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Abstract

Nowadays, procedures for testing the null hypothesis of linearity of a
(univariate or multivariate) stochastic process are well known, almost all of
them based on the assumption that their paths (i.e. observed time series) are
complete. This paper describes an approach for testing this null hypothesis in
the presence of missing data, using an extension of one of the test statistics
used in the literature. The alternative hypothesis is that the univariate
stochastic process of interest follows a threshold autoregressive (TAR) model.
It is found that if the missing-data percentage is low, the null distribution
of the proposed test statistic is maintained; while if it is high, it is not. A
threshold value for the missing-data percentage is detected, which can be
utilized in practice.

Key words: Linearity test, Missing data, Nonlinear time series, Threshold
autoregressive model.

Resumen

Las pruebas estadísticas que se conocen actualmente para examinar la
hipótesis nula de linealidad de un proceso estocástico (univariado o multiva-
riado) están basadas, casi todas, en el supuesto de que las series temporales
observadas son completas. En este trabajo, se presenta un nuevo proce-
dimiento para examinar esta hipótesis nula, en presencia de datos faltantes,
el cual es una extensión de un método muy citado en la literatura. La hipóte-
sis alternativa especifica que el proceso estocástico de interés obedece a un
modelo autoregresivo de umbrales (TAR). Se encuentra que si el porcentaje
de observaciones faltantes es bajo, la distribución nula de la estadística de
prueba se mantiene; en otro caso no. El estudio arroja un valor umbral para
este porcentaje, el cual puede ser usado en la práctica.

Palabras clave: datos faltantes, modelos autoregresivos de umbrales, prueba
de linealidad, series de tiempo no linales.
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1. Introduction

Nieto (2005) developed a procedure for modeling a univariate threshold-autore-
gressive processes (TAR) in the presence of missing data. The approach was
based on the assumption that one knows a priori that the dynamic relationship
between the two stochastic processes is nonlinear. This model can be seen as a
particular case of Tsay’s (1998) multivariate threshold model, where a test for the
null hypothesis of linearity was considered. An important contribution of Nieto’s
(2005) paper is the development of a smoother for estimating the missing data in
the two time series involved.

There are several methods for testing the null hypothesis of linearity in a uni-
variate or multivariate stochastic process. However, almost all of these methods
have been developed on the basis that the time series are complete or equally
spaced. Sometimes, this is not the case and one is faced with the problem of
performing those tests in the presence of partial or missing observations. Tong &
Yeung (1991a, 1991b), Brockwell (1994) and Tsai & Chan (2000) have worked on
this topic, but only Tong & Yeung (1991a) have considered discrete time series,
while the other authors have addressed the problem under the continuous-time
context. Specifically, Tong & Yeung (1991b) have studied the case of partially
observed time series, where the main characteristic is that, by nature, the obser-
vations are not equally spaced, as happens with financial variables that are not
observed in the weekends or holidays. The underlying model in that paper was a
univariate self-exciting threshold (SETAR) model. In this paper, we will consider
the case where the missing data appear because, for different reasons, the values
of a variable were not recorded although they actually occurred. Of course, this
situation causes unequally-spaced time series.

Unfortunately, Tong & Yeung’s (1991a) procedure has a drawback, in the sense
that the state space model they used for basing their adapted tests is not appropri-
ate, as we will show in Section 3 below. Then, their arranged-autoregression ideas
cannot be extended to the case of TAR models via state space forms. Instead, in
this paper, we extend Tsay’s (1998) test statistic and look for its null distribution
under three scenarios: (1) complete data, (2) low missing-data percentage, and (3)
medium and high missing-data percentage. Our goal is to find a threshold value
for the missing-data rate up to which our extended test statistic maintains its null
distribution.

The idea behind our work is the following: under the null hypothesis of linearity,
one can estimate the missing data in the time series, using a linear-model based
procedure as that of Gómez & Maravall (1994). Now, if the so-called input time
series is nonlinear, we use a simplification of Nieto’s (2005) smoother; if not, we
also use the same linear-model based procedure. Then, one completes the time
series with the estimated values and computes the test statistic. At the bottom
line, we will find the distribution of the proposed test statistic under the null
hypothesis of linearity taking into account the uncertainty of the missing data
estimates. This work is done by means of Monte Carlo simulations.
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The paper is organized as follows. In Section 2, we present the basic TAR
model and its simplification under the null hypothesis. Section 3 describes Tsay’s
(1998) nonlinearity test, the extended test statistic and its null distribution for
complete time series. In Section 4, we include a theoretical example that shows
the drawback of Tong & Yeung’s (1991a) procedure and analyze the effect that
the missing-data-estimates uncertainty has on the null distribution of the proposed
test statistic. Section 5 presents a real-data application and Section 6 concludes.

2. Specification of the TAR Model

Let {Xt} and {Zt} be stochastic processes related by the equation (TAR model)

Xt = a
(j)
0 +

∑kj

i=1 a
(j)
i Xt−i + h(j)εt , rj−1 < Zt ≤ rj (1)

where j = 1, . . . , l−1 indicate the presence of l regimes in the process {Xt}, which
are determined by the threshold values r0,r1,. . . ,rl−1, and rl of process {Zt}, with

r0 = −∞ and rl = ∞. Here, a
(j)
i and h(j); j = 1, . . . , l; i = 0, 1, . . . , kj ; are

real numbers and {εt} is a Gaussian zero-mean white noise process with vari-
ance 1. Additionally, the nonnegative integer numbers k1, . . . , kl denote, respec-
tively, the autoregressive orders of {Xt} in each regime. We shall use the symbol
TAR(l; k1, . . . , kl) to denote this model and call l,r1,. . . ,rl−1, k1,. . . ,kl−1 and kl

the model structural parameters.

These models were introduced by Tong (1978) and Tong & Lim (1980), specif-
ically, in the case where the threshold variable is the lagged variable Xt−d, where
d is some positive integer. In this case, the model is known as the self-exciting
TAR (SETAR) model and, at present, there is a lot of literature about the topic of
analyzing these models, under the frequent assumption that we know the number
l of regimes and the autoregressive orders k1, . . . , kl.

We also assume that {Zt} is exogenous in the sense that there is no feedback
of {Xt} towards it and that {Zt} is a homogeneous pth order Markov chain with
initial distribution F0(z,θz) and kernel distribution Fp(zt | zt−1, . . . , zt−p,θz),
where θz is a parameter vector in an appropriate numerical space. Furthermore,
we assume that these distributions have densities in the Lebesgue-measure sense.
Let f0(z,θz) and fp(zt | zt−1, . . . , zt−p,θz) be, respectively, the initial and kernel
density functions of the distributions above. In what follows, we assume that
the p-dimensional Markov chain {Zt} has an invariant or stationary distribution
fp(z,θz).

Nieto’s (2005) algorithms are based strongly in the regime-switching state-
space form of the TAR model, given by the following: let k = max{k1, . . . , kl},
αt = (Xt, Xt−1, . . . , Xt−k+1)

′, ωt = (εt, 0, . . . , 0)′, and {Jt} be a sequence of indi-
cator variables such that Jt = j if and only if Zt ∈ Bj for some j, j = 1, . . . , l.

Now, let H = (1, 0, . . . , 0)′ and for j = 1, . . . , l, let Cj = (a
(j)
0 , 0, . . . , 0)′,

Aj =

(
a
(j)
1 a

(j)
2 · · · a

(j)
k−1 a

(j)
k

Ik−1 0

)
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where a
(j)
i = 0 for i > kj and Ik−1 denotes the identity matrix of order k− 1, and

Rj =

(
h(j) 0′

0 0

)

Then, the state space form for the TAR(l; k1, . . . , kl) model becomes

Xt = Hαt (2)

as the observation equation, and

αt = CJt
+AJt

αt−1 +RJt
ωt (3)

as the system or state equation, where it is understood that CJt
= Cj if at time

t, Jt = j. The same remark holds for the values of the matrices AJt
and RJt

.
This kind of nonlinear state space models, where appart from the observation and
system equations there is an underlying indicator process that defines the structure
of these equations and the probability distributions of the error terms, have been
studied in the literature by Shumway & Stoffer (1991), Carter & Kohn (1994, 1996)
and Kim & Nelson (1999), among others.

The situation of interest we shall consider is that there are missing observations
in the two time series, in such a way that the observed data are located at the
unequally-spaced time points t1, . . . , tN , with 1 ≤ t1 ≤ · · · ≤ tN ≤ T , for {Xt},
and at s1, . . . , sM , 1 ≤ s1 ≤ · · · ≤ sM ≤ T , for {Zt}, where T is the sample
size. Nieto (2005) solved the problem of estimating both the model parameters,
including the structural parameters, and the missing observations on the basis
that l > 1. In particular, for estimating missing values in the observed time series
of process {Zt}, he found that the posterior densities for the variables Z are given
by

p(zT | α,x) ∝

T∏

j=T−p+1

p(αj | zT , αj−1)fp(zT ) (4)

and

p(zt | zt+p,αt,xt) ∝ p(αt | zt+p−1, αt−1)fp(zt+p | zt+p−1)fp(zt+p−1) (5)

for t = T −p, . . . , 1, where, α = (α1, . . . , αT ), αt = (α1, . . . , αt), xt = (x1, . . . , xt),
x = (x1, . . . , xT ), and, in general, zt = (zt−p+1, . . . , zt). Then, for estimating
the missing data at the time points s1, . . . , sM , one obtains draws from their
corresponding posterior densities given by expressions (4) and (5) via MCMC
procedures.

Now, for estimating the missing data in the time series of process {Xt}, one
has to take into account that (see Nieto’s (2005) paper)

p(α | z,x) = p(αT | z,x)

T−1∏

t=1

p(αt | αt+1, z,xt) (6)
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where z = (z1, . . . , zT ). Since the first component of αt is Xt, one obtains draws
from the posterior density p(α | z,x), then marginalizes it at the time points
t1, . . . , tN and picks the first component up. Under the assumption of Gaussianity
for the process {εt}, each factor in (6) is the density of a multivariate normal
distribution (see Carter & Kohn’s (1994) paper for details)

If l = 1, {Xt} reduces to a linear AR(k1) model and there is no influence of
{Zt} onto {Xt}, in the sense of the dynamic causality explained by the TAR model
(1). That is to say, for any value of the variable Z, the variable X has the same

dynamic autoregressive answer, with parameters ai = a
(1)
i for all i; i = 0, 1, . . . , k1.

Likewise, one has that the white-noise-process weight is h = h(1). Importantly,
the process {Zt} can be either linear or nonlinear.

3. A Nonlinearity Test for Complete Multivariate

Stochastic Processes

Let {Xt = (X1t, . . . , Xkt)
′}, {Yt = (Y1t, . . . , Yvt)

′} and {Zt} be stochastic pro-
cesses, where the first two are multivariate and the last one is univariate. Tsay
(1998) proposed the following multivariate threshold model for {Xt} with thresh-
old process {Zt} and delay d > 0:

Xt = a
(j)
0 +

p∑

i=1

a
(j)
i Xt−i +

q∑

i=1

b
(j)
i Yt−i + ε

(j)
t (7)

if Zt−d belongs to the real interval Bj = (rj−1, rj ] for some j; j = 1, . . . , l; where

−∞ = r0 < r1 < · · · < rl−1 < rl = ∞, a
(j)
0 are constant vectors, a

(j)
i and b

(j)
i are

constant matrices, and p and q are nonnegative integers. The innovations satisfy

ε
(j)
t = Σ

1/2
j ut, where Σ

1/2
j is a symmetric positive definite matrix, j = 1, . . . , l,

and {ut} is a zero-mean vector white noise process with covariance matrix I, the
identity matrix. The threshold process {Zt} is assumed to be stationary and
have a continuous distribution. Notice the presence of the process {Yt} in the
autoregressive equation for {Xt}. This is to explain for exogenous variables.

Model (1) can be seen as a particular case of model (7) if one puts k = 1,
no exogenous variables, and d = 0 (although this value is not strictly covered by
Tsay’s (1998) model, in a mathematical sense). However, in model (1), one can
have different autoregressive orders k1, . . . , kl in each regime and the threshold
process is specified to be an invariant Markov chain, a more general concept than
that of a stationary process. This point is important under the null hypothesis, as
noted in the previous section, because, at present, the only method for estimating
missing data in process {Zt}, when it is nonlinear, is Nieto’s (2005) approach.

Now, we describe Tsay’s (1998) test. Consider the null hypothesis that {Xt} is
linear, i.e. l = 1, versus the alternative hypothesis that it follows the multivariate
threshold model given in (7). Using the arranged regression scheme, one has
the following: given observations xt, yt, and zt, t = 1, 2, . . . , n, the goal is to
detect the threshold nonlinearity of {Xt}, assuming that p, q, and d are known.
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Let h = max{p, q, d}, Wt = (1,x′

t−1, . . . ,x
′

t−p,y
′

t−1, . . . ,y
′

t−q) (a (pk + qv + 1)–
dimensional vector) and Φ an unknown matrix. If the null hypothesis holds, then
the model collapses to

X′

t = W′

tΦ + ε′t (8)

as explained by Tsay (1998), for t = h + 1, . . . , n, independent of the values of
variable Z. Let S = {zh+1−d, . . . , zn−d} be the set of values of Zt−d. Consider
the order statistics of S and denote its ith smallest element by z(i). Then, the
arranged regression based on the increasing order of the threshold variable Zt−d is

X′

t(i)+d = W′

t(i)+dΦ + ε′t(i)+d (9)

for i = 1, . . . , n − h.

Now, let Φ̂m be the least square estimator of Φ of equation (9) based on the
first m observations, that is, those associated with the m smallest values of S. Let

êt(m+1)+d = Xt(m+1)+d − Φ̂
′

m Wt(m+1)+d (10)

and

η̂t(m+1)+d = êt(m+1)+d/[1 + W′

t(m+1)+dVmWt(m+1)+d]
1/2 (11)

where Vm =
[∑m

i=1 Wt(i)+dW
′

t(i)+d

]
−1

, be the predictive residual and the stan-

dardized predictive residual of regression (9). These quantities can be obtained by
the recursive least square algorithm. Next, consider the regression

η̂
′

t(l)+d = W′

t(l)+dΨ + ǫ′t(l)+d (12)

for l = m0 + 1, . . . , n − h, where m0 denotes the starting point of the recursive
least squares estimation. The problem of interest is then to test the hypothesis
H0 : ψ = 0 versus the alternative Ha : ψ 6= 0. Tsay (1998) proposed the test
statistic

C(d) = [n − h − m0 − (kp + vq + 1)][ln|S0| − ln |S1|] (13)

where the argument d signifies that the test depends strongly on the delayed
threshold variable Zt−d, |A| denotes the determinant of the matrix A,

S0 =
1

n − h − m0

n−h∑

l=m0+1

η̂t(l)+dη̂
′

t(l)+d

and

S1 =
1

n − h − m0

n−h∑

l=m0+1

ǫ̂t(l)+dǫ̂
′

t(l)+d

where ǫ̂t(l)+d is the least squares residual of regression (12). Under the null hypoth-
esis that Xt is linear, Tsay (1998) showed that C(d) is asymptotically a chi-squared
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random variable with k(pk + qv + 1) degrees of freedom. This paper shows that
this test statistic has good optimal properties, which are reflected in having a
greater power function than other statistical tests for the same null hypothesis.
As a by-product, the statistic C(d) can be used for choosing adequate threshold
variables, when one has several candidate variables. The idea is to select that
variable for which its corresponding value of C(d) is the largest. Furthermore, if
k = 1, i.e. {Xt} is univariate, and there are not exogenous variable, i.e. q = 0,
then the corresponding chi-squared distribution has p + 1 degrees of freedom.

Now, we consider the test statistic C(d) above and set d = 0, then the previous
regressions can still be conducted and thus the statistic C(0) is computed. To
find its null distribution for complete time series, we proceed via simulation and
obtained tha,t even for small sample sizes, it is practically a chi-squared distri-
bution with p + 1 degrees of freedom. Table 1 presents the results for a Monte
Carlo simulation experiment, where the autoregressive linear model under the null
is Xt = 2 + 0.5Xt−1 + εt, where {εt} is a Gaussian zero-mean white noise process
with variance 1. The sample size was n = 150 and we run 5000 replicates. In the
body of the table appear the quantiles of the χ2(2) distribution and of the empir-
ical distribution of C(0). The p-value for the Kolmogorov-Smirnov test statistic
was 0.36, approximately, which signals a no rejection of the null hypothesis of equal
distributions. Additionally, we used a sample size n = 10000 and another AR(1)
models with coefficients −0.5 and 1 (nonstationary process), and found analogous
results. These are presented in Tables 4 and 5 of the Appendix. Furthermore,
we considered AR(2) and AR(3) models with coefficients that make the processes
stationary and nonstationary and, in the first case, we considered scenarios where
the roots are either real numbers or some of them complex numbers. In this way,
we take into account different characteristics in the time and frequency domain.
We can provide these results upon request. The overall conclusion was the same,
i.e. the distribution of C(0) is practically a χ2(p + 1) distribution, p = 1, 2, 3. We
feel that the maximum value 3 for the AR order is enough in this simulation study
because of model parsimony and that the exercise can be extended to seasonal AR
processes obtaining the same global result.

Table 1: Comparison of empirical quantiles of the null distribution of C(0) with those
of the χ2, in the case of an AR model with parameter 0.5.

Quantiles

Distribution 0.01 0.025 0.05 0.1 0.5 0.9 0.95 0.975 0.99

χ2(2) 0.02 0.05 0.10 0.21 1.39 4.60 5.99 7.38 9.21

C(0) 0.02 0.05 0.10 0.22 1.42 4.59 5.97 7.31 9.19
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4. The Null Distribution of the Proposed Test

Statistic in the Case of Missing Data

4.1. A Tray to Use State-Space-Model Based Approaches

In the SETAR-model univariate context, Tong & Yeung (1991a) presented
a state-space-model based procedure for implementing known tests of the null
hypothesis H : l = 1, in the presence of partial data. Following the arranged-
regression philosophy, they argued that under the null hypothesis the arranged
regression can be cast in state space form. Setting t(i) in place of t everywhere in
equations 2 and 3, one would obtain

Xt(i) = Hαt(i) (14)

as the observation equation, and

αt(i) = CJt(i)
+AJt(i)

αt(i)−1 +RJt(i)
ωt(i) (15)

as the system or state equation, where it is remarkably noted that Jt(i) = 1 for all
i = 1, . . . , n − h. Hence, the system equation becomes

αt(i) = C1 +A1αt(i)−1 +R1ωt(i) (16)

Equations (14) and (16) define Tong & Yeung’s (1991b) state space model and
they will be referred as an arranged state space model.

Apparently, the usual statistical assumptions and properties of state space
models continue to be valid (see Harvey’s (1989) book, for example), and thus
the Kalman filter, its associated smoothing algorithms and the Nieto’s (2005) ap-
proach might still be used. However, this is not possible. Indeed, (i) an important
argument in deducting the Kalman filter and then the well-known smoothing al-
gorithms (see, among others, Harvey (1989), Catlin (1989) and Brockwell & Davis
(1991)) is that the time points at which observations are made need to be in a
monotone order although not necessarily equally spaced. In the present scheme, it
can happen that i < j and even t(i) > t(j). (ii) The so-called predictive residuals
are not orthogonal among them and orthogonal to lagged variables of the output
process {Xt} neither. Hence, the probabilistic behaviour of the so-called adapted

test statistics of Tong & Yeung (1991a), which is necessary for implemeting their
tests, is not necessarily guaranteed. The following example illustrates these facts.

An AR(1) model will be considered for process {Xt} given by Xt = a1Xt−1+hεt

(as happens under the null hypothesis), where a1 and h are real numbers with
h > 0, and {εt} is a zero-mean white noise process for which E(Xsεt) = 0 for
s < t. Then, trivially, the state-space-model elements are αt = (Xt), ωt = (εt),
H = 1, C1 = 0, A1 = a1, and R1 = h. We assume that the sample size
is n = 1000, and that t(1) = 200, where there is a missing data, t(2) = 27, and
t(3) = 379. After some simple calculations, using the algorithms presented by Tong
& Yeung (1991a) for computing the state-space-model based predictive errors η’s,
one founds that η27 = X27 − a2

1X199 and η379 = X379 − a2
1X27, which are clearly
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correlated. Consequently, we leave Tong & Yeung’s (1991a) state-space-model
based approach and consider the alternative of using directly the test described in
Subsection 3.1.

4.2. The Null Distribution of C(0)

Now, the idea is to assess the influence that the uncertainty in the missing
data estimates has on the distribution of C(0). Let Ĉ(0) be the statistic that is
obtained when we use missing data estimates to compute C(0). We proceed via
Monte Carlo simulation as in the case of complete data, maintaining the same
AR(p) models for process {Xt}, that is with p = 1, 2, 3 and different values for
the autoregressive parameters, and considering different sample sizes. The new
element is to consider several rates of missing observations, going from low to high
percentages, and to detect a threshold rate up to which the χ2 null distribution is
preserved. In this paper, we consider values in the set {0%, 10%, 20%, . . . , 80%}.

The design of the simulation experiment was the following: we fix a stationary
AR(1) model for process {Zt}; in this way, {Zt} is a Markov chain of order 1 with
invariant distribution. The chosen model is Zt = 0.25Zt−1 + αt, where {αt} is a
Gaussian zero-mean white noise process with variance 1.52. Then,

(1) we draw time series for each stochastic process {Xt} and {Zt}, say {xt} and
{zt}, in an independent way.

(2) We select randomly two sets of time points in the set {1, . . . , T}. The first one
of size T − N for {xt} and the second one of size T −M for {zt}. These time
points are fixed. Then, we discard the observations in the time series {xt},
located at the first set of time points, and those for {zt} that correspond to
the second set.

(3) Using Gómez & Maravall (1994) procedures, specifically their fixed-point
smoother algorithm, we estimated the missing observations in the time se-
ries {xt}. Since {Zt} is linear, the same procedure is used to estimate the
missing data in its simulated time series.

(4) Compute Ĉ(0) with these “completed” time series.

Note 1. Thinking in practice, if process {Zt} is not linear, we can use the
smoother given by equations (4) and (5) for estimating its missing data, with the
following modification: since there is no influence of {Zt} onto {Xt}, the posterior
densities presented in equations (4) and (5) are reduced, respectively, to

p(zT | α,x) ∝ fp(zT ) (17)

for t = T − p + 1, . . . , T , and

p(zt | zt+p,αt,xt) ∝ fp(zt+p | zt+p−1)fp(zt+p−1) (18)

for t = T −p, . . . , 1. In this way, drawings for ZT = (ZT−p+1, . . . , ZT ) are obtained
directly from the invariant distribution of the Markov chain {Zt}, and for t =
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T − p, . . . , 1, drawings for Zt are obtained from the distribution given by the
product of the kernel density with the invariant density.

The above procedure is repeated I times, I ≥ 1, to obtain a sample of size I
for the statistic Ĉ(0), maintaining fixed the missing-data percentages (T − N)/T

and (T −M)/T through all the iterations. With this sample for Ĉ(0), we obtained
its empirical cumulative distribution function and then compare it with that of
the χ2

p+1 distribution.

The results of the simulation experiment, with the AR(1) model with parameter
0.5 for {Xt}, are presented in Table 2, using samples of size n = 150 and I = 5000,
a fixed value that we will use in all the remaining simulations. We can see the
following important facts: (i) when there are not missing observations in the time
series {xt}, for any percentage of missing data in {zt}, the empirical quantiles
are practically equal to the χ2(2) distribution. This reflects that under H0, the
process {Zt} does not influence {Xt}. (ii) Fixing the missing-data percentage
of {xt} and varying that of {zt}, the corresponding empirical quantiles are very
similar, reflecting once more again the observation made in (i). (iii) When the
rate of missing data in the time series {xt} gets larger, the discrepancy between
empirical and theoretical quantiles gets larger, too, independent of the missing-
data percentage in the time series {zt}. This fact suggests that the null distribution

of Ĉ(0) departs from the χ2(2) distribution.

Table 2: Comparison of empirical quantiles of the null distribution of Ĉ(0) with those
of the χ2(2) for n = 150 and φ = 0.5.

% of missing data Quantiles

x-data z-data 0.01 0.025 0.05 0.1 0.5 0.9 0.95 0.975 0.99

10 0 0.02 0.04 0.10 0.21 1.37 4.58 5.92 7.43 9.31

20 0 0.02 0.05 0.09 0.20 1.34 4.48 5.80 7.06 8.94

30 0 0.02 0.05 0.10 0.22 1.51 5.12 6.67 8.04 10.36

0 10 0.02 0.05 0.10 0.21 1.40 4.62 5.98 7.33 8.80

10 10 0.02 0.05 0.09 0.21 1.35 4.50 5.88 7.28 8.72

20 10 0.02 0.04 0.09 0.19 1.33 4.37 5.65 6.87 8.59

30 10 0.02 0.05 0.12 0.22 1.51 5.10 6.48 8.22 10.23

0 20 0.02 0.05 0.10 0.21 1.41 4.63 6.27 7.73 9.57

10 20 0.02 0.05 0.10 0.20 1.39 4.74 6.17 7.56 9.40

20 20 0.02 0.05 0.11 0.22 1.29 4.25 5.61 6.91 8.84

30 20 0.02 0.05 0.11 0.22 1.32 4.48 5.75 7.09 9.30

0 30 0.02 0.05 0.10 0.22 1.37 4.64 6.06 7.51 9.22

10 30 0.02 0.05 0.10 0.21 1.40 4.70 6.15 7.57 9.88

20 30 0.02 0.04 0.09 0.20 1.30 4.24 5.61 6.94 8.80

30 30 0.02 0.04 0.09 0.18 1.29 4.21 5.43 6.71 8.65

χ2(2) 0.02 0.05 0.10 0.21 1.39 4.60 5.99 7.38 9.21

In Table 3 we present the Kolmogorov-Smirnov statistics for the same missing-
data rates considered in Table 2 and, as we can see, when the percentage of missing
data in {xt} is greater or equal than 20%, approximately, the null hypothesis of
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equal distributions is rejected in almost every case. Consequently, we always halt
the simulations at the rate 30%.

Table 3: p-values of the Kolmogorov-Smirnov statistic for the distributions in Table 2.

% of missing data

x-data z-data p-value∗

10 0 0.14

20 0 0.28

30 0 0.00

0 10 0.80

10 10 0.26

20 10 0.01

30 10 0.00

0 20 0.76

10 20 0.85

20 20 0.00

30 20 0.02

0 30 0.86

10 30 0.90

20 30 0.00

30 30 0.00
∗ Rounded to two decimal digits.

We repeated the simulation exercise for this AR model with sample sizes n =
1000, 10000 and obtained very similar results to the last ones. Also, we used the
other AR(1) models proposed in Section 3 with the same sample sizes n = 150
and n = 10000, and we find analogous results, which are in Tables 6-17 in the
Appendix. In this last case, we omitted the sample size n = 1000 because we
do not observe important differences with respect to the sample size n = 150.
Furthermore, we consider the same AR(2) and AR(3) models of Section 3 with
the same sample sizes and, once more again, we obtained similar results, which
can be provided upon request.

As a global conclusion, when the missing data percentage in the time series
{xt} is less than 20%, approximately, we can say that the null distribution of

Ĉ(0) is still a χ2(p + 1) distribution. For rates of missing data greater than this
approximate threshold, the influence of the missing-data estimates uncertainty on
the distribution of Ĉ(0) is so relevant that its empirical distribution departs from
the χ2 distribution. It is important to remark here that one could extend this
simulation study via the selection of percentage values between 10% and 20%, to
find a more precise bound for the percentage of missing values in {xt} up to which

the χ2 distribution continues to be valid as the null distribution of Ĉ(0).
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5. An Empirical Example

Nieto (2005) considers an application with actual data. The time series con-
sidered were daily rainfall (in mm), as the threshold variable, and a daily river
flow (in m3/s), as the response variable, in a certain Colombian geographical re-
gion. The data set corresponds to the sample period from January 1, 1992, up
to November 30, 2000 (3256 data), and it was assembled by IDEAM, the official
Colombian agency for hydrological and meteorological studies. In Figure 1, one
can see the two time series, where is clear the dynamical relationship between the
two variables. Additionally, one can see certain stable path in both variables and
bursts of large values, specifically in the river flow.
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Figure 1: Time series for the real data example: (a) Precipitation (b) Flow.

Let Pt and Xt be respectively the rainfall and the river flow at day t. Because
of the universal convention for measuring these two variables, he set up Zt =
Pt−1. That is, the precipitation was lagged one period back for relating it to
the river flow. The flow time series was adjusted with two transformations: (1)
square root of the data and (2) an adjustment for conditional heteroscedasticity
via an ARCH(1) model. From now on, the flow data to be analyzed will be the
transformed ones and we denote them as {x̃t}. The two time series have missing
data, 52 in {zt} and 32 in {xt}. In percentage terms, these are 1.6% for time series
{zt} and 1% for {x̃t}, which are lesser than 20%.

Under the null hypothesis, {Xt} is a linear AR process. Using Akaike’s in-
formation criterion, we found that p = 2 is a reasonable autoregressive order for
this process. In this way, we are in the conditions studied in Section 4 and, con-
sequently, we can use the χ2(3) distribution for running the statistical test for
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the null hypothesis. We note firstly that the process {Zt} has two regimes with
r1 = 6.0 mm and that it was modeled as a 1st order Markov chain with approxi-
mate intial and transition kernel distributions given by the mixtures

f0(z) = 0.26hn(z) + 0.74g(z)

and

f1(zt | zt−1) = 0.87hn(zt) + 0.13g(zt | zt−1)

respectively, where

hn(z) =





0, if −∞ < z < −1/n,

(nπ/2)cos(nπz + π/2), if − 1/n ≤ z ≤ 0

0, if z > 0

g(z) denotes the truncated density of a N(3.24, 7.762) at the point z = 0, g(zt |
zt−1) is the truncated density of a N(zt−1, 7.762) at the same point z = 0, P (Zt =
0) = 0.26, and P (Zt = 0 | Zt−1 ∈ B1) = 0.87. For more details on the modeling of
process {Zt}, the reader can see Gómez & Maravall (1994) paper. Then, we used
the procedure described in Subsection 3.3 for estimating the missing data in the two
time series, specifically, we used the TSW software (Caporello & Maravall 2003)
for estimating the missing data in {x̃t} and the smoother given in equations (17)
and (18) for estimating the missing observations in {zt}. Next, I complete the

time series with the estimated data and obtained that Ĉ(0) = 52.57 with p-value
equal to 0. These results signal the strong threshold nonlinearity of {Xt}, which
is explained by {Zt}.

6. Conclusions

In this paper, we have shown the feasibility of a well-known statistical pro-
cedure for testing the null hypothesis of linearity against the alternative of TAR
nonlinearity, when there are missing data in a bivariate time series. The statistical
test is an extension of Tsay’s (1998) statistic. The extension consists in allowing
the number zero to be the delay parameter of the threshold variable. Then, to
compute values of this statistic we use estimates of the missing data as observed
values. Strictly speaking, this statistic is other than the extended one. Via Monte
Carlo simulations, we found that the extended statistic also follows a χ2 distribu-
tion with complete data and that the modified statistic also has this distribution
if the proportion of missing data in the output time series is less or equal than
20%, approximately. We feel that if the missing-data percentage is larger than this
value, we should use additional variables that help to explain the dynamical be-
havior of the output one, via for example regression models, to get more observed
data and to do a frequentist statistical test. Another alternative might be to use
a Bayesian testing approach to compensate the large uncertainty produced by the
high percentage of missing data. This route would need to consider appropriate
prior distributions. This is a challenging problem for future research.
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In the lines of the above recommendation, another interesting problem for
future research would be to consider test statistics other than Tsay’s (1998) one,
as for example Hansen’s (1996) test. And then to do a comparison about the size
and power of the different tests, under scenarios of missing-data proportions where
the known null distributions are preserved.

As a by-product of this study, we have also shown that state-space-model based
approaches, which aim to take into account the arranged autoregression philoso-
phy, are not adequate. This means that the appealing idea of detecting change
points, via arranged regressions, should be used directly for designing inferential
procedures in the context of TAR models.
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Appendix

Table 4: Comparison of empirical quantiles of the null distribution of C(0) with those
of a χ2(2), in the case of an AR(1) process with parameter −0.5 and sample
size n = 150.

Quantiles

Distribution 0.01 0.025 0.05 0.1 0.5 0.9 0.95 0.975 0.99

χ2(2) 0.02 0.05 0.10 0.21 1.39 4.60 5.99 7.38 9.21

C(0) 0.02 0.05 0.11 0.21 1.40 4.62 6.06 7.36 9.15

The Kolmogorov-Smirnov statistical test yields a p-value of 0.67, which implies
a no rejection of the null hypothesis of equal distributions. With a sample size
n = 10000 the p-value of this statistical test is 0.38, which leads to the same
decision.
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Table 5: Empirical quantiles of the null distribution of C(0) and those of the χ2(2), in
the case of an AR(1) process with parameter 1.0 and sample size n = 150.

Quantiles

Distribution 0.01 0.025 0.05 0.1 0.5 0.9 0.95 0.975 0.99

χ2(2) 0.02 0.05 0.10 0.21 1.39 4.60 5.99 7.38 9.21

C(0) 0.03 0.06 0.12 0.23 1.40 4.62 6.05 7.42 9.35

Table 6: Comparison of empirical quantiles of the null distribution of Ĉ(0) for the
AR(1) model with parameter 0.5 and sample size 1000.

% of missing data Quantiles

x-data z-data 0.01 0.025 0.05 0.1 0.5 0.9 0.95 0.975 0.99

10 0 0.02 0.05 0.11 0.22 1.37 4.42 5.83 7.16 9.08

20 0 0.02 0.06 0.10 0.22 1.42 4.63 6.19 7.64 9.54

30 0 0.02 0.05 0.11 0.22 1.46 4.76 6.17 7.59 9.95

0 10 0.02 0.06 0.10 0.21 1.37 4.56 6.06 7.54 9.17

10 10 0.02 0.05 0.11 0.21 1.38 4.39 5.73 7.36 9.23

20 10 0.01 0.05 0.10 0.22 1.43 4.86 6.21 7.67 9.88

30 10 0.02 0.04 0.09 0.20 1.44 4.76 6.20 7.77 9.63

0 20 0.02 0.05 0.10 0.22 1.39 4.63 6.01 7.31 8.93

10 20 0.02 0.05 0.11 0.23 1.40 4.48 5.77 7.26 9.01

20 20 0.02 0.05 0.10 0.21 1.42 4.60 6.00 7.28 9.29

30 20 0.02 0.05 0.11 0.21 1.45 4.77 6.16 7.34 9.78

0 30 0.03 0.06 0.12 0.22 1.43 4.69 6.18 7.53 9.44

10 30 0.02 0.06 0.11 0.23 1.43 4.77 6.15 7.41 9.47

20 30 0.02 0.05 0.10 0.23 1.44 4.82 6.16 7.46 9.67

30 30 0.02 0.05 0.11 0.24 1.52 4.91 6.34 7.96 9.92

χ
2 0.02 0.05 0.10 0.21 1.39 4.60 5.99 7.38 9.21

The Kolmogorov-Smirnov statistical test yields a p-value of 0.74, which signals
a no rejection of the null hypothesis of equal distributions. With a sample size
n = 10000 the p-value of this statistical test is 0.12, which signals the same decision.
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Table 7: p-values of the Kolmogorov-Smirnov statistics in the AR(1) model with coef-
ficient 0.5 and sample size 1000.

% of missing data p-value∗

x-data z-data

10 0 0.56

20 0 0.31

30 0 0.00

0 10 0.78

10 10 0.27

20 10 0.11

30 10 0.11

0 20 0.98

10 20 0.23

20 20 0.41

30 20 0.09

0 30 0.07

10 30 0.01

20 30 0.11

30 30 0.00
∗ Rounded to two decimal digits.

Table 8: Comparison of empirical quantiles of the null distribution of Ĉ(0) for the
AR(1) model with parameter 0.5 and sample size 10000.

% of missing data Quantiles

x-data z-data 0.01 0.025 0.05 0.1 0.5 0.9 0.95 0.975 0.99

10 0 0.02 0.05 0.10 0.20 1.37 4.68 6.05 7.50 9.15

20 0 0.02 0.05 0.10 0.21 1.40 4.76 6.34 7.67 9.29

30 0 0.02 0.05 0.11 0.22 1.48 4.81 6.24 7.82 9.93

0 10 0.02 0.05 0.11 0.20 1.35 4.54 5.87 7.09 8.65

10 10 0.02 0.05 0.10 0.21 1.35 4.59 5.98 7.28 8.68

20 10 0.02 0.05 0.10 0.20 1.42 4.82 6.23 7.63 9.33

30 10 0.02 0.05 0.11 0.22 1.46 4.77 6.12 7.59 9.91

0 20 0.02 0.05 0.10 0.20 1.35 4.56 5.87 7.25 8.89

10 20 0.02 0.05 0.11 0.21 1.40 4.62 5.85 7.33 9.33

20 20 0.02 0.05 0.10 0.20 1.39 4.82 6.28 7.56 9.57

30 20 0.02 0.06 0.12 0.22 1.43 4.73 6.13 7.52 9.75

0 30 0.02 0.05 0.10 0.20 1.36 4.45 5.94 7.13 8.75

10 30 0.02 0.05 0.11 0.22 1.38 4.57 6.05 7.24 8.75

20 30 0.02 0.05 0.10 0.22 1.38 4.77 6.07 7.46 9.17

30 30 0.02 0.05 0.10 0.22 1.44 4.71 6.12 7.51 9.37

χ
2 0.02 0.05 0.10 0.21 1.39 4.60 5.99 7.38 9.21
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Table 9: p-values of the Kolmogorov-Smirnov statistics in the AR(1) model with coef-
ficient 0.5 and sample size 10000.

% of missing data p-value∗

x-data z-data

10 0 0.27

20 0 0.23

30 0 0.00

0 10 0.35

10 10 0.43

20 10 0.12

30 10 0.02

0 20 0.15

10 20 0.74

20 20 0.22

30 20 0.30

0 30 0.66

10 30 0.80

20 30 0.44

30 30 0.02
∗ Rounded to two decimal digits.

Table 10: Comparison of empirical quantiles of the null distribution of Ĉ(0) for the
AR(1) model with parameter −0.5 and sample size 150.

% of missing data Quantiles

x-data z-data 0.01 0.025 0.05 0.1 0.5 0.9 0.95 0.975 0.99

10 0 0.02 0.05 0.11 0.21 1.39 4.65 6.02 7.15 9.11

20 0 0.02 0.06 0.12 0.22 1.35 4.48 5.96 7.26 8.70

30 0 0.02 0.05 0.11 0.22 1.51 5.14 6.72 8.16 10.36

0 10 0.02 0.04 0.09 0.20 1.40 4.57 5.92 7.17 9.50

10 10 0.02 0.05 0.10 0.21 1.35 4.56 5.92 7.15 8.95

20 10 0.02 0.05 0.11 0.21 1.29 4.23 5.74 7.12 8.40

30 10 0.02 0.05 0.11 0.24 1.49 5.06 6.48 8.03 9.65

0 20 0.02 0.05 0.10 0.21 1.41 4.67 6.13 7.62 9.76

10 20 0.02 0.04 0.10 0.21 1.40 4.65 6.07 7.79 9.65

20 20 0.02 0.04 0.08 0.19 1.25 4.22 5.44 6.64 8.62

30 20 0.02 0.05 0.10 0.22 1.42 4.68 6.33 7.70 9.74

0 30 0.02 0.05 0.11 0.21 1.38 4.52 6.02 7.45 9.25

10 30 0.02 0.05 0.10 0.21 1.43 4.85 6.33 7.73 9.50

20 30 0.02 0.05 0.09 0.19 1.21 4.16 5.36 6.58 8.59

30 30 0.02 0.05 0.10 0.19 1.28 4.44 5.88 7.14 8.71

χ
2 0.02 0.05 0.10 0.21 1.39 4.60 5.99 7.38 9.21
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Table 11: p-values of the Kolmogorov-Smirnov statistics in the AR(1) model with co-
efficient −0.5 and sample size 150.

% of missing data p-value∗

x-data z-data

10 0 0.91

20 0 0.22

30 0 0.00

0 10 0.77

10 10 0.56

20 10 0.00

30 10 0.00

0 20 0.53

10 20 0.97

20 20 0.00

30 20 0.08

0 30 0.79

10 30 0.09

20 30 0.00

30 30 0.00
∗ Rounded to two decimal digits.

Table 12: Comparison of empirical quantiles of the null distribution of Ĉ(0) for the
AR(1) model with parameter −0.5 and sample size 10000.

% of missing data Quantiles

x-data z-data 0.01 0.025 0.05 0.1 0.5 0.9 0.95 0.975 0.99

10 0 0.02 0.04 0.09 0.20 1.38 4.66 5.95 7.20 8.98

20 0 0.02 0.05 0.10 0.22 1.45 4.77 6.20 7.52 9.58

30 0 0.02 0.06 0.12 0.23 1.46 4.82 6.20 7.88 9.93

0 10 0.02 0.05 0.10 0.20 1.37 4.52 5.93 7.11 8.92

10 10 0.02 0.04 0.10 0.21 1.36 4.62 5.97 7.30 9.26

20 10 0.02 0.05 0.12 0.23 1.47 4.82 6.20 7.60 9.75

30 10 0.02 0.05 0.10 0.21 1.44 4.74 6.28 7.68 9.47

0 20 0.02 0.04 0.10 0.20 1.33 4.47 5.76 7.28 8.77

10 20 0.01 0.04 0.10 0.20 1.37 4.45 5.91 7.57 9.40

20 20 0.02 0.06 0.10 0.21 1.43 4.64 6.06 7.44 9.34

30 20 0.02 0.05 0.11 0.23 1.40 4.76 6.16 7.63 9.48

0 30 0.02 0.04 0.10 0.20 1.35 4.47 5.86 7.10 8.61

10 30 0.02 0.04 0.09 0.20 1.39 4.49 5.98 7.43 8.90

20 30 0.03 0.06 0.11 0.21 1.42 4.81 6.25 7.66 9.40

30 30 0.02 0.05 0.11 0.23 1.44 4.72 6.05 7.46 9.43

χ
2 0.02 0.05 0.10 0.21 1.39 4.60 5.99 7.38 9.21
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Table 13: p-values of the Kolmogorov-Smirnov statistics in the AR(1) model with co-
efficient −0.5 and sample size 10000.

% of missing data p-value∗

x-data z-data

10 0 0.96

20 0 0.02

30 0 0.00

0 10 0.60

10 10 0.78

20 10 0.01

30 10 0.01

0 20 0.14

10 20 0.79

20 20 0.06

30 20 0.15

0 30 0.48

10 30 0.50

20 30 0.04

30 30 0.08
∗ Rounded to two decimal digits.

Table 14: Comparison of empirical quantiles of the null distribution of Ĉ(0) for the
AR(1) model with parameter 1.0 and sample size 150.

% of missing data Quantiles

x-data z-data 0.01 0.025 0.05 0.1 0.5 0.9 0.95 0.975 0.99

10 0 0.02 0.05 0.10 0.20 1.38 4.55 5.93 7.22 9.09

20 0 0.02 0.06 0.12 0.24 1.40 4.81 6.18 7.58 9.24

30 0 0.02 0.06 0.11 0.23 1.61 5.34 6.94 8.42 10.30

0 10 0.03 0.06 0.11 0.22 1.40 4.60 6.08 7.52 9.12

10 10 0.02 0.05 0.10 0.21 1.39 4.52 5.90 7.33 8.99

20 10 0.02 0.04 0.10 0.22 1.40 4.62 6.09 7.43 9.45

30 10 0.02 0.07 0.13 0.25 1.59 5.24 6.74 8.30 10.01

0 20 0.02 0.05 0.11 0.22 1.41 4.68 6.03 7.40 9.01

10 20 0.02 0.05 0.11 0.23 1.42 4.67 6.13 7.48 9.28

20 20 0.02 0.05 0.11 0.23 1.49 4.77 6.04 7.41 9.47

30 20 0.02 0.05 0.11 0.22 1.45 4.69 6.11 7.68 9.34

0 30 0.02 0.05 0.11 0.22 1.41 4.45 5.77 7.34 9.27

10 30 0.02 0.05 0.10 0.21 1.42 4.46 5.75 7.16 8.96

20 30 0.02 0.05 0.10 0.23 1.49 4.76 6.17 7.64 9.87

30 30 0.02 0.05 0.10 0.20 1.39 4.49 5.67 7.02 8.80

χ
2 0.02 0.05 0.10 0.21 1.39 4.60 5.99 7.38 9.21
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Table 15: p-values of the Kolmogorov-Smirnov statistics in the AR(1) model with co-
efficient 1.0 and sample size 150.

% of missing data p-value∗

x-data z-data

10 0 0.83

20 0 0.31

30 0 0.00

0 10 0.25

10 10 0.92

20 10 0.48

30 10 0.00

0 20 0.28

10 20 0.09

20 20 0.00

30 20 0.01

0 30 0.48

10 30 0.34

20 30 0.00

30 30 0.05
∗ Rounded to two decimal digits.

Table 16: Comparison of empirical quantiles of the null distribution of Ĉ(0) for the
AR(1) model with parameter 1.0 and sample size 10000.

% of missing data Quantiles

x-data z-data 0.01 0.025 0.05 0.1 0.5 0.9 0.95 0.975 0.99

10 0 0.01 0.04 0.09 0.16 1.14 3.79 5.03 6.20 7.78

20 0 0.02 0.05 0.11 0.22 1.48 4.88 6.39 7.90 10.21

30 0 0.02 0.06 0.12 0.23 1.42 4.79 6.26 8.14 10.38

0 10 0.02 0.06 0.11 0.22 1.32 4.69 6.22 7.58 9.36

10 10 0.01 0.04 0.10 0.19 1.21 3.96 5.14 6.42 7.84

20 10 0.03 0.06 0.12 0.23 1.46 4.91 6.49 7.88 10.04

30 10 0.02 0.05 0.10 0.22 1.44 4.87 6.37 8.07 10.08

0 20 0.03 0.05 0.10 0.21 1.37 4.72 6.37 7.78 9.51

10 20 0.03 0.05 0.10 0.22 1.30 4.03 5.29 6.78 8.54

20 20 0.02 0.06 0.12 0.23 1.51 5.03 6.56 7.96 9.77

30 20 0.02 0.05 0.10 0.22 1.48 4.96 6.53 8.04 10.23

0 30 0.02 0.04 0.10 0.20 1.37 4.60 5.90 7.32 9.31

10 30 0.02 0.03 0.08 0.16 1.03 3.63 4.79 5.94 7.53

20 30 0.02 0.05 0.11 0.23 1.48 4.86 6.32 7.64 9.82

30 30 0.02 0.05 0.10 0.22 1.47 5.09 6.54 8.31 11.03

χ
2 0.02 0.05 0.10 0.21 1.39 4.60 5.99 7.38 9.21
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Table 17: p-values of the Kolmogorov-Smirnov statistics in the AR(1) model with co-
efficient 1.0 and sample size 10000.

% of missing data p-value∗

x-data z-data

10 0 0.12

20 0 0.01

30 0 0.08

0 10 0.09

10 10 0.00

20 10 0.03

30 10 0.00

0 20 0.72

10 20 0.00

20 20 0.00

30 20 0.00

0 30 0.99

10 30 0.00

20 30 0.00

30 30 0.01
∗ Rounded to two decimal digits.
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