the highest value for both T1 and
T2. On the right side of the same figure we present the evolution of the design
strategy for w = 0.05, when L and S take the levels L = 0.206 and S = 0.275,
respectively.

5. Conclusions

By looking at both charts of Figure 9, some interesting observations can be
made. From the point of view of the selection of levels of w, the case of w = 0.10
appears to be “better” than the one on that w = 0.05 in the sense that the first one
has a wider range of area of the true response covered by the three designs. This
situation may suggest that the amount of information on the surface is more spread
than in the case where w = 0.05, whose experimental area is smaller. On the left
side of the same figure, the fact that the third factorial designs “passes” through the
maximum of the true surface —labeled as X.Max— does not seem to be a problem
since the main goal of the exploration is not to fall into the neighborhoods of the
maximum but to gain the best information about the design. In this sense, the
right side of the same figure shows a more congregated display for experimental
points, while the left one has a wider spread of them.

The situation for the “best” values obtained can be summarized by ψ∗ =
(w,L, S)′ = (0.05, 0.449, 1.283)′. As we said before, this value of ψ also gives
the best configuration for design strategies among all the ones evaluated so far
that were performed on the evaluation of the five matrices of the form LS(w).
We can see that among all possible values T1 and T2 can take within the levels
of w, L and S, a common configuration of ψ∗ seems to give the value in which
both measurements T1 and T2 reach their maxima values. This value of ψ leads
to define D∗(ψ), which is the best design strategy found for the example in exam.
A classical RSM–like experimentation was followed successfully by sequentially
exploring the process, modeled by the GLM scope.

Finally, we summarize all that we have said before in the following way: “relat-

ing a RSM problem with the definition of three evaluation variables, given by vector

ψ = (w,L, S)′, a sequential design strategy for logistic models, D(ψ), reflects the

amount of information obtained for the true process when a certain experimental

budget has been used. The measure of this amount of information is condensed by

the definition of two criteria, T1 and T2 for an adjusted model that contains all

the information of the true surface. Therefore, and since T1 and T2 depend on the

values of ψ, the goal of the experiment is to compare different levels of ψ in order

to obtain those which T1[D(ψ)] → max and T2[D(ψ)] → max. Values of ψ that

satisfy this condition are said to lead the experiment to the ‘best’ design strategy

of exploration for the true process. As a result, highest levels of L and S and a

common level of w satisfy both criteria simultaneously”.
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