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Abstract

In non- and semiparametric testing, the wild bootstrap is a standard
method for determining the critical values of tests. If the null hypothesis
is also semi- or nonparametric, then we know that at least asymptotically
oversmoothing is necessary in the pre-estimation of the null model for gener-
ating the bootstrap samples. See Hardle & Marron (1990, 1991). However,
in practice this knowledge is of little help. In this note we highlight that this
bandwidth choice problem can become quite serious. As an alternative, we
briegly discuss the possibility of subsamplingEl
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Resumen

En contrastes no- y semiparameétricos el wild-bootstrap es un método es-
tandar para la determinacion de los valores criticos de los estadisticos de con-
trastes. Si la hipdtesis nula es no o semiparameétrica, sabemos que al menos
asintéticamente es necesaria una sobre-suavizacion en la pre-estimacién del
modelo bajo la nula para generar las muestras bootstrap, ver por ejemplo
Hardle & Marron (1990, 1991).

No obstante, en la practica este conocimiento es de poca o ninguna ayuda.
En este articulo, ponemos de manifiesto que el problema de la seleccion de
la banda de suavidad para procedimientos de contraste puede ser muy se-
rio. Como alternativa, discutimos brevemente la posibilidad de usar sub-
muestras.
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contrastes bootstrap.
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1. Introduction

In both applied and mathematical statistics, non- and semiparametric speci-
fication testing is still quite a popular research field. Unfortunately, only a few
papers address the problem of choosing an appropriate smoothing parameter. This
a problem is fundamental for the reasonable use of these methods. There has been
a growing amount of literature on adaptive testing where the adaptiveness refers
to the smoothness of the alternative and deals with the smoothing of the test or
the alternative.

However, these papers typically concentrate on testing problems where the
null hypothesis is fully parametric. Here we are interested in testing qualitative
restrictions, i.e. where the null hypothesis is semi- or nonparametric; think e.g. of
additivity tests. When bootstrap is used to determine the critical value, these tests
entail at least one more parameter choice problem: pre-estimating the model under
the null hypothesis to later generate the bootstrap samples. This is necessary as
in most cases the bandwidths for the estimation and the bootstrap should have
different rates. See Hardle & Marron (1990, 1991). As in practical applications
this problem has hardly been addressed, in most published procedures for testing
or constructing confidence bands with a semi- or nonparametric null hypothesis,
there is no guarantee that the bands meet the nominal coverage probability. This
has been confirmed in the work of Dette, von Lieres, Wilkau & Sperlich (2005).
In the latter paper, the problem is avoided by using subsampling.

To study the problem outlined in more detail, we concentrate on the problem of
testing additivity. We limit ourselves to two test statistics proposed in Dette et al.
(2005) and Roca & Sperlich (2007) but we extended this to different modifications
including subsampling. The aim is not to find the most efficient additivity test or
to propose new ones. Our focus is only directed at highlighting the size problem
when the null hypothesis and the resampling method are non- or semiparametric.
After areview of the additivity tests considered here, we study some of the typically
proposed procedures for bandwidth choice. Unfortunately, we have not found a
generally valid method. Our conclusion is that further research is necessary to
find a proper bootstrap bandwidth.

2. Estimators and test statistics for additive
models

Assume we face (not necessarily) independent and identically distributed (i.i.d.)
data {(X;Y;)};_, € R¥xR, where

n, (1)

with m : R? — R an unknown function of interest, m(z) = E(Y | X = x), and u;
i.i.d. random errors with E[u;] = 0 and finite variance o?(z;). The internalized
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Nadaraya-Watson estimator is defined as

(x) = 3 vile, X,)Ys, with vog(e, X;) = (fk(xi))_l Ki(z— X)) (2)

=1

where fi,(X;) = L5  Ki(X; — X;) is a kernel density estimator with a multi-
plicative kernel, i.e. for w = (wy,...,wq) € IR? we think of K (w) = Hizl K (wy),
Kip(we) = k'K (wak_l). Commonly, the kernel is assumed to be Lipschitz con-
tinuous with compact support and [ |K(z)|dz < oo, [ K(z)dx = 1. Furthermore,
k is the bandwidth, assumed to go to zero for sample size n going to infinity, but
nkd gomg to 1nﬁn1ty Let Vi be the nxn matrix whose (7, i) element is vi (X;, X;),
then m(z)=Vi (2)Y

We are interested in the additive model, which we write in terms of

d
E(Y|X=2)=ms(z) =0+ ma(ra) (3)
where we set Ex, {ma(Xa)} = [ ma(z)fo(z)dz = 0 Va for identification. Here,
Mea, @ = 1,...,d are the marglnal 1mpact functlons for each regressor. Therefore,

¥ is a constant equal to the unconditional expectation of Y. Writing m(X) =
Mo (Xa) + m_a(X_n) where X_, is the vector X of all explanatory variables
without X, ie. X_o = (Xi,..., Xi(a—1), Xi(at+1)s---»Xia), We can use the
identification condition directly to estimate m,,. The so called marginal integration
idea is based on that for z, fix we have

Ex__ [m(za,X /m Ty o) foa (T—a) H dxg =1+ me (Ta)
Bt

Substituting for m(-) a nonparametric pre-estimator such as the one given in
@), a sample average for the expectation, and for ¢ simply ¢ = L 3" | y; gives

(:Ea) = Z Wah (:Eou Xia) Y;
i=1
where for a bandwidth % (the one fixing the smoothness of our Hy model)

oo (Xi-a)

Wh, (xaaXai) = Kh (xa - Xza) =
f( 1) z,—a)

(4)

Finally, we set ms( i) = ¥+ Z _1Ma(Xja) foreach j =1,2,...,n. Note
that defining W), = Za:l Wan (zo) with Wy, (24) being the n x n matrices with
Wan (X;,X;) as elements, one has mg (z) =y + Wy, (z)Y

As mentioned before, we do not introduce new testing procedures but rather
study two modified statistics which have already been studied in the above men-
tioned papers, and which performed excellently in the study by Roca & Sperlich
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(2007) though in a different context. The null hypothesis of interest is Hy : m(-) =
ms(-) versus Hy : m(-) # mg(-). We consider the following two test statistics:

n= 3 (X0 — s (X)) w(Xo)
=1

2

Ien| 1 & _
= > pow UK (X — X;) (V) — s (X;) | w(Xs)
i=1 j=1
where €, = Y; — mg (X;), i.e. the residuals under the null hypothesis, and

u; = Y; — m(X;), the residuals without restrictions. We included also a weight
function w(-) which typically is just used for trimming at the boundaries or re-
gions where data are sparse. Note that in our simulation study we will make use
of the trimming at the boundaries. Obviously, 7, calculates directly the integrated
squared difference between the null and alternative models. Alternatively, 7o seeks
to mitigate the bias problem inherited from the estimate m, which suffers from the
“curse of dimensionality”. In Dette et al. (2005) it is proved that, for both tests
7j, the nk? (1; — p;) converge under the null to a normal variable with mean zero
and variances vjz for j = 1,2 with

w1 = Eg, {1} = # /UQ(I)w(ZE)d,T/KQ(SC)dCC +o0 (#)
e = By (2} = [ (K40 (@) do [ 0*(a) P2 (o)ute) do
and
vi =Varg, {n} = 2/04(:10)1112 (x)dx/ (K «K)? (z) dz
vy = Varg, {r2} = / o () f*(z)w? (z) d

All tests have been proven to be consistent in the sense that under the alter-
native they converge with n to infinity. Let us also mention that we have studied
many more test statistics, e.g. those given in Dette et al. (2005) or Roca & Sper-
lich (2007) but not presented here. These, however, showed even less satisfactory
performance, so we have skipped them in our presentation.

3. The resampling

Asymptotic expressions are of little help in practice for several reasons: Bias
and variance contain unknown expressions which have to be estimated nonpara-
metrically, and the convergence rate is quite slow for large d. For this reason, it
is common to use resampling-mostly bootstrap-methods to approximate the crit-
ical value for the particular sample statistic. These can be bootstrap methods or
subsampling procedures. Unfortunately, for the bootstrap it is not known how to
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choose the smoothing parameter in practice for the pre-estimation of the model
that is used to generate the bootstrap samples. From theory, it is known that one
should somewhat oversmooth.

We give the general bootstrap procedure first and then discuss the details:

1. With bandwidth h, calculate the estimate mg under the null hypothesis of
additivity and its resulting residuals &;, i = 1,...,n.

2. With bandwidth k, calculate the estimator m for the conditional expecta-
tion without the additivity restriction, and the corresponding residuals s,
1=1,...,n.

3. With the results from step 1 and 2, we can calculate our test statistics 7, and
T2.

4. Repeat step 1 with a bandwidth h;. We call the outcome ’fl\’LbS, respectively
GZ:}/Z—ﬁ’LbS(XZ),Z: 1,...,TL.

5. Draw random variables e} with E[(e¥)/] = u] (respectively & or €/, see dis-
cussion below) for j = 1,2,3 (respectively j = 1,2, see below again). Set
Y = mb(X;) +ef, i =1,...,n, ie. generate wild bootstrap samples. Re-

peat this B times. This defines B different bootstrap samples {(Xl-,Yi*’b) L,
b=1,...,B.

6. For each bootstrap sample from steps 4 and 5, calculate the test statistics T;’b,
j=12,b=1,...,B. Then, for each test statistic 7;, j = 1,2, the critical
value is approximated by the corresponding quantiles of the distribution of the
B bootstrap analogues: F*(u) = + Zle I{T;’b < u}. Recall that they are
generated under the null hypothesis.

In step 2, the bandwidth k£ has simply to obey the different assumptions re-
quired for each specific test. It can be chosen in such a way that it maximizes the
power of the test for a given size. Therefore, different from Dette et al. (2005)
we apply the adaptive testing approach introduced in Spokoiny (1998, 1996). He
considers simultaneously a family of tests {7%, k € K}, where & = {k1, k2,...,kp}
is a finite set of reasonable bandwidths. The theoretical maximal number P de-
pends on n, but is of no practical relevance. For details, see Horowitz & Spokoiny
(2001). They define

T — Eo[r*]
eR Varl/2[rk]
where Fy[-] indicates the expectation under Hp. A particularity of the resampling
analogues of 7% is that one first needs to calculate the resampling statistics
(7F)*? for all k € & to afterwards get (7m%)**, Note that for each k, the empirical
moments of the resampling statistics (7¥)*® can be used as a substitute for Fo[r*],
respectively Var'/2[7*], in practice.

In step 5, the wild bootstrap (see Hardle & Mammen 1993) it is let open which
residuals should be taken w;, €; or ¢;. While theory says clearly that the best
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power can be reached when taking the residuals of the alternative, i.e. u;, our
simulations (not shown) confirm the findings of Dette et al. (2005) that in practice
€; should be taken. Next, it is often sufficient if we allow for heteroscedasticity of
an unknown form using e} = g;¢;, where the ¢; are i.i.d., drawn either from the
golden-cut distribution, i.e.

~ [=(VB+1)/2  with probability p = (v5+1)/(2V5)
(VB2 with probability 1—p

or from the Gaussian normal N(0,1). This answers the question up to order the
moment of the bootstrap errors have to coincide with the residual moments. In
the simulation section, we will compare golden-cut with Gaussian bootstrap.

In step 4, bandwidth hp has to be chosen along the arguments of Hardle &
Marron (1990, 1991): For the mean of my(z) — m(z) under the conditional dis-
tribution of Y1,...,Y, | Xi,..., Xy, respectively of m}(z) — mp, (z) under the
conditional distribution of Y7*,...,Y,* | X1,..., X, , it is well known that

7 i () — () = 00D )
i (@) — () ~ 2220t (2 ©

where y(K) = [u?K(u)du. Obviously, we need that mj, (z) —m”(x) — 0. The
optimal bandwidth h; for estimating the second derivative must to be larger (in
rates) than bandwidth h for estimating the function itself. We can even give the
optimal rate. For example, the optimal rate to estimate m/ is of the order n=1/9
(instead of n~1/%), an observation we make use of in our simulation studies. There
it will be seen that the typical comment hy has to be oversmoothing, is unhelpful in
practice. Intuitively, one may think that a proper choice for h; depends strongly
on h. This might be true numerically, looking at equations (@) and (6) in the
asymptotics the “h-effect” seems to cancel out as long as h/h, goes to zero (a
necessary condition for the consistency of bootstrap inference here) for n going
to infinity. As one wants check whether the best possible additive model is an
adequate fit, one therefore can concentrate on those bandwidth selectors for h
which aim to optimize mg like cross validation or some plug-in methods do.

After all, it might be interesting to also have a look at subsampling as an
alternative to bootstrapping (see Politis, Romano & Wolf 1999). Neumeyer &
Sperlich (2006) introduce subsampling in a slightly context, other than that we
discuss here, because there the bootstrap failed. There exists an automatic choice
of the adequate subsample size m. As we remodeled this method to serve as a
procedure for finding hy, we introduce subsampling and the automatic choice of
the subsample size m in more detail:

Let Y = {(X;,Y:) | i =1,...,n} be the original sample, and denoted by 7(Y)
the original statistic calculated from this sample, leaving aside index j = 1,2, 3 for
a moment. To determine the critical values we need to approximate

Q(z)=P (m/k_dT ) < z) (7)
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Recall that under Hj this distribution converges to an N (uj,vjz), for p; and
v;, j = 1,2, see above. For finite sample size n, drawing B subsamples )}, -each
of size m- we can approximate Q under Hy by

Q)= bzif (/i o) < <) ®

Note that the awkward notation comes from we have to adjust all bandwidths
for the new sample size m. For example, imagine k = ko-n° for ko being constant.
Then, 7hm is calculated like 7 but with bandwidth k,, = kon®m 9.

Certainly, under the alternative Hy, both nvVkdr (3) and m+/kd, 7% (V) con-
verge to infinity. When demanding m/n — 0 guarantees that nv/k?r () converges
(much) faster to infinity than the subsample analogues. Then, @ underestimates
the quantiles of @, which yields the rejection of Hy.

The optimal m is actually a function of the level a. Again, one applies resam-
pling methods: Draw some pseudo sequences Y*!, I =1,..., L of Y of size n with
the same distribution as ). For the desired level «, test Hj : m(z) — mg(x) =
m(x) —mg(x) the same way as you want to test Hy : m(z) = mg(z), i.e. applying
your particular test statistic to H and using subsampling. From the L repetitions
you can determine the empirical rejection level (estimated size) for your given a.
Now, find an m such that this empirical rejection level is &~ «. In practice, you
choose from a grid of possible m the one whose estimated rejection level for H
is closest to o from below. Note that Hy is always true up to an estimation error
that should be almost the same as in your original test. The only drawback of this
procedure is the enormous computational effort. For further details and examples,
see Politis et al. (1999) or Delgado, Rodriguez & Wolf (2001).

4. Simulation results

We give here only a summary of our large simulation study. The model con-
sidered is as follows: As in Dette et al. (2005), we draw n = 100 i.i.d. X € R3
with

1 02 04
Xi ~ N(O,Ex) with EX = 0.2 1 0.6
0.4 0.6 1

to generate
Y, = Xl,i =+ X2211 +2 Sin(Tl'ngi) =+ 'UX277:X3)7; +e, 1=1,...,n

with i.i.d. standard normal errors e;, v = 0 being an additive separable model, or
v = 2 for an alternative.

In both test, statistics we use the weighting function w(-) for a possible trim-
ming: We cut the outer 5% or nothing (0%) of the sample, where “outer" refers
to the tails of the explanatory variables. This is done to get rid of the boundary
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effects in the statistics. To speed up our simulation studies, the presented results
are calculated from 250 replications using only 200 bootstrap samples (or subsam-
ples respectively). We used the multiplicative quartic kernel throughout but note
that we know from our simulations in Dette et al. (2005) as well as from three
years simulation experiences for the studies in Barrientos (2007), that the results
change hardly for larger bootstrap samples.

We first looked for an average cross validation bandwidth h, which turned
out to be hopr = 0.78 for the direction of interest, and 6hop: for the nuisance
directions, cf. Dette et al. (2005). This was done not only for computational
reasons but also because otherwise the size of the tests would also depend on the
randomness induced by the estimation of h. For the k-adaptive test procedure,
k ran over an equispaced grid of 10 bandwidths from ki, = 0.1 - range(X7) to
kmax = range(Xy).

We will study now the results for several choices of h; with different bootstrap
generating methods, i.e. golden-cut vs. Gaussian bootstrap errors. To have hy as
a function of h, to take also into account h/hy — 0, and validate the rate n=1/9
(motivated above) we set hy = hn'/®~1/% and try different x < 9.

Table [ shows the results for the k-adaptive bootstrap tests. We compare
the size and power for different h;, golden-cut vs Gaussian bootstrap, trimming
boundary effects vs no trimming, and finally also a bit 71 vs 72 (though the latter
is not the aim of this paper).

First, the results basically show that the size problem is not solved simply by
different smoothing in the pre-estimation. Oversmoothing, in contrast to the the-
oretical findings, seems to go in the wrong direction, at least for 7. In particular,
the hope that the ideas of Hardle & Marron (1990, 1991) (see equations (B and
(6)) might give us a hint or even provide a rule of thumb for the choice of h; is
not confirmed here.

Second, following to some extent the findings of (Delgado et al. 2001), we
find a clear improvement for the Gaussian compared to the golden-cut bootstrap.
Actually, when using the golden-cut method, then 71 does not hold the size for
several h, (k respectively). Even worse, it rejects more often under Hy than it
does under H;. This phenomenon is not observed for the simpler Gaussian wild
bootstrap.

Third, boundary effects seem not to be the reason of our size and power prob-
lems. Surely, we get different numerical results for different weighting (i.e. trim-
ming) functions, but cutting at the boundaries does not substantially change our
general findings.

Finally, it is obvious that 7 outperforms 7 throughout. When recalling the
motivation of the construction of 72, cf. Neumeyer & Sperlich (2006) and Roca &
Sperlich (2007), it is obvious that the size problem comes from the bias rather from
the variance. Or, in other words, bootstrap can capture pretty well the variance of
a statistic but not its bias. There are two possible reasons for the surprising fact
that 7 sometimes rejects more under Hy than under H;. First, while it is clear
that the bias distorts the rejection level, it is not clear in what direction; moreover,
the distortion effect certainly changes with the true underlying data generation
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TABLE 1: Rejection levels of the two k-adaptive test statistics with and without trim-
ming. Critical values are determined with golden-cut respectively Gaussian
wild bootstrap, using hy = hn'/>~1/* for the pre-estimation.

Golden Cut Gaussian Residuals
HO (’UZO) H1 (’1}22) HQ (’UZO) H1 (’1}22)
Trim | % | K | 71 T el T el Ty T T
0% 5 4 | .000 .024 | .016 .364 | .000 .024 | .004 .440
5| .012 .020 | .016 .332 | .008 .024 | .020 .380
6 | .056 .020 | .028 .344 | .056 .020 | .100 .376
71 .136 .024 | .044 332 | .124 .028 | .168 .368
8 | .196 .016 | .072 .360 | .172 .020 | .244 .3&4
9| .244 .016 | .088 .388 | .216 .016 | .320 .396
10 | 4 | .000 .068 | .064 .572 | .012 .088 | .068 .672
5 1.024 .052 | .068 .464 | .024 .060 | .076 .508
6 | .100 .048 | .084 .440 | .032 .036 | .076 .492
7| .188 .040 | .092 .452 | .036 .036 | .096 .464
8 | .252 .040 | .104 .468 | .056 .036 | .108 .488
9 | .308 .040 | .124 476 | .068 .036 | .132 .508
5% 5 4 |.004 .024 | .060 .352 | .004 .020 | .008 .420
5 1.024 .020 | .048 .324 | .028 .020 | .040 .348
6 | .112 .016 | .068 .336 | .096 .020 | .144 .360
71 .180 .016 | .100 .316 | .164 .020 | .236 .348
8 | .276 .012 | .132 .348 | .216 .016 | .328 .360
9 | .360 .012 | .152 .372 | .292 .016 | .436 .388
10 | 4| .016 .072 | .108 .568 | .064 .088 | .120 .664
5| .036 .048 | .100 .460 | .052 .052 | .108 .500
6 | .164 .044 | .116 .428 | .068 .036 | .104 .460
71 .256 .036 | .144 .448 | .092 .036 | .144 .460
8 | .356 .036 | .184 .460 | .120 .032 | .176 .4&84
9 | 432 .036 | .228 476 | .128 .040 | .224 .504

process. Second, making the tests k—adaptive entails a normalization by the
estimated variance. In the unfortunate situation where the variance estimation is
getting larger, the power of the test decreases. Both effects together lead here to
the counter-intuitive performance of 7.

In the last section we introduced subsampling as an alternative resampling
method to bootstrap. Therefore, we also provide a simulation study where the
critical values are approximated by subsampling, trying several subsample sizes
m. Recall that the different subsample sizes have a similar effect here like it has
the choice of hy, for bootstrap tests. The results are given in Table lfor k-adaptive
tests. For 71 we see here basically the same bad behavior we observed when using
golden-cut bootstrap to determine the critical values. In contrast, 7 seems to
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TABLE 2: Rejection levels of the two k-adaptive test statistics with and without trim-
ming. Critical values are determined with subsampling, using subsamples of
sizes m.

Trim | % | m | 7 Ty T T2

0% 5 80 | .000 .000 | .000 .000
70 | .000 .000 | .000 .000
60 | .056 .000 | .020 .036
50 | .276 .020 | .076 .292
40 | 516 .212 | .168 .732
10 | 80 | .000 .000 | .000 .000
70 | .020 .000 | .016 .000
60 | .272 .008 | .072 .144
50 | .584 .104 | .256 .644
40 | .816 .476 | 480 .912
5% 5 80 | .000 .000 | .000 .000
70 | .000 .000 | .000 .000
60 | .016 .000 | .000 .032
50 | .060 .020 | .012 .276
40 | 152 .216 | .024 .712
10 | 80 | .000 .000 | .000 .000
70 | .004 .000 | .000 .000
60 | .060 .008 | .016 .164
50 | .200 .092 | .024 .636
40 | .380 .460 | .120 .908

work-though with less power than we observed when using Gaussian bootstrap,
cf. Table[Il

Recall that our main focus is the size distortion of resampling tests. Therefore
our last two studies are about the automatic choice of m in subsampling and hy
in (Gaussian) bootstrap, respectively.

A quite time consuming simulation study evaluating the automatic choice of m
indicates that this procedure does unfortunately not work at all. Nevertheless, our
last study is to apply this idea for getting an automatic choice of hy. In order to do
s0, we first have to adjust the procedure for an automatic choice of the subsample
size m to now find an adequate bootstrap bandwidth hy.

This can be done as follows, described here in detail for 5. To make nota-
tion and calculation easier, we consider the non-k-adaptive version but fix & =
range(X1)/2. Let now {Y;*,z}}?_, := Y* be a member of the pseudo sequence
introduced above. Then, for testing Hf : m(x) — mg(z) = m(r) — mg(z) with
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sample V*, an analogue to 7 would be

n

1 = 1 * * * ~ *
TSZ;Z[WZKh(Xi - X)) {Y) - ms(X7)}

i=1 j=1

2
- Kn (X7 = X){Y; - ﬁls(Xj)}] w(X7) (9)
Other statistics are thinkable certainly, e.g.

1 - 1 - * * -~ *
LY | DU - X0 s (X))
i=1 j=1

= Kn(X; = X;){Y; — ms (X))} w(Xi)

but they should all be asymptotically equivalent to ([@). The procedure was per-
formed with only L = 100 pseudo samples Y*. As the results varied widely we
were forced either to enlarge L considerably or to reduce o, considerably. For
computational reasons we decided on the second option and repeated the study
with o, = 0.1.

Some results are summarized in Table Bl As et can be seen, this time we
emphasize the possibility of undersmoothing much more. You first have to look at
TQ‘j to find the x giving the rejection level closest to o = 5% from below. Here, this
is always x = 3. Note that this might also change depending on the trimming, «,
sample size, etc. It is important to understand that the lines of 75 can always be
calculated, i.e. without knowing the true data generating process. Therefore we
call this method fully automatic. Now look at the lines for 7, the test of interest.
Obviously, k = 3 is indeed the best possible choice; it has the strongest power
among all k respecting the nominal level. This could be taken as indicating that
our suggestion for selecting h, works. Unfortunately, this method does not work
that well for all possible «; specifically, it becomes quite incorrect for o > 10%.
Even worse, it did not work for 71 (not shown).

5. Conclusions

Our main focus is the bootstrap and its size distortion in practice when the
sample size is small or moderate. These points are illustrated along the popular
problem of additivity testing. Naturally, one looks for an optimal trade-off between
controlling for size under the null hypothesis Hy and maximizing power. Even
though these problems have already been discussed and studied in theory, as yet,
it is unclear how to set the smoothing parameter for the bootstrap prior estimates
in practice. We show that theory is not just unhelpful here; at present, a reasonable
application of bootstrap tests of these kinds is questionable.
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TABLE 3: Rejection levels of 7 and 7'2ﬁ for a = 5%, with and without trimming, using

Gaussian bootstrap with hy, = hn'/>~Y/* for the pre-estimation, and k =
range(X1)/2.
K
Trim 1 2 3 4 b) 6 7
Hy 0% Tg 012 063 .028 .030 .032 .031 .029
(v=0) To 680 392 .032 .012 .012 .012 .016

5% | 7 | .012 .062 .028 .030 .032 .031 .029
™ | 676 380 .024 .012 .012 .012 .020

H, 0% | 7% [.001 019 .042 .022 015 .011 .009
(v=2) ™ | 972 932 632 .380 272 .260 .264
5% | 75 | .001 .019 .042 .023 .015 .011 .010
T | 968 936 .620 .368 .260 .252 .264

Further, we have shown that subsampling is an interesting alternative to boot-
strap which in addition provides a procedure for the analogue problem of subsam-
ple size choices.

Finally we introduced the idea of extending the procedure of subsample size
selection to smoothing parameter (h;) selection in bootstrap testing problems.
However, further research is necessary to provide reliable procedures for the non-
parametric testing problems considered here.

[Recibido: marzo de 2010 — Aceptado: octubre de 2010]
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