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Abstract

In this paper, we introduce a Bayesian analysis to estimate the prevalence
and performance test parameters of two diagnostic tests. We concentrated
our interest in studies where the individuals with negative outcomes in both
tests are not verified by a gold standard. Given that the screening tests
are applied in the same individual we assume dependence between test re-
sults. Generally, to capture the possible existing dependence between test
outcomes, it is assumed a binary covariance structure, but in this paper,
as an alternative for this modeling, we consider the use of copula function
structures. The posterior summaries of interest are obtained using standard
MCMC (Markov Chain Monte Carlo) methods. We compare the results ob-
tained with our approach with those obtained using binary covariance and
assuming independence. We considerate two published medical data sets to
illustrate the approach.

Key words: Bayes analysis, Copula, Dependence, Monte Carlo Simulation,
Public health.

Resumen

En este articulo introducimos un análisis Bayesiano para estimar la preva-
lencia y los parámetros de desempeño de pruebas para diagnóstico clínico,
con datos obtenidos bajo estudios de tamizaje que incluyen el uso de dos
pruebas diagnósticas en los cuales, los individuos con resultado negativo en
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las dos pruebas no son confirmados con una prueba patrón de oro. Dado que
las pruebas de tamizaje son aplicadas al mismo indivíduo, nosotros asum-
imos dependencia entre los resultados de las pruebas. Generalmente, para
capturar la posible dependencia existente entre los resultados de las prue-
bas diagnósticas, se asume una estrutura de covarianza binaria, pero en este
artículo, nosotros consideramos el uso de estructuras que pueden ser modal-
adas usando funciones cópula, como una alternativa al modelamiento de la
dependencia. Las estadísticas a posteriori de interés son obtenidas usando
métodos MCMC. Los resultados obtenidos usando nuestra aproximación son
comparados con los obtenidos usando modelos que asumen estructura binária
y con los obtenidos usando modelos bajo el supuesto de independencia entre
resultados de las pruebas para diagnóstico clínico. Para ilustrar la aplicación
del método y para hacer las comparaciones se usaron los datos de dos estu-
dios publicados en la literatura.

Palabras clave: análisis bayesiano, copula, dependencia, simulación Monte
Carlo, salud pública.

1. Introduction

In literature, there area designs to evaluate new screening tests it which more
than one diagnostic test is applied to the same individual and where in some cases
all patients cannot be verified by a test free of error to classify individuals or Gold
Standard. This situation implies in the presence of verification bias. When the
design considers the use of two continuous scale diagnostic tests transformed to a
binary scale using a cut-off point to classify an individual as positive or negative
to a given disease, these tests could have dependent outcomes within a continu-
ous dependence structure but as we have the final binary results to do the data
analysis, we could model the dependence considering a bivariate Bernoulli distri-
bution with the covariance as a dependence parameter. This approach has been
studied by different authors such as Thibodeau (1981), Vacek (1985) and Walter
& Irwig (1988), amongst others. Assuming binary structure, Bohning & Patilea
(2008), developed two indexes to study the dependence between two diagnostic
tests: a first is derived using the λ reparametrization introduced by Georgiadis,
Johnson & Gardner (2003) and a second index derived by applying the OR (odds
ratio) concept on 2× 2 probability tables associated with the two diagnostic test
results. Some approaches such as those of Brenner (1996), Qu & Hadgu (1998)
and Torrance-Rynard & Walter (1997), have considered the continuous structure
in the data to study the dependence between test outcomes using models of latent
variable.

In this paper, we introduce a Bayesian model to estimate the prevalence, per-
formance test parameters and the dependence between them, using two copula
functions, the FGM (Farlie-Gumbel-Morgenstern) copula and the Gumbel copula.
The FGM is a copula function that allows modeling very weak linear dependencies
usually not easily observed using traditional bivariate plots.

If the continuous traits that make up the diagnostic tests have a dependence
like FGM structure, usually the data analyst assumes independence in the statisti-
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cal model used to obtain the parameter estimates. The form of the Gumbel copula
used in this work, models relatively weak negative linear dependencies but the cop-
ula parameter of dependence belongs in the space (0,1). In agreement with some
simulation results not showed in this paper, the bivariate plots obtained under
different levels of Gumbel copula dependence show a dispersion similar with that
observed when the data are obtained under independence assumption, then, it is
not easy to observe the presence of a negative correlation between test outcomes.
The use of this copula, also allows us to study dependencies with not necessar-
ily linear structures which is possible in diagnostic situations whose results are
obtained after dichotomization.

We compare the estimates obtained using copula models with those obtained
assuming binary covariance structure and independence assumption. In our ap-
proach, we assume that the diagnostic procedure includes two (observable or not)
variables measured on a continuous scale with some type of positive dependence
between them that can be modeled using copula functions. Copula functions have
been widely used for modeling the dependence between continuous scale variables
regardless the type of distribution underlying in the margins, in many other subject
or topic areas as hydrology and finance.

To illustrate our proposed models, we use two data sets introduced in the
literature. The first one, was obtained from Smith, Bullock & Catalona (1997),
who screened 19,476 men for prostate cancer using the Digital Rectal Exam (DRE)
and the Prostate Specific Antigen (PSA) in serum. With that same data set,
Bohning & Patilea (2008) and Martinez, Achcar & Louzada (2005) studied the
association between diagnostic test results. The second data set was introduced
by Ali, Moodambail, Hamrah, Bin-Nakhi & Sadeq (2007), where they evaluated a
fast method to detect urinary tract infection in 132 children of both genders with
ages ranging from three days to 11 years.

This paper is organized as follows: In Section 2 we introduce the model formu-
lation for two associated diagnostic tests; in Section 3, we present our Bayesian
estimation procedure; in Section 4, we introduce two examples; finally in section
5, we present some discussion on the obtained results.

2. Model Formulation for Two Dependent
Diagnostic Tests

We consider four different models that can be used, the first model assumes
conditionally independent tests results and the other three models assume that
the tests are dependent conditionally on the disease status.

2.1. Model Under Independence Assumption

Two diagnostic tests are respectively denoted by T1 and T2 where Tν = 1 is
related to a positive result for the test ν, ν = 1, 2 and Tν = 0 is related to a
negative result. In Table 1 we have a generic representation of the tests compared
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with an ideal reference test. If the study design implies that individuals with
negative outcome in both tests are not verified by a test free of error to classify
the individuals (“Gold Standard”), the values d, h, n+ and n− (showed in brackets),
are unknown although the sum u = n+ + n− is known.

Table 1: Tests results. Values in brackets are unknown under verification bias.
Diseased subjects Non-diseased subjects

T2 = 1 T2 = 0 Total T2 = 1 T2 = 0 Total
T1 = 1 a b a+ b e f e+ f

T1 = 0 c [d ] c+ [d ] g [h] g + [h]

Total a+ c b+ [d ] [n+] e+ g f + [h] [n−]

Let us denote by p the prevalence of a disease and by D the true status, when
D = 1 denotes a diseased individual and D = 0 denotes a non-diseased individual.
That is, p = P (D = 1). The sensitivities are given by Sν = P (Tν = 1 | D = 1)
and the specificities are given by Eν = P (Tν = 0 | D = 0).

For the independence assumption model, we use the Bayesian estimation pro-
cedure developed by Martinez et al. (2005) to obtain the likelihood contributions
of the eight possible combinations of results among tests and true disease state as
appear in the left column in Table 2.

2.2. Model Under Binary Dependence Structure

For a binary structure model, we assume as dependence parameter, a positive
covariance between tests based on the joint Bernoulli distribution. We assumed
that the dependence between tests is similar in diseased and non-diseased popula-
tions in the same way as considered by Dendukuri & Joseph (2001) to obtain the
contributions to likelihood function of the eight combinations of results among the
two diagnostic tests and the Gold Standard. The results are showed in Table 2.

Table 2: Likelihood contributions of all possible combinations of outcomes of T1, T2

and D. (fi = number of individuals in the cell i; i = 1, 2, . . . , 8. Values in
brackets are unknown under verification bias).

Contribution to likelihood
i D T1 T2 fi Independence assumption Binary dependence
1 1 1 1 a pS1S2 p[S1S2 + ψD]

2 1 1 0 b pS1(1− S2) p[S1(1− S2)− ψD]

3 1 0 1 c p(1− S1)S2 p[(1− S1)S2 − ψD]

4 1 0 0 [d] p(1− S1)(1− S2) p[(1− S1)(1− S2) + ψD]

5 0 1 1 e (1− p)(1− E1)(1− E2) (1− p)[(1− E1)(1− E2) + ψND]

6 0 1 0 f (1− p)(1− E1)E2 (1− p)[(1− E1)E2 − ψND]

7 0 0 1 g (1− p)E1(1− E2) (1− p)[E1(1− E2)− ψND]

8 0 0 0 [h] (1− p)E1E2 (1− p)[E1E2 + ψND]
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2.3. Model Assuming a Dependence Copula Structure

Let us assume that the test outcomes are realizations of the random variables
V1 and V2 measured on a positive continuous scale (V1 > 0 and V2 > 0) which
represent the expression of two biological traits whose behavior is altered by the
presence of disease or infection process. Also, let us assume that two cut-off values
ξ1 and ξ2 are chosen for each test in order to determine when an individual is
classified as positive or negative. In this way we assume that an individual is
classified as positive for test ν if Vν > ξν that is, Tν = 1 if and only if Vν > ξν for
ν = 1, 2. To model the dependence structure between the random variables V1 and
V2, let us consider the use of copula functions, which has been studied by many
authors ((Nelsen 1999) is a classical book on this topic). Multivariate distribution
functions F can be written in the form of a copula function, that is, if F (v1, . . . vm)
is a joint multivariate distribution function with univariate marginal distribution
functions F1(v1), . . . , Fm(vm), thus there exists a copula function C(u1, . . . , um)
such that,

F (v1, . . . , vm) = C(F1(v1), . . . , Fm(vm)) (1)

When the marginal distributions are continuous, a copula function always exists
and can be found from the relation

C(u1, . . . , um) = F (F−1
1 (u1), . . . , F

−1
m (um)) (2)

For the special case of bivariate distributions, we have m = 2. The approach
to formulate a multivariate distribution using a copula is based on the idea that
a simple transformation (U = F1(V1) and W = F2(V2)) can be made of each
marginal variable in such a way that each transformed marginal variable has a
uniform distribution. Specifying dependence between V1 and V2 is the same as
specifying dependence between U and W , thus the problem reduces to specifying
a bivariate distribution between two uniform variables, that is a copula.

2.3.1. Model Considering Dependence Type FGM Copula

The third model considered for the study of the dependence structure for two
tests, is based in the Farlie Gumbel Morgenstern (FGM) copula widely studied by
authors as Nelsen (1999), Amblard & Girard (2002, 2005, 2008). The FGM copula
is defined by,

CI(u,w) = uw[1 + ϕ(1− u)(1− w)] (3)

where u = F1(v1), w = F2(v2) and ϕ is a copula parameter such that −1 ≤ ϕ ≤ 1.
If ϕ = 0, we have two independent marginal random variables. We assume different
parameters ϕD and ϕND for diseased and non-diseased individuals, respectively.

From (3) the cumulative joint distribution and the join survival function for
the random variables V1 and V2 is given by,

FI(v1, v2) = CI(F1(v1), F2(v2))

= F1(v1)F2(v2)[1 + ϕ(1− F1(v1))(1− F2(v2))] (4)
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S(v1, v2) = P (V1 > v1, V2 > v2) = 1− F1(v1)− F2(v2) + F (v1, v2) (5)

Within the diseased individuals group, we have,

FD1 (ξ1) = P (V1 ≤ ξ1|D = 1) = 1− S1

FD2 (ξ2) = P (V2 ≤ ξ2|D = 1) = 1− S2

From (4), we have

FD(ξ1, ξ2) = FD1 (ξ1)F
D
2 (ξ2)[1 + ϕ(1− FD1 (ξ1))(1− FD2 (ξ2))]

= (1− S1)(1− S2)(1 + ϕDS1S2)

and from (5) we have,

P (T1 = 1, T2 = 1|D = 1) = SD(ξ1, ξ2)

= 1− (1− S1)− (1− S2) + (1− S1)(1− S2)(1 + ϕDS1S2)

That is,

P (T1 = 1, T2 = 1|D = 1) = S1S2(1 + ϕD(1− S1)(1− S2))

and
P (T1 = 1, T2 = 1, D = 1) = pS1S2(1 + ϕD(1− S1)(1− S2))

Observe that, if ϕD = 0 (independent test outcomes), we have

P (T1 = 1, T2 = 1, D = 1) = pS1S2

as given in Table 2.
Also,

P (T1 = 1, T2 = 0, D = 1) = P (D = 1)P (T1 = 1, T2 = 0|D = 1)

= pP (V1 > ξ1, V2 ≤ ξ2|D = 1)

On the other hand,

P (V1 > ξ1, V2 ≤ ξ2|D = 1) = P (V2 ≤ ξ2|D = 1)− P (V1 ≤ ξ1, V2 ≤ ξ2|D = 1)

= FD2 (ξ2)− FD(ξ1, ξ2)

Thus,

P (T1 = 1, T2 = 1, D = 1) = p(1− S2)S1[1− ϕDS2(1− S1)]

If ϕD = 0, we have

P (T1 = 1, T2 = 0, D = 1) = pS1(1− S2)

as in the independent case (see Table 2).
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Similarly,

P (T1 = 0, T2 = 1, D = 1) = P (D = 1)P (T1 = 0, T2 = 1|D = 1)

= pP (V1 ≤ ξ1, V2 > ξ2|D = 1)

Since,

P (V1 ≤ ξ1, V2 > ξ2|D = 1) = P (V1 ≤ ξ1|D = 1)− P (V1 ≤ ξ1, V2 ≤ ξ2|D = 1)

= FD1 (ξ1)− FD(ξ1, ξ2)

then,
P (T1 = 0, T2 = 1, D = 1) = p(1− S1)S2[1− ϕDS1(1− S2)]

When ϕD = 0 we have P (T1 = 0, T2 = 1, D = 1) = pS2(1 − S1) as in the
independent case (see Table 2).

We also have,

P (T1 = 0, T2 = 0, D = 1) = P (D = 1)P (T1 = 0, T2 = 0|D = 1)

= pP (V1 ≤ ξ1, V2 ≤ ξ2|D = 1)

= pFD(ξ1, ξ2),

that is,

P (T1 = 0, T2 = 0, D = 1) = p(1− S1)(1− S2)[1 + ϕDS1S2]

Within the non-diseased individuals group, we have:

P (T1 = 1, T2 = 1, D = 0) = P (D = 0)P (T1 = 1, T2 = 1 | D = 0)

= (1− p)P (V1 > ξ1, V2 > ξ2|D = 0)

= (1− p)SND(ξ1, ξ2)
= (1− p)(1− FND1 (ξ1)− FND2 (ξ2) + FND(ξ1, ξ2)

Observe that,

P (T1 = 0|D = 0) = P (V1 ≤ ξ1|D = 0) = FND1 (ξ1) = E1 and

P (T2 = 0|D = 0) = P (V2 ≤ ξ2|D = 0) = FND2 (ξ1) = E2

Using (4), we have

FND(ξ1, ξ2) = E1E2[1 + ϕND(1− E1)(1− E2)]

That is,

P (T1 = 1, T2 = 1, D = 0) = (1− p)(1− E1)(1− E2)[1 + ϕNDE1E2]

The contributions to the likelihood for all situations with diseased and non-
diseased individuals are given in Table 3.
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2.3.2. Model Considering Dependence Type Gumbel Copula

The last considered model, is derived from Gumbel copula function defined as;

CII(u,w) = u+ w − 1 + (1− u)(1− w) exp{−φ log(1− u) log(1− w)} (6)

In this model, the joint cumulative distribution function for the random vari-
ables V1 and V2 is given by,

FII(v1v2) = F1(v1) + F2(v2)− 1 + (1− F1(v1))(1− F2(v2))

exp{−φ log(1− F1(v1)) log(1− F2(v2))} (7)

As pointed out by (Gumbel 1960) for this copula model, when φ = 1 the
Pearson correlation linear coefficient (ρ) takes the value −0.40365. In this case,
the parameter of the Gumbel copula, does not models positive linear correlations.
Also, when the two variables are independent, φ takes the zero value.

Employing the same arguments considered with the FGM copula and using (7)
we obtain all the contributions for the likelihood function when it is assumed a
Gumbel copula dependence structure (Table 3).

Table 3: Likelihood contributions of all possible combinations of outcomes of T1, T2 and
D when the dependence has the “FGM copula” or “Gumbel copula” structure.
(fi = number of individuals in the cell i; i = 1, 2, . . . , 8. Values in brackets are
unknown under verification bias).

Contribution to likelihood
i D T1 T2 fi “FGM copula” “Gumbel copula”
1 1 1 1 a pS1S2[1 + ϕD(1 − S1)(1 − S2)] pS1S2Q1

2 1 1 0 b pS1(1 − S2)[1 − ϕD(1 − S1)S2] pS1[1 − S2Q1]

3 1 0 1 c p(1 − S1)S2[1 − ϕDS1(1 − S2)] pS2[1 − S1Q1]

4 1 0 0 [d] p(1 − S1)(1 − S2)[1 + ϕDS1S2] p[1 − S1 − S2 + S1S2Q1]

5 0 1 1 e (1 − p)(1 − E1)(1 − E2)[1 + ϕNDE1E2] (1 − p)(1 − E1)(1 − E2)Q2

6 0 1 0 f (1 − p)(1 − E1)E2[1 − ϕNDE1(1 − E2)] (1 − p)(1 − E1)[1 − (1 − E2)Q2]

7 0 0 1 g (1 − p)E1(1 − E2)[1 − ϕNDE2(1 − E1)] (1 − p)(1 − E2)[1 − (1 − E1)Q2]

8 0 0 0 [h] (1 − p)E1E2[1 + ϕND(1 − E1)(1 − E2)] (1 − p)[E1 + E2 − 1 + (1 − E1)(1 − E2)Q2]

Observe that; Q1 = exp(−φD logS1 logS2), Q2 = exp(−φND log(1 − E1) log(1 − E2))

3. Bayesian Approach

For a Bayesian analysis of the proposed models, we consider different Beta prior
distributions on the prevalence, performance measure parameters (sensitivities and
specificities) and the copula parameters. In some cases, we could have some prior
information on the parameters from experts in diagnostic medical tests or from
previous studies on the subject.

For a Bayesian analysis of the models, we assumed positive dependence be-
tween the diagnostic tests in the same way as it was considered by Dendukuri
& Joseph (2001) (therefore P (ϕ < 0) = 0 and P (ψ < 0) = 0) we could assume
uniform U(a,b) as non-informative prior distributions and Beta(a,b) distributions
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for the informative situation for FGM and Gumbel dependence parameters and
for prevalence and performance test parameters. If we need to elicit informative
prior distributions for binary covariance, we could use the Generalized Beta(a,b)
distribution in the same way that was considered by Martinez et al. (2005). For
the non-informative case the Uniform U(0,1) distribution should be a good option.

Usually, we do not have any kind of information about the copula parameters,
that is, for both copula dependence parameters. In this case, we used the procedure
developed by Tovar (2012) to obtain the prior hyperparameters and we assume that
the dependence takes values within of some interval (θ1, θ2) within of parametric
space. In this way, if we assumed that the dependence is weak, the parameter could
belong to the interval (0, 1/4); when the dependence is moderate the parameter
should be in to the interval (1/4, 3/4) and when the dependence is strong, the
parameter should be in to the interval (3/4, 1). To obtain the hyperparameter
values, we take the midpoint of the interval as the mean E(θ) and we apply the
Chebychev’s inequality to approximate the variance V (θ), as follows:

P (|θ − E(θ)| ≥ kσ) ≤ 1

k2
= γ

P ([θ − E(θ)]2 ≥ k2σ2) ≤ γ

P (α[θ − θ0]2 ≥ σ2) ≤ γ (8)

where γ is the prior probability of θ do not belong to the constructed interval.
Therefore, the variance will be a function of the prior established probability

to interval values of the unknown quantity and the distance between θ0 and a
percentile of the distribution. If it is replaced θ by some of the known values θ1 or
θ2 in the equation (8) it is easy to obtain a approximated value for the variance
of the Beta prior distribution, as follows;

σ2 ≤ α[θ1 − θ0]2 ∼=
ab

(a+ b)2(a+ b+ 1)
(9)

And as the mean θ0 = E(θ) and the variance σ2 = V (θ) can be written as
functions of the Beta prior hyperparameters, it is necessary to solve a system of
two equations with two unknowns to find values of a and b i.e:

ω =
θ0

(1− θ0)
a = ωb

b =
ω − [(ω + 1)2σ2]

(ω3 + 3ω2 + 3ω + 1)σ2
(10)

In this way, assuming γ = 0.05 in (8), for the FGM and Gumbel dependence
parameters we have evaluated a Beta(17, 122) distribution, a Beta(39.5, 39.5) dis-
tribution and a Beta(122, 17) distribution as informative prior distributions and
finally we have selected as selection criteria the Deviance Information Criteria
DIC Spiegelhalter, Thomas, Best & Lunn (2003) obtained within the WinBUGS
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environment and a heuristic procedure that assumes two criteria: quality in the
convergence of the MCMC procedure and concentration of the posterior distri-
bution using the coefficient of variation (CV). The best model should have the
lower DIC, the best performance in MCMC convergence and highest concentra-
tion around the posterior mean (lowest CV).

We have seven parameters to be estimated, two sensitivities, two specificities,
one prevalence, one dependence parameter for diseased individuals and another
one for non-diseased individuals. If we assume a design with the presence of ver-
ification bias, we have only four degrees of freedom for the estimation process
and if we assume a design without verification bias, we have six information com-
ponents. Therefore, in both cases the model is non-identified. Using a classical
approach, the problem has been addressed giving fixed values to a subset of pa-
rameters and estimating the remaining unconstrained parameters (Vacek 1985),
but since all parameters are typically unknown, the division into constrained and
unconstrained sets is often quite arbitrary. Since the Bayesian paradigm some
authors as Joseph, Gyorkos & Coupal (1995), have proposed to construct informa-
tive prior distribution over a subset or over all unknown quantities. In accordance
with Dendukuri & Joseph (2001), informative priors would be needed on at least
as many parameters as would be constrained when using the most frequent ap-
proach. In this approach, the prior information is used to distinguish between the
numerous possible solutions for the non-identifiable problem. This approach is
approximately numerically equivalent to the most frequent approach when a de-
generate (point mass) distribution is used that matches the constrained parameter
values and diffuse prior distributions are used for the non-constrained parameters.
In order to treat the non-identifiability problem, first, we assume informative prior
distributions over the subset of dependence parameters and non-informative prior
distributions on prevalence and performance test parameters and next, we assume
informative prior distributions on all set of parameters in accordance with what
was suggested by Joseph et al. (1995).

As the posterior distributions do not have closed forms, we have used MCMC
methods, especially Metropolis-Hastings algorithm to obtain estimates for the pa-
rameters. For all models, 500, 000 Gibbs samples were simulated from the condi-
tional distributions. From these generated samples, we discarded the first 50, 000
samples to eliminate the effect of the initial values and we also considered a spac-
ing of 100. Convergence of the algorithm was verified graphically and also using
standard existing methods implemented in the software CODA (Best, Cowles &
Vines 1995).

4. Examples

4.1. Cancer Data

As a first example, we have used a data set introduced by (Smith et al. 1997).
They screened 19,476 men for prostate cancer using Digital Rectal Examination
(DRE) and Prostate-Specific Antigen (PSA) in serum. The PSA level was consid-
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ered suspicious for cancer if it exceeded 4.0 ng/ml. Subjects with positive results
on either DRE or PSA were submitted to an ultrasound guided needle biopsy test
which was considered as “gold standard”. This data set obtained under verification
bias is related to approximately 20,000 individuals, as such, it may be considered
as a large sample size.

For prior distribution elicitation, we have used the results introduced by Bohn-
ing & Patilea (2008). We get the values for the δ and λ indexes and from these
results, we estimated the quantities d and h of non-verified subjects given in Table
1. (See Table 4).

Table 4: Estimated values for the dependence indexes and quantities of non-verified
individuals using Böhning’s results. The values in brackets were calculated
using δi index, the another one using λi index.

Diseased subjects λ1 = 2.42, δ1 = 3.08 Non-diseased subjects λ0 = 2.40, δ0 = 3.03

DRE+ DRE− Total DRE+ DRE− Total
PSA+ 189 292 481 141 755 896
PSA− 145 1431[691] 1576[836] 1002 15521[16261] 16523[17263]

Total 334 1723[983] 2057[1317] 1143 16276[17016] 17419[18159]

Using the data in Table 4 we assumed prior independence between the com-
ponents of the parameter vector [θ1 = S1, θ2 = S2, θ3 = E1, θ4 = E2, θ5 = p] to
obtain estimates and intervals where it is possible assume to find each component
with a probability 1− γ = 0.95. (See Table 5).

Table 5: Informative prior distribution hyperparameters for performance test parame-
ters, prevalence and covariance (Martinez’s prior informative distributions for
ψ).
PARAMETER INTERVAL E(θ) aθ bθ

S1 0.236 - 0.365 0.3006 303 704
S2 0.162 - 0.254 0.2080 324 1232
E1 0.949 - 0.951 0.950 902500 47500
E2 0.934 - 0.937 0.9355 501758 34595
p 0.068 - 0.106 0.0866 379 4002
ψD 0.004659 - 0.004719 0.004689 486303 103225102
ψND 0.080 - 0.133 0.1722 289 2421

Assuming prior independence, for each interval we take the midpoint of each
interval as the expected value of the prior distribution and we use the Chebychev
inequality to get approximations for the variance of each parameter in the way
that was described in Section 3 and we obtained the hyperparameter values that
appear in Table 5. For this set of parameters we have used U(0,1) distributions as
non-informative priors.

To elicit binary covariance prior distributions, we have used the results ob-
tained by Martinez et al. (2005). They estimated the covariance parameter for
the same cancer data under a Bayesian approach assuming non-informative prior
distributions for ψD and ψND. We have used the 95% credible regions obtained
by them and we applied the same procedure employed with the test parameters
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and prevalence. As non-informative distributions we have used GenBeta(1/2, 1/2)
distributions.

For the copula parameters θ2 = [ϕD, ϕND, φD, φND] we assumed the Beta
distributions Beta(17, 122), Beta(39.5, 39.5) and Beta(122, 17) as prior distribu-
tions and Uniform U(0,1) as non-informative prior distributions. To address the
lack identifiability problem of we have putting informative prior distributions on
a subset or on the complete set of parameters considering two set of models as
follows:

• Set 1 of models: informative prior distribution for the copula parameters and
non-informative prior distributions for the prevalence and test parameters

• Set 2 of models: informative prior distributions for all parameters (See Table
6)

Table 6: Bayesian posterior summaries obtained by analyzing the data considering in-
dependence between tests assumption and different dependence structures.
(Posterior means and 95% credible intervals (95% CrI) for each parameter of
interest).

Set 1 of models Set 2 of models
Model Parameter Means 95% CrI Model Parameter Means 95% CrI

S1 0.567 0.529 - 0.605 S1 0.258 0.252 - 0.264
M1,1 S2 0.394 0.363 - 0.394 M2,1 S2 0.226 0.208 - 0.244

DIC = 180.4 E1 0.952 0.950 - 0.954 DIC = 337.1 E1 0.948 0.946 - 0.950
E2 0.946 0.943 - 0.949 E2 0.947 0.944 - 0.950
p 0.044 0.041 - 0.047 p 0.080 0.075 - 0.085
ψD 0.0316 0.019 - 0.046 ψD 0.046 0.037 - 0.055
ψND 0.005 0.004 - 0.006 ψND 0.005 0.004 - 0.006

M1,2 S1 0.470 0.380 - 0.548 M2,2 S1 0.295 0.274 - 0.316
DIC = 55.2 S2 0.335 0.273 - 0.393 DIC = 54.4 S2 0.211 0.196 - 0.227

E1 0.951 0.948 - 0.955 E1 0.950 0.950 - 0.950
E2 0.937 0.933 - 0.940 E2 0.936 0.935 - 0.936
p 0.051 0.044 - 0.062 p 0.082 0.076 - 0.088
ϕD 0.156 0.136 - 0.176 ϕD 0.135 0.123 - 0.148
ϕND 0.040 0.036 - 0.044 ϕND 0.041 0.039 - 0.043

M1,3 S1 0.538 0.480 - 0.595 M2,3 S1 0.320 0.300 - 0.343
DIC = 156.5 S2 0.384 0.339 - 0.430 DIC = 225.5 S2 0.225 0.209 - 0.242

E1 0.952 0.948 - 0.955 E1 0.950 0.949 - 0.950
E2 0.937 0.933 - 0.941 E2 0.936 0.935 - 0.936
p 0.045 0.040 - 0.050 p 0.074 0.069 - 0.079
φD 0.120 0.072 - 0.179 φD 0.047 0.028 - 0.072
φND 0.017 0.010 - 0.026 φND 0.018 0.011 - 0.027

M1,4 S1 0.593 0.540 - 0.645 M2,4 S1 0.330 0.307 - 0.353
DIC = 192.7 S2 0.424 0.379 - 0.469 DIC = 294.4 S2 0.228 0.211 - 0.245

E1 0.952 0.948 - 0.955 E1 0.950 0.949 - 0.951
E2 0.937 0.933 -0.941 E2 0.936 0.935 - 0.936
p 0.040 0.037 - 0.044 p 0.072 0.0671 - 0.0771

Mj,1, j = 1, 2: Models under assumption of independence between tests
Mj,2, j = 1, 2: Covariance parameters with informative prior distributions
Mj,3, j = 1, 2: FGM dependence parameters with Beta(122, 17) prior distributions
Mj,4, j = 1, 2: Gumbel dependence parameters with Beta (17, 122) prior distributions

From the results in Table 6, we observe that in this example with a large
sample size (almost 20,000 individuals), we have great differences in the posterior
summaries of interest, especially for the sensitivities Sν , ν = 1, 2 of the tests
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considering different priors for the parameters and different modeling structures.
It is also interesting to observe that the specificities Eν ν = 1, 2, that is, the
probabilities of negative tests given that the individuals are not diseased, are
almost not affected by the different priors and different modeling structures in
presence or not of an dependence parameter. These results could be of great
interest for medical diagnostic tests.

We also observe a large variability on the obtained DIC values considering each
assumed model. The smallest DIC values are obtained for the class of models with
a bivariate binary structure.

4.2. Urinary Tract Infection (UTI)

In this example, we consider a data set introduced by Ali et al. (2007) who
evaluated a fast method to detect urinary tract infection. In this case, we can
suspect an association between tests, since the results of the tests are more likely
to be positive when the individual has a greater presence of infection. The au-
thors considered the presence of nitrites (N = test1), and the levels of leukocyte
esterase in urine (LE = test2) as screening tests and a bacterial culture as the
confirmatory test. They applied the three methods in 132 children of both gen-
ders with ages ranging from three days to 11 years. The obtained performance test
and prevalence estimates were compared with those obtained in other five studies.
Since one of those studies had incomplete data, we only considered the results
of the four complete studies to elicit our prior distributions. For each estimated
parameter, we calculated the mean and variance of the results obtained in the
five studies (including Ali’s study) and used them as prior means and variances
of the parameters. Thus, the informative prior distributions for prevalence and
performance test parameters are given by:

S1 ∼ Beta(4.15, 4.5), S2 ∼ Beta(15.7, 2.4)

E1 ∼ Beta(0.5, 13), E2 ∼ Beta(8.3, 2.8)

and
p ∼ Beta(2.1, 22.3)

For copula and covariance parameters, we assume the same informative pri-
ors used for copula parameters considered in the first example. We also assume
uniform U(0,1) prior distributions for the performance test parameters as non-
informative priors and applied the same procedure for the estimation process used
in the cancer data example. The results obtained are given in Table 7.

In this example with a small sample size, but not including missing data, we
observe from Table 7, that the sensitivities Sν ν = 1, 2 were not greatly affected
by the choice of prior distributions (informative or not) and modeling structures,
but the specificities Eν ν = 1, 2 have a great variability considering the different
modeling structures. We also observe that the prevalences have similar poste-
rior summaries considering each model and the DIC values do not present great
differences for each modeling structure.
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Table 7: Bayesian posterior summaries obtained by analyzing the data considering in-
dependence between tests assumption and different dependence structures.
(Posterior means and 95% credible intervals (95% CrI) for each parameter of
interest).

Set 1 of models Set 2 of models
Model Parameter Means 95% CrI Model Parameter Means 95% CrI

S1 0.387 0.318 - 0.457 S1 0.387 0.318 - 0.457
M1,1 S2 0.855 0.803 - 0.901 M2,1 S2 0.855 0.803 - 0.901

DIC = 36.6 E1 0.875 0.799 - 0.935 DIC = 40.3 E1 0.769 0.682 - 0.846
E2 0.513 0.402 - 0.625 E2 0.544 0.438 - 0.648
p 0.673 0.616 - 0.728 p 0.625 0.568 - 0.679
ψD 0.029 0.016 - 0.048 ψD 0.028 0.015 - 0.049
ψND 0.036 0.014 - 0.067 ψND 0.077 0.049 - 0.110

M1,1 S1 0.384 0.287 - 0.484 M2,1 S1 0.392 0.298 - 0.489
DIC = 36.4 S2 0.847 0.767 - 0.912 DIC = 47.9 S2 0.857 0.785 - 0.916

E1 0.870 0.756 - 0.949 E1 0.702 0.582 - 0.809
E2 0.567 0.424 - 0.702 E2 0.541 0.420 - 0.660
p 0.672 0.590 - 0.748 p 0.583 0.505 - 0.658
ϕD 0.050 0.027 - 0.794 ϕD 0.053 0.028 - 0.085
ϕND 0.161 0.104 - 0.208 ϕND 0.068 0.025 - 0.130

M1,2 S1 0.392 0.289 - 0.487 M2,2 S1 0.385 0.289 - 0.487
DIC = 52.6 S2 0.855 0.783 - 0.915 DIC = 40.0 S2 0.845 0.764 - 0.911

E1 0.681 0.556 - 0.795 E1 0.866 0.753 - 0.948
E2 0.610 0.479 - 0.735 E2 0.578 0.433 - 0.716
p 0.583 0.505 - 0.658 p 0.672 0.590 - 0.748
φD 0.118 0.071 - 0.175 φD 0.118 0.071 - 0.175
φND 0.119 0.072 - 0.177 φND 0.121 0.073 - 0.179

M1,3 S1 0.387 0.290 - 0.488 M2,3 S1 0.392 0.298 - 0.490
DIC = 42.6 S2 0.847 0.766 - 0.913 DIC = 55.3 S2 0.857 0.784 - 0.916

E1 0.864 0.751 - 0.946 E1 0.679 0.553 - 0.792
E2 0.576 0.431 - 0.715 E2 0.625 0.494 - 0.748
p 0.672 0.590 - 0.748 p 0.582 0.504 - 0.658

Mj,1, j = 1, 2: Models under assumption of independence between tests
Mj,2, j = 1, 2: Models using GenBeta(39.5, 39.5) prior distributions for the covariance parameters
Mj,3, j = 1, 2: Models taken GenBeta(122, 17) prior distributions for the association FGM parameter
Mj,4, j = 1, 2: Models with Beta(17, 122) prior distributions for association Gumbel parameter

Considering DIC as discrimination criteria, we could assume a model with inde-
pendence between the diagnostic tests considering informative or non-informative
prior distributions or a model with dependence between tests given by a bivariate
Bernoulli distribution (small DIC and similar performance test parameter esti-
mates).

In this case, the copula parameter in non-diseased individuals presents an im-
portant change when we use informative priors over all parameters, while in the
other group it remains unchanged. The specificity of the test N (test1) shows
changes in the three models whether we use or do not use informative priors over
the vector of non-dependence parameters. For the binary covariance and Gumbel
models, the E1 estimate with informative priors is lower than in the other mod-
els while in FGM model we observed an opposite behavior. When we have small
sample size, the FGM model shows a more unstable behavior in the estimation of
association parameter for non-diseased individuals. The DIC values for the differ-
ent models do not show important changes. It is important, to observe that the
DIC value of the FGM model with informative priors over all parameters is very
similar with the DIC value of the Gumbel model when we use non-informative
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priors over test parameters. On the other hand, the DIC value obtained assum-
ing non-informative priors over test parameters in one model is similar with those
obtained using informative priors over complete set in the other one. It is also
interesting to see that the behavior of the FGM model with small sample size data
is similar to the behavior observed in the Gumbel model when we have a large
sample size.

5. Conclusion and Remarks

The main goal of this paper was to develop a Bayesian procedure to estimate
the prevalence, performance test and copula parameters of two diagnostic tests in
presence of verification bias and considering the dependence between test results.

We proposed the use of copula structure models to get the estimation of the
parameters under dependence assumption and specifically, we have used the Far-
lie Gumbel Morgenstern (FGM) and the Gumbel copula models to compare the
obtained results with a model under independence assumption between tests and
another one assuming dependent binary tests in designs that consider two diag-
nostic tests with continuous outcome for screening, a perfect “gold standard” and
verification bias presence. The estimation model obtained under verification bias
presence, implies a lack of identifiability problem, because we have more parame-
ters than informative pieces in the likelihood function. Given that, our approach
considers the continuous dependence structure in the data but the estimation
process is made with the binary observations in presence of verification bias, we
consider that to estimate the parameters under the Bayesian approach is easier
than under the frequentist approach, because many times it is possible that we do
not have the continuous values, for instance, when the measured continuous traits
are non-observable (they are latent variables).

We illustrated the procedure using two published data sets: one with a large
sample size and another one with a small sample size of individuals. In both
cases, the better fit for the data was obtained assuming binary associated tests
and taking the covariance as a parameter. The FGM model showed better fit when
compared to the Gumbel copula, regardless the sample size. With a large sample
size, the FGM model presented DIC values lower when it was fitted assuming
non-informative prior distributions on test parameters and the estimates are very
close with those obtained using maximum likelihood method, reflecting the effect
that has the observed data in the estimation process.

However, to use informative prior on all parameters allow us to obtain sensi-
tivity estimates with shorter credibility regions which is very good if we consider
that within the large sample used, the true positives are a small part. The pre-
vious conclusion is reinforced by the results observed with the data of the small
sample size, which the informative prior on all parameters gave better fit. With
the Gumbel model, we obtained similar results with large sample size, but the use
of non-informative prior distributions on the test parameters gave better fit with
small sample size. For binary covariance models the choice of prior distribution
plays an important role in the estimation procedure, especially with large sample
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sizes, where the posterior summaries of interest do not have important changes as-
suming informative or non-informative prior distributions. With small sample sizes
and binary covariance structure, we observed better fit assuming non-informative
prior distributions on the test parameters and informative prior distributions on
covariance parameter.

It is important to point out that we could consider other copula families intro-
duced in the literature to model dependence between diagnostic tests. A special
case is given by the Clayton copula which is useful when the dependence is mainly
concentrated in the lower tail or the Frank copula which is radial symmetric. The
use of these other copulas in dependent diagnostic tests will be the goal of a future
work, since an appropriate choice is essential in order to get an optimal result.
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