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Abstract

In this paper, we compare the performance of two statistical approaches
for the analysis of data obtained from the social research area. In the first
approach, we use normal models with joint regression modelling for the mean
and for the variance heterogeneity. In the second approach, we use hierar-
chical models. In the first case, individual and social variables are included
in the regression modelling for the mean and for the variance, as explanatory
variables, while in the second case, the variance at level 1 of the hierarchi-
cal model depends on the individuals (age of the individuals), and in the
level 2 of the hierarchical model, the variance is assumed to change accord-
ing to socioeconomic stratum. Applying these methodologies, we analyze
a Colombian tallness data set to find differences that can be explained by
socioeconomic conditions. We also present some theoretical and empirical re-
sults concerning the two models. From this comparative study, we conclude
that it is better to jointly modelling the mean and variance heterogeneity in
all cases. We also observe that the convergence of the Gibbs sampling chain
used in the Markov Chain Monte Carlo method for the jointly modeling the
mean and variance heterogeneity is quickly achieved.

Key words: Socioeconomic status, Variance heterogeneity, Bayesian meth-
ods, Bayesian hierarchical model.

Resumen

En este artículo, comparamos el desempeño de dos aproximaciones es-
tadísticas para el análisis de datos obtenidos en el área de investigación so-
cial. En la primera, utilizamos modelos normales con modelación conjunta
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de media y de heterogeneidad de varianza. En la segunda, utilizamos mode-
los jerárquicos. En el primer caso, se incluyen variables del individuo y de su
entorno social en los modelos de media y varianza, como variables explicati-
vas, mientras que, en el segundo, la variación en nivel 1 del modelo jerárquico
depende de los individuos (edad de los individuos). En el nivel 2 del modelo
jerárquico, se asume que la variación depende del estrato socioeconómico.

Aplicando estas metodologías, analizamos un conjunto de datos de talla
de los colombianos, para encontrar diferencias que pueden explicarse por
sus condiciones socioeconómicas. También presentamos resultados teóricos
y empíricos relacionados con los dos modelos considerados. A partir de este
estudio comparativo concluimos que, en todos los casos, es “mejor” la mode-
lación conjunta de media y varianza. Además de una interpretación muy
sencilla, observamos una rápida convergencia de las cadenas generadas con
la metodología propuesta para el ajuste de estos modelos.

Palabras clave: metodología bayesiana, heterogeneidad de varianza, méto-
dos bayesianos, estrato socioeconómico.

1. Introduction

Approximately 62% of Colombian children and teenagers lack of a satisfactory
nutritional level and do not reach an optimal level of physical development. To get
information about nutritional levels of this population, we model the mean of indi-
vidual tallness in two groups of people, since the mean is one of the main nutritional
level indicators. The first one includes children aging between 0 and 30 months old
that belong to high socioeconomic level. The second one is a sample of people ag-
ing between six months and 20 years old that belong to lower, medium and higher
socioeconomic strata. Tallness seems to be influenced by genetic factors (Chumlea
et al. 1998), but the genetic homogeneity of the studied population seems to be
apparent. Given that our main goal is to analyze this data set taking into account
the variance heterogeneity, it is convenient to consider an analysis with explicit
modeling of the variance, including age and socioeconomic stratum as explanatory
variables. In this case, the variance can be modeled through an appropriate real
function of the explanatory variables that takes into account the positivity of the
variance (Aitkin 1987, Cepeda & Gamerman 2001). Thus, one possibility to ana-
lyze this data set is to use linear normal models with variance heterogeneity; other
possibility is to consider hierarchical models (Bryk & Raudenbush 1992). The
linear normal models with variance heterogeneity have two components: a linear
function characterizing the mean response and a specification of the variance for
each observation. In Section 2, we summarize the classical (Aitkin 1987) and the
Bayesian methodologies (Cepeda & Gamerman 2001) used to fit these models. In
the second model, a normal prior distribution is used and, given the orthogonality
between mean and variance, a simple iterative process to draw samples from the
posterior distribution can be performed. Hierarchical models are commonly used
in educational and social statistics (Bryk & Raudenbush 1992, Raudenbush &
Bryk 2002) to analyze this type of data. In this area, it is natural, for example, to
consider that students are nested within classrooms and classrooms within schools;
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individuals nested within socioeconomic stratum; groups may be nested in organi-
zations (Steenbergen & Bradford 2002), and so forth. In this paper, we present, in
Section 3, a general theoretical review of hierarchical models, since our intention
is to use this model approach to analyze data taking into account the variance
heterogeneity. For this purpose, we initially apply linear regression model with
random coefficients (De Leeuw & Kreft 1986, Longford 1993). In Section 4, an
application section, we initially compare standard linear normal regression models
with regression models modelling the heterogeneity of the variances and standard
normal regression models with regression models with random coefficients. Next,
we analyze a people tallness data set, including age and socioeconomic stratum as
explanatory variables. In this case, we include dummy variables and interaction
terms between the dummy variables and one or more predictors in the modeling
of the mean. However, since in general, it is not enough to model the contextual
heterogeneity (Steenbergen & Bradford 2002), we consider a joint normal regres-
sion model for the mean and for the variance heterogeneity, where indicator and
interaction factors are included in the mean and variance model. Here, we also
analyze the data set using hierarchical models, including as many dummy vari-
ables as there are subgroups (socioeconomic stratum) in the second level to take
into account the contextual differences. In all the applications, several explana-
tory models have been fitted and we include in all the cases, the estimates for the
parameter of the model that produces the most satisfactory fit.

2. Modelling Variance Heterogeneity in Normal

Regression

In this section, we summarize classical and Bayesian methodologies to get
jointly maximum likelihood and posterior estimates, respectively, for the mean and
variance parameters in normal regression models assuming variance heterogeneity.

2.1. Maximum Likelihood Estimation Using the Fisher

Scoring Algorithm

Let yi, i = 1, . . . , n, be the observed response on the i-th values xi = (xi1, . . . , xip)
′

and zi = (zi1, . . . , zir)
′ of the explanatory variables X = (X1, . . . , Xp) and Z =

(Z1, . . . , Zr)
′, respectively. Given the parameter vectors β = (β1, . . . , βp)

′ and
γ = (γ1, . . . , γr)

′, if the observations follow the model

yi = x′

iβ + εi, εi ∼ N
(
0, σ2

i

)
, i = 1, . . . , n (1)

where σ2
i = g(zi, γ) and g is an appropriate real function, the kernel of the likeli-

hood function is given by

L(β, γ) = Πn
i=1

1

σi
exp

{
− 1

2σ2
i

[
yi − x′

iβ)
]2}
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Thus, given that the Fisher information matrix is a block diagonal matrix, an
iterative alternate algorithm can be proposed to get maximum likelihood estimates
for the parameters (Aitkin 1987). The summary of this algorithm, as it is presented
in Cepeda & Gamerman (2001), is given in the next steps.

a) Give the required initial values β(0) and γ(0) for the parameters.

b) β(k+1) is obtained from β(k+1) =
(
X ′W (k)X

)
−1

X ′W (k)Y , where W (k) =

diag
(
w

(k)
i

)
, w

(k)
i = 1/

(
σ2

i

)(k)
and

(
σ2

i

)(k)
= exp

(
z′iγ

(k)
)
.

c) γ(k+1) is obtained from γ(k+1) =
(
Z ′WZ

)
−1

Z ′WỸ , where W = 1
2In, with

In the n × n identity matrix, and Ỹ is a n-dimensional vector with i-th
component

ỹi = ηi +
1

σ2
i

(yi − xiβ)2 − 1

where ηi = z′iγ.

d) Steps (b) and (c) will be repeated iteratively until the pre-specified stopping
criterion is satisfied.

2.2. Bayesian Methodology for Estimating Parameters

To implement a Bayesian approach to estimate the parameters of the model
(1), we need to specify a prior distribution for the parameter of the model. For
simplicity, we assign the prior distribution, p(β, γ), given by

(
β

γ

)
∼ N

[(
b

g

)
,

(
B C

C′ G

)]

as in Cepeda & Gamerman (2001, 2005). Thus with the likelihood function L(β, γ)
given by a normal distribution, and using the Bayes theorem, we obtain the pos-
terior distribution π(β, γ | data) ∝ L(β, γ)p(β, γ). Given that the posterior distri-
bution π(β, γ | data) is intractable and it does not allow easily generating samples
from it and taking into account that β and γ are orthogonal, we propose sampling
these parameters using an iterative alternated process, that is, sampling β and γ
from the conditional distributions π(β | γ, data) and π(γ | β, data), respectively.
Since the full conditional distribution is given by

π(β, data | γ) = N(b∗ , B∗) (2)

where b∗ = B∗(B−1b + X ′Σ−1Y ) and B∗ = (B−1 + X ′Σ−1X)−1, with Σ =
diag(σ2

i ), samples of β can be generated from (2) and accepted with probability 1
(Geman and Geman, 1984). Since π(γ | β, data) are analytically intractable and
it is not easy to generate samples from them, the following transition kernel (3) is
proposed to get posterior samples of the parameters using the Metropolis-Hastings
algorithm.

q(γ | β) = N(g∗, G∗) (3)
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where, g∗ = G∗

(
G−1g + X ′Σ−1Ỹ

)
and G∗ =

(
G−1 + Z

′

Σ−1Z
)
−1

, with Σ = 2In

and In the n×n identity matrix. The transition kernel q is obtained as the posterior
distribution of γ, given by the combination of the conditional prior distribution
γ | β ∼ N(g, G) with the working observational model ỹi ∼ N(z′iβ, σ2

i ), where ỹi

is defined in item c), above. In this case, the quantity θ is updated in two blocks
of parameters, β and λ. One of these blocks is updated in each iteration, as it is
specified in the following algorithm:

a) Begin the chain iteration counter in j=1 and set initial chain values
(
β(0), γ(0)

)

for (β, γ)′.

b) Move β to a new value φ generated from the proposed density (2).

c) Update the γ vector to a new value φ generated from the proposed density
(3).

d) Calculate the acceptance probability of the movement, α
(
γ(j−1), φ

)
. If the

movement is accepted, then γ(j) = φ. If it is not accepted, then γ(j) = γ(j−1).

e) Finally, update the counter from j to j+1 and return to b) until convergence.

3. Hierarchical Models

Hierarchical data are commonly studied in the social and behavioral sciences,
since the variables of study often take place at different levels of aggregation. For
example, in educational research, this approach is natural since the students are
nested within classroom, classrooms within schools, schools within districts, and
so on. In the two-level hierarchical models, given by N individuals nested within
J groups, each one containing Nj individuals, if for simplicity we only consider
one explanatory variable X, the first stage of the analysis is defined by

Yij = β0j + β1jXij + εij , εij ∼ N
(
0, σ2

)
(4)

where Yij is the random quantity of interest associated to the i-th individual
belonging to j-th group, βj = (β0j , β1j)

′ is the parameter vector associated to
the j-th strata, j = 1, 2, . . . , J , and εij is the random error associated to the i-
th subject belonging to j-th strata (Van Der Leeden 1998). In a second level,
the regression coefficient behavior is explained by predicted variables of level 2,
through the model

β0j = γ00 + γ01Zj + η0j

β1j = γ10 + γ11Zj + η1j

(5)

where Z denotes the set of explanatory variables of level 2, and ηkj ∼ N(0, σ2
k),

k = 0, 1. In this model, Z is a context variable where its effect is assumed to be
measured, for example, at the socioeconomic stratum, rather than at the individual
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level. To complete the model, conjugate prior distributions are assumed for the
hyperparameters.

The two level models are obtained by substitution of β0j and β1j , given by (5),
into (4). Thus,

Yij = γ00 + γ01Zj + γ10Xij + γ11ZjXij + η1jXij + η0j + εij (6)

In this model, given the error structure, η1jXij + η0j + εij , there is a het-
eroscedastic structure of the variance conditioned to the fixed part γ00 + γ01Zj +
γ10Xij + γ11ZjXij . Thus, for each group

V ar(Yj) = X̃jΣ2X̃
′

j + σ2
eINj

(7)

where X̃j = (1Nj
, Xj), with Xj = (X1j , . . . , XNjj)

′. In (7) it is assumed that
eij ∼ N

(
0, σ2

e

)
, that (η0j , η1j) ∼ N(0, Σ2) and that the Level-1 random terms are

distributed independently from the Level-2 random terms.

There are several ways to specify the level-2 model (Van Der Leeden 1998). If
Z consists only of a vector of ones, the model specifies a random variation of the
coefficient across the two units level. Such models are called Random Coefficient
Models (De Leeuw & Kreft 1986, Prosser et al. 1991). In our applications, we
consider models where the intercept and slope parameters are random, but there
are other possibilities. For example, a simple model with random intercept and
fixed slope can also be considered for use in practical work.

To implement a Bayesian approach to estimate the parameters of Hierarchical
models, we include an appendix where we show the analytical processes to obtain
the posterior distribution of interest.

4. Applications

In this section, we introduce some examples of growth and individual devel-
opment studies for Colombian population. Studies about children’s growth and
development are very important in clinical research because they allow detection
of factors which can affect children’s health. As a first example, we consider a
sample of babies between 0 and 30 months old. All the selected children in this
example belong to a high socioeconomic stratum with a good welfare. In a second
example, we consider a data set given by a group of 311 Colombian individuals
aged from 6 months to 20 years old, sampled from different socioeconomic strata.
For these examples, we consider as response variables of interest, the height mea-
sures for the individuals in the sample in order to concentrate on an appropriate
specification of the time and socioeconomic stratum dependence.

4.1. Growth and Development of Babies

In this section, we analyze the growth and development of some groups of ba-
bies between 0 and 30 months old. The data set was selected by Pediatricians of
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Bogota’s hospitals and by students of Los Andes University from the beginning of
2000 to the end of the year 2002. The data set shows some interesting characteris-
tics: (a) the height increases with time but it does not have a linear behaviour as
shown in figure (1). (b) Sample variance is not homogeneous; it seems to increase
at an initially small time interval and then it decreases.

4.1.1. Applying Model 1

For this data, we assume the model Yi = β0 + β1

√
ti + εi, where εi ∼ N

(
0, σ2

i

)

and σ2
i = exp(γ0 + γ1ti). Here Yi is the tallness of the i-th babies at age ti. The

models were fitted by using a vague prior for the parameters. In all cases, we
assigned a normal prior distributions βi ∼ N

(
0, 105

)
and γi ∼ N

(
0, 105

)
, i = 1, 2.

The number 105 was chosen to impose large prior variances, but, as we have already
checked in our analysis, increasing this value to larger orders of magnitude made
no effective difference in the estimation process. Thus, the posterior means and
standard deviations for the model parameters are given by: β̂0 = 48.408(0.728),

β̂1 = 7.990(0.221), γ̂0 = 2.303(0.2529), γ̂1 = −0.038(0.022). Estimated values for
the correlation parameters are presented in table 1. From Table 1, we see that
Corr(β0 , β1) and Corr(γ0 , γ1) are significatively different from zero. Statistically,
the correlation between β-s and γ-s are equal to zero. This result agrees with the
diagonal form of the information matrix.

Table 1: Bayesian estimator for the parameter correlations.

β0 β1 γ0 γ1

β0 1 -0.904** -0.021 -0.018

β1 1 0.020 - 0.029

γ0 1 -0.775**

γ1 1

Figure 1 shows the plot for the posterior mean height of babies and the corre-
sponding posterior 90% credibility interval. From this figure, we can see that the
babies, all of whom have nutritional wealth, have tallness between international
standards according to NCHS. Thus, there is no evidence of problems in the growth
process. It is important to see that tallness is the most important parameter to
validate the nutritional state and growing condition of babies. Figure 2 shows the
behavior of the chain for the sample simulated for each parameter, where each one
has small transient stage, indicating the speed convergence of simulation for the
algorithm. The chain samples are given for the first 4500 iterations. The other
results reported in this section are based on a sample of 4000 draws after a burn-in
of 1000 draws to eliminate the effect of initial values. In Figure 3 we have the his-
tograms for the posterior marginal distributions of parameters. These histogram
seem to show that the posterior marginal distribution for all the parameters are
approximately normal.

Finally, in this application we also considered normal bivariate prior distri-
butions for the mean parameter β = (β0, β1) and for the variance parameters
γ = (γ0, γ1).
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Figure 1: Predicted height for babies (the darker line represents the fitted posterior
mean. The dotted lines represent the 90 and 95% prediction interval. The
points correspond to the observations.)

4.1.2. Applying Normal Regression with Random Coefficient

In this case, we propose the model Yi = β0i + β1i

√
ti + εi, where εi, i =

1, 2, . . . , n, are independent, identically distributed with normal distributions, that
is εi ∼ N

(
0, σ2

)
. Here Yi is the tallness of the i-th individual at age ti. Variation

in the mean regression parameters is written in the second level as

β0i = β0 + η0i

β1i = β1 + η1i

where ηki ∼ N
(
0, σ2

k

)
, k=0,1. To complete the model, a conjugate prior is given

for the hyperparameters: βk ∼ N
(
0, 103

)
, σ−2

k ∼ Gamma(0.01, 0.01) and σ−2 ∼
Gamma(0.01, 0.01). Thus, the hierarchical model is given by

Yi = β0 + β1

√
ti + η0i + η1i

√
ti + εi

In this model, given the error structure, ri = η0i + η1i

√
ti + εi, there is a

heteroscedastic structure for the variance conditional on the level of the explana-
tory variable t. In this application we assume independence between observations,
where

V ar(ri) = σ2
0 + 2σ01

√
ti + σ2

1ti + σ2
e , i = 1, 2, . . . , n
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Figure 2: Behavior of the chain sample for parameters of the mean model βi, and
parameters of the variance model γi, i=0,1.

and the corr(ri′ , ri) = 0, where σ01 = Cov(η0i, η1i), σ2
0 = V ar(η0i) and σ2

1 =
V ar(η1i). It is clear that, as in the last model, the variance decreases with time.
In this case, if σ01 > 0 the variance is increasing as function of time for t > σ2

01σ
−4
1

and increasing for all t > 0 if σ01 > 0.

In this analysis, the posterior means and standard deviations for the param-
eters models are: β̂0 = 49.24(0.399), β̂1 = 7.591(0.202). The estimates of other
parameters are σ̂−2 = 0.942(0.097), σ̂−2

0 = 0.943(0.096), σ̂01 = −0.005(0.082) and
σ̂−2

1 = 1.026(0.096).

Table 2: Model comparation.

Model SSE ln L BIC

Variance heterogeneity 522.815 -174.022 5.003

Hierarchical 538.236 -191.447 5.597

In all cases, the obtained mean parameter estimates given by the two models
agree. However, there are considerable differences in BIC values (Bayes Informa-
tion Criterion) used for discrimination of models (Table 2). From the result in
Table 2, we conclude that the model with joint modeling of the mean and variance
heterogeneity is the best, since its BIC value is the smallest one.
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Figure 3: Histogram of the posterior marginal distributions. Parameter of the mean
model βi, and parameter of variance model γi, i=0,1.

4.2. Growth and Development of Population

In this section, we apply a Bayesian analysis to the growth and body devel-
opment considering a sample of Bogota’s individuals. We consider tallness as a
response variable of interest to specify an appropriate dependence on age and
socioeconomic level as possible factors associated with growing and body develop-
mental processes (Adair et al. 2005).

The tallness of 311 person was measured and the age and socioeconomic stra-
tum recorded. The individuals in the sample aged from 6 months to 20 years old
and the socioeconomic strata were lower, medium and high, with approximately
100 individuals in each stratum. The data set shows some interesting character-
istics exhibited in Figure 4: (a) the mean height increases in time but it does
not have a linear behavior. (b) the means of tallness have a socioeconomic level
dependence. (c) the sample variances are not homogeneous, increasing with the
time and it seems to be different for each socioeconomic level.

4.2.1. A general approximation applying model 1

Taking into account these last points, we initially considered cubic polynomial
models for the mean and variance. After a variable elimination process, a quadratic
model µt = β0+β1t+β2t

2 for the mean and simple model log
(
σ2

t

)
= γ0+γ1t for the
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Figure 4: Plot for tallness versus age (the darkest line represents the fitted posterior
mean. The dotted lines represent 95% prediction intervals. The triangle,
point and square represent the observations corresponding to low, medium
and high socioeconomic levels.)

variance seems to be appropriate for general data description, with t equal to age.
These mean and variance models were fitted with vague priors distributions for
each parameters. We further assumed prior independence among the parameters.
The posterior means and standard deviations for the parameters model are given
in Table 3.

Table 3: Posterior summaries for the mean and variance model.

Parameter β0 β1 β2 γ0 γ1

Mean 57,875 8,812 -0,162 4,573 0,024

S.d. 1,836 0,438 0,022 0,169 0,013

From Figure 4, we can establish some features of the growing process of this
group of Bogota’s individuals. We also can compare the fitted model with the
existing mean international curves for human growing and developing. We observe
for this data set, the mean height curve is lower than the standard curve for human
growth at all times, that is, there is some evidence of problems in the growth and
body developing process. The differences could be an indication of malnutrition
for some members of this group, an opinion that is shared by pediatricians and
nutritional specialists.
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4.2.2. General Approximation Using Normal Regression with Random

Variables

For this data set, we also propose the model Yi = β0i +β1iti +β2it
2
i + εi, where

εi ∼ N
(
0, σ2

e

)
. In this model, Yi is the tallness of the i-th individual at age ti.

Variation in the mean regression parameters is written in the second level as

β0i = β0 + η0i

β1i = β1 + η1i

β2i = β2 + η2i

where ηki ∼ N(0, σ2
k), k=0,1,2. To complete the model, conjugate Gamma(0.00

019, 0.0001) prior distributions are assumed for the hyperparameters. Thus, the
hierarchical model is given by

Yi = β0 + β1ti + β2t
2
i + η0i + η1iti + η2it

2
i + εi (8)

In this model, given the error structure, ri = η0i + η1iti + η2it
2
i + εi, there

is a heteroscedastic structure of the variance conditional on the level of the ex-
planatory variable t. As in the last application, we assume independence between
observations, that is,

V ar(ri) = σ2
0 + σ2

1t
2
i + σ2

2t4i + 2σ01ti + 2σ02t
2
i + 2σ12t

3
i + σ2

e , i = 1, 2, . . . , n

where σi,i′ = Cov(ηi, ηi′), and σ2
e = V ar(εi).

The posterior means and standard deviations for the parameters models are:
β̂0 = 56.020(1.747), β̂1 = 8.491(0.440), β̂2 = −0.168(0.023). The Bayesian esti-
mates obtained using the interactive procedure introduced in this paper for the
other parameters are: σ̂2

0 = 1.137(0.418), σ̂2
1 = 0.066(0.0647), σ̂2

2 = 7.115 ×
10−4(2.909 × 10−4) and σ̂2

e = 10.421.

Table 4: Model comparation.

Model SSE ln L BIC

Variance heterogeneity 42923.206 -1205.666 7.864

Hierarchical 42526.431 -2392.7662 15.535

As in the last example, we can see the Monte Carlo estimates for the pos-
terior means for the parameters of interest assuming the two models agree. We
also observe that there are considerable differences in the BIC values for the two
models (Table 4). From the results of Table 4 we conclude that the model with
joint modeling for the variance heterogeneity is better fitted by the data than the
hierarchical model, since its BIC value is the smallest in comparison with the BIC
value for the hierarchical model.
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5. Growth and Development by Socioeconomic

Stratum

In this section, we consider a second analysis for the tallness data. Here we are
interested in determining if there are significant differences in the growing process
depending on the socioeconomic levels, which are associated with nutritional status
of the individuals, with a direct influence on their growing process.

5.1. Applying Model 1

In this analysis we considered indicator variables Ii, i = 1, 2, 3, for lower,
medium and high socioeconomic stratum, respectively, and interaction variables
Xi = Iit, obtained by the product of t and Ii. Thus, taking into account the last
description of the data, we propose the following model

Yj = β0 +

2∑

k=1

βkIkj +

3∑

k=1

(
λkXkj + λk+3X

2
kj

)
+ eij

σ2
j = exp

(
β′

0 +

2∑

k=1

β′

kIkj +

3∑

k=1

(
λ′

kXkj + λ′

k+3X
2
kj

)
)

In the estimation process I3 was eliminated from the model for the mean,
and I3, X2

1 , X2
2 and X2

3 from the model for the variance. With this new model,
we obtain Monte Carlo estimates for the parameters in the model also assuming
approximate non-informative priors for the parameters. For the mean model: β̂0 =
61.735(1.712), β̂1 = −17.137(2.452), λ̂1 = 10.301(0.571), λ̂2 = 7.551(1.741) , λ̂3 =

9.702(0.351), λ̂4 = −0.251(0.032) , λ̂5 = −0.106(0.026), λ̂6 = −0.199(0.027). For

the variance models: β̂′

0 = 4.249(0.207), β̂′

2 = −0.939(0.317), λ̂′

1 = 0.092(0.022),

λ̂′

2 = 0.017(0.018), λ̂′

3 = 0.0146(0, 018)

Following the analysis, X2 and X3 were eliminated from the variance model.
The parameter estimates of the resulting models are given in Tables 5 and 6.

Table 5: (a) Model for the mean.

Parameter β0 β1 λ1 λ2 λ3 λ4 λ5 λ6

Mean 61.789 -17.234 10.299 7.565 9.656 -0.251 -0.107 -0.196

S. d. 1.803 2.035 0.580 0.489 0.497 0.032 0.025 0.026

Table 6: (b) Variance Model.

Parameter β′

0 β′

1 λ′

1

Mean 4.412 -1.0981 0.092

S. d. 0.121 0,266 0,0216

From Figures 5 and 6, we observe that people from lower socioeconomic back-
grounds present through time a significantly lower tallness than people from others
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Figure 5: Mean of tallness of people by socioeconomic level. Continuous line for stratum
1, discontinuous line for stratum 2, and dotted line for stratum 3.

socioeconomic strata. People from medium socioeconomic stratum show a signif-
icantly lower tallness than people from high socioeconomic stratum, considering
different ages. This fact is easy to understand, since in this case socioeconomic sta-
tus has a special relevance on nutrition of people, and people from lower stratum
probably have nutritional deficiencies (see Stein et al. 2004).

From the variance model, it can be seen that in the lower socioeconomic stra-
tum, the variance behavior is given by σ̂2

i = 3.314 + 0.092Xi. In the other strata,
the variance is constant through time, σ̂i = 4.412. This behavior is shown in
Figure 6.

This is a worrisome situation, since official reports from the Economic Commis-
sion for Latin America and the Caribbean (ECLAC) show the situation of poverty
and indigence for Colombian children and teenagers: 45% can be considered poor
and 17% indigents. If we add these numbers we obtain 62% of Colombians who
do not have high life expectancy and whose nutritional supplies are not the proper
ones, which results in a lack of optimal level of physical development.

5.2. Applying Hierarchical Models

In this section, the effect of socioeconomic stratum in the nutritional devel-
opment of the people is evaluated through the tallness of the individuals. In our
application, we have N individual belonging to low, medium and high socioeco-
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Figure 6: 95% prediction intervals for grown by stratum. Discontinuous line with point
for stratum 1, continuous line for stratum 2, and discontinuous line for stra-
tum 3.

nomic strata. The tallness and the age of each individual were determined and
denoted Yij and tij , respectively, where the subscript ij indicate that the mea-
sures belong to the i-th individual belonging to j-th strata. Thus, as it is usual in
multilevel analysis, in the first level, individuals are considered and a regression
model (9) is defined for each group.

Yij = β0j + β1jtij + β2jt
2
ij + εij , εij ∼ N

(
0, σ2

)
(9)

In this model, βj = (β0j , β1j , β2j) is the parameter vector associated to the j-th
stratum, j = 1, 2, 3, and εij is the random error associated in the i-th subject. In
the second level of the model, the regression coefficient βi is explained by predicted
variables Z, through the model

βkj = γk0Z0j + γk1Z1j + γk2Z2j + ηkj , k = 0, 1, 2 (10)

where Zkj , k = 0, 1, 2, is the set of explanatory variables of level 2, set of indicator
variables of the stratums k + 1, and ηkj ∼ N

(
0, σ2

k

)
, k = 0, 1, 2. The model is

completed with conjugate prior gamma for the hyperparameters.

Since in this application there is no prior information, we assume normal prior
distribution with large variance, that is, approximate non informative prior. In
this way, we assume normal prior distribution θ ∼ N(0, 10−5I9), where θ is the
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vector with components γk′k, k′; k = 0, 1, 2. In this application we assume the prior
distributions σ−2

e ∼ G(0.001, .0001) and σ−2
k ∼ G(0.001, .0001), k = 0, 1, 2, for the

hyperparameters. The estimates and standard deviations for the parameters of
the model for the mean of the tallness in each one of the socioeconomic strata are
given in Table 7. The estimate for the other parameters are: σ̂2

e = 4.527(3.549),
σ̂2

0 = 5.137(3.438), σ̂2
1 = 0.1982(0.09646), σ̂2

2 = 0.06458(0.004719).

Table 7: Posterior mean estimation on hierarchical models.

γk0 γk1 γk2

k = 0 47.82 (2.371) 61.56 (2.272) 64.89 (2.061)

k = 1 10.25 (0.7447) 8.468 (0.606) 10.39 (0.593)

k = 2 -0.267 (0.045) -0.171 (0.034) -0.267(0.035)
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Figure 7: Mean tallness of people by socioeconomic level, hierarchical model. Continu-
ous line for lower stratum, discontinuous line for medium stratum and dotted
line for high stratum.

In Figure 7, we have the plot of the mean tallness against time for each one of
the assumed stratum.We can see an agreement between average tallness behaviour
showed in this figure and the behaviour showed in Figure 5, where the analysis was
conducted using joint modelling of the mean and variance heterogeneity. In this
example, we further observe considerable differences in the BIC values considering
the different models as we can see in Table 8. From the results of this table, we
again conclude that the model with joint modeling of the mean and of the variance
heterogeneity is better fitted by the data than the hierarchical model.
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Table 8: Model comparison.

Model SSE ln L BIC

Variance heterogeneity 24842.694 -1113.897 387.928

Hierarchical 28610.283 -3397.753 1183.688

6. Concluding Remarks

From this comparative study for the two proposed models, we conclude that it
is better to jointly model the mean and variance heterogeneity, as observed in all
examples, in comparison to the use of hierarchical models. Additionally, conver-
gence of the chain used to simulate samples for the posterior distribution of interest
is quickly achieved and the model is easily interpretable. The proposed analysis
can be convenient in social applications since these models perfectly capture any
clustering by subgroups that may exist in the data. Other good reason for the
modelling of the variance heterogeneity is related to the use of the explanatory
variables in the regression model, since we can use the same explanatory variables
assumed for the regression model for the mean or other different variables, for
each one of the assumed groups. That is, this analysis also takes into consider-
ation one of the most important goals of the multilevel statistical analysis, that
is, it “substantively take into account for causal heterogeneity”. Although there is
no statistical differences between intercepts in the growing curves for medium and
hight strata, apparently there is an advantage for hight strata through time. We
also observe that the joint modeling of mean and variance heterogeneity is simpler
and easier to interpret.

ˆ
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Appendix A.

Hierarchical Models

From the two level hierarchical model definition in Section 3, assuming inde-
pendence between n0j and n1j , we have:

Yij | β0j , β1j , Xij , σ
2 ∼ N

(
β0j + β1jXij , σ

2
)

for i = 1, . . . , Nj , j = 1, . . . , J , and

β0j | γ00, γ01, Zj , τ0 ∼ N(γ00 + γ01Zj , τ0)

β1j | γ10, γ11, Zj , τ1 ∼ N(γ10 + γ11Zj , τ1)
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Thus the likelihood function is given by,

f
`

y | β0, β1, σ
2
, X

´

=
J

Y

j=1

Nj
Y

i=1

1√
2πσ2

exp



−1

2σ2
(yij − β0j − β1jXij)

2

ff

∝
`

σ
2
´

−
1

2

PJ
j=1

Nj exp



−1

2σ2

J
X

j=1

Nj
X

i=1

(yij − β0j − β1jXij)
2

ff

(11)

where β0 = (β01, . . . , β0J )′ and β1 = (β11, . . . , β1J )′.

To apply the Bayesian methodology, we need to specify a prior distribution
function for θ. For simplicity, we assume independence between parameters, and
assign the following prior distributions:

σ2 ∼ IG(a, b) τ2
0 ∼ IG(co, do)

τ2
1 ∼ IG(c1, d1) γ00 ∼ N(0, e00)

γ01 ∼ N(0, e01) γ10 ∼ N(0, e10)

γ11 ∼ N(0, e11)

where co, do, c1, d1, e00, e01, e10, e11 are known constants.

With the assumed prior distribution and likelihood function given in (11), the
posterior distribution for θ = (γ00, γ01, γ10, γ11, τ0,τ1,β0, β1) is given by

π(θ | y, z, X) ∝ f(y | β0, β1, σ
2, X)× π(β0 | γ00, γ01,τ0,z)π(β1 | γ10, γ11,τ1,z)

× π(γ00, γ01, γ10, γ11, σ
2, τ0,τ1)

where

π(β0 | γ00, γ01,τ0,z) ∝
J∏

j=1

1√
2πτ0

exp

{−1

2τ0
(β0j − γ00 + γ01Zj)

2

}

∝ (τ0)
−

J
2 exp

{−1

2τ0

J∑

j=1

Nj∑

i=1

(β0j − γ00 + γ01Zj)
2

}

π(β1 | γ10, γ11,τ1,z) ∝
J∏

j=1

1√
2πτ1

exp

{−1

2τ1
(β1j − γ10 + γ11Zj)

2

}

∝ (τ1)
−

J
2 exp

{−1

2τ1

J∑

j=1

Nj∑

i=1

(β1j − γ10 + γ11Zj)
2

}

π(γ00, γ01, γ10, γ11, σ
2
, τ0,τ1) ∝ exp



− γ2
00

2e00

ff

exp



− γ2
01

2e01

ff

exp



− γ2
10

2e10

ff

exp



− γ2
11

2e11

ff

× (τ0)
−(c0+1)

e
−d0/τ0(τ1)

−(c1+1)
e
−d1/τ1(σ2)−(a+1)

e
−b/σ2
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Therefore, a joint posterior distribution for θ is given by:

π(θ | y, z, X) ∝ (σ2)−
1

2

J∑

j=1

Njexp

{ −1

2σ2

J∑

j=1

Nj∑

i=1

(yij − β0j − β1jXij)
2

}

× (τ0)
−

J
2 exp

{−1

2τ0

J∑

j=1

Nj∑

i=1

(β0j − γ00 + γ01Zj)
2

}

× (τ1)
−

J
2 exp

{−1

2τ1

J∑

j=1

Nj∑

i=1

(β1j − γ10 + γ11Zj)
2

}

× exp

{
− γ2

00

2e00

}
exp

{
− γ2

01

2e01

}
exp

{
− γ2

10

2e10

}
exp

{
− γ2

11

2e11

}

× (τ0)
−(c0+1)e−d0/τ0(τ1)

−(c1+1)e−d1/τ1(σ2)−(a+1)e−b/σ2

where σ2 > 0, τ0, > 0, τ1, > 0, γ00, γ01, γ10, γ11, εR and β1j , β1jεR; j = 1, . . . , J .
The parameter vector θ = (γ00, γ01, γ10, γ11, σ

2, τ0,τ1,β01, . . . , β01, β11, . . . , β1J) has
25+7 components.

Thus, the conditional posterior distribution is given by

σ2 | θ(σ2), y, z, X ∼ IG

{
a +

1

2

J∑

j=1

Nj ; b +
1

2

J∑

j=1

Nj∑

i=1

(yij − β0j − βijXij)
2

}

τ0 | θ(τ0), y, z, X ∼ IG

{
c0 +

J

2
; d0 +

1

2

J∑

j=1

(β0j − γ00 − γ01Zj)
2

}

τ1 | θ(τ0), y, z, X ∼ IG

{
c1 +

J

2
; d1 +

1

2

J∑

j=1

(β1j − γ01 − γ11Zj)
2

}

γ00 | θ(j00), y, z, X ∼ N

(
e2
00

∑J
j=1 µ00j

τ0 + Je2
00

;
τ0e

2
00

τ0 + Je2
00

)

γ10 | θ(j10), y, z, X ∼ N

(
e2
10

∑J
j=1 µ10j

τ1 + Je2
10

;
τ1e

2
10

τ1 + Je2
10

)

γ01 | θ(j01), y, z, X ∼ N

(
e2
01

∑J
j=1 zjµ01j

τ0 + e2
10

∑J
j=1 z2

j

;
τ0e

2
10

τ0 + e2
10

∑J
j=1 z2

j

)

γ11 | θ(j11), y, z, X ∼ N

(
e2
11

∑J
j=1 zjµ11j

τ1 + e2
10

∑J
j=1 z2

j

;
τ1e

2
11

τ1 + e2
11

∑J
j=1 z2

j

)

where µ00j=β0j − γ01Zj ; j = 1, . . . , J ; µ10j=β1j − γ11Zj ; j = 1, . . . , J ; µ01j=β0j −
γ00; j = 1, . . . , J ; µ11j=β1j − γ10; j = 1, . . . , J .
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For β′s, given that

π(β0j | θ(β0j), y, z, X) ∝ exp

{
− 1

2τ0
(β0j − γ00 − γ01Zj)

2

}

× exp

{ −1

2σ2

Nj∑

i=1

(yij − β0j − β1jXij)
2

}

then all posterior conditional distributions for β0j are given by:

β0j | θ(β0j), y, z, X ∼ N

(
σ2(j00 + j01Zj) + τ0

∑Nj

i=1 a0ij

σ2 + τ0Nj
;

σ2τ0

σ2 + τ0Nj

)

where a0ij = yij − β1jXij ; j = 1, . . . , J .

In the same way, given that

π(β1j | θ(β1j), y, z, X) ∝ exp

{
− 1

2τ1
(β1j − γ10 − γ11Zj)

2

}

× exp

{ −1

2σ2

Nj∑

i=1

(yij − β0j − β1jXij)
2

}

all posterior conditional distributions for β0j are given by

β1j | θ(β1j),y,z,X ∼ N

(
σ2(j10 + j11Zj) + τ1

∑Nj

i=1 a1ij

σ2 + τ01

∑Nj

i=1 Xij

;
σ2τ1

σ2 + τ1Nj

)

where a1ij = yij − β0j ; j = 1, . . . , J .
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