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Abstract

Mortality processes and the distribution of the diameter at breast height
(DBH) of trees are two important problems in forestry. Trees die due to sev-
eral factors caused by stress according to a phenomenon similar to material
fatigue. Specifically, the force (rate) of mortality of trees quickly increases at
a first stage and then reaches a maximum. In that moment, this rate slowly
decreases until stabilizing at a constant value in the long term establishing a
second stage of such a rate. Birnbaum-Saunders (BS) distributions are mod-
els that have received considerable attention currently due to their interesting
properties. BS models have their genesis from a problem of material fatigue
and present a failure or hazard rate (equivalent to the force of mortality)
that has the same behavior as that of the DBH of trees. Then, BS distribu-
tions have arguments that transform them into models that can be useful in
forestry. In this paper, we present a methodology based on BS distributions
associated with this forest thematic. To complete this study, we perform an
application of five real DBH data sets (some of them unpublished) that pro-
vides statistical evidence in favor of the BS methodology in relation to the
forestry standard methodology. This application provides valuable financial
information that can be used for making decisions in forestry.
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Los procesos de mortalidad y la distribución del diámetro a la altura del
pecho (DAP) de árboles son dos problemas importantes en el área forestal.
Los árboles mueren debido a diversos factores causados por estrés mediante
un fenómeno similar a la fatiga de materiales. Específicamente, la fuerza
(tasa) de mortalidad de árboles crece rápidamente en una primera fase y
luego alcanza un máximo, momento en el que comienza una segunda fase
en donde esta tasa decrece lentamente estabilizándose en una constante en
el largo plazo. Distribuciones Birnbaum-Saunders (BS) son modelos que
han recibido una atención considerable en la actualidad debido a sus intere-
santes propiedades. Modelos BS nacen de un problema de fatiga de mate-
riales y poseen una tasa de fallas (equivalente a la fuerza de mortalidad)
que se comporta de la misma forma que ésa del DAP de árboles. Entonces,
distribuciones BS poseen argumentos que las transforman en modelos que
puede ser útiles en las ciencias forestales. En este trabajo, presentamos una
metodología basada en la distribución BS asociada con esta temática fore-
stal. Para finalizar, realizamos una aplicación con cinco conjuntos de datos
reales (algunos de ellos no publicados) de DAP que proporciona una eviden-
cia estadística en favor de la metodología BS en relación a la metodología
estándar usada en ciencias forestales. Esta aplicación entrega información
que puede ser valiosa para tomar decisiones forestales.

Palabras clave: análisis de datos, fuerza de mortalidad, silvicultura, tasa
de riesgo.

1. Introduction

The determination of the statistical distribution of the diameter at breast
height (DBH) of trees, and its relationship to the age, composition, density and
geographical location where a forest is localized are valuable information for dif-
ferent purposes (Bailey & Dell 1973, Santelices & Riquelme 2007). Specifically,
the distribution of the DBH is frequently used to determine the volume of wood
from a stand allowing us to make decisions about: (i) productivity (quantity); (ii)
diversity of products (quality); (iii) tree ages (mortality); and (iv) harvest policy
and trees pruning (regeneration). Then, to know the DBH distribution may help
to plan biological and financial management aspects of a forest in a more efficient
way (Rennolls, Geary & Rollinson 1985). For example, trees with a large diame-
ter are used for wood production, while trees with a small diameter are used for
cellulose production. Thus, the four mentioned concepts (quality, quantity, mor-
tality and regeneration) propose a challenge to postulate models that allow us to
describe the forest behavior based on the DBH distribution.

Several statistical distributions have been used in the forestry area mainly to
model the DBH. These distributions (in chronological order) are the models:

(i) Exponential (Meyer 1952, Schmelz & Lindsey 1965);

(ii) Gamma (Nelson 1964);

(iii) Log-normal (Bliss & Reinker 1964);
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(iv) Beta (Clutter & Bennett 1965, McGee & Della-Bianca 1967, Lenhart &
Clutter 1971, Li, Zhang & Davis 2002, Wang & Rennolls 2005);

(v) Weibull (Bailey & Dell 1973, Little 1983, Rennolls et al. 1985, Zutter, Oder-
wald, Murphy & Farrar 1986, Borders, Souter, Bailey & Ware 1987, McEwen
& Parresol 1991, Maltamo, Puumalinen & Päivinen 1995, Pece, de Benítez
& de Galíndez 2000, García-Güemes, Cañadas & Montero 2002, Wang &
Rennolls 2005, Palahí, Pukkala & Trasobares 2006, Podlaski 2006);

(vi) Johnson SB (Hafley & Schreuder 1977, Schreuder & Hafley 1977);

(vii) Log-logistic (Wang & Rennolls 2005);

(viii) Burr XII (Wang & Rennolls 2005) and

(ix) Birnbaum-Saunders (BS) (Podlaski 2008).

The most used distribution is the Weibull model and the most recent is the
BS model. In spite of the wide use of different statistical distributions to describe
the DBH, the model selection has been based in empirical arguments supported
by goodness-of-fit methods and not by theoretical arguments that justify its use.
In order to propose DBH distributions with better arguments, mortality models
based on cumulative stress can be considered (Podlaski 2008).

A statistical distribution useful for describing non-negative data that has re-
cently received considerable attention is the BS model. This two-parameter dis-
tribution is unimodal and positively skewed. For more details about the BS dis-
tribution, see Birnbaum & Saunders (1969) and Johnson, Kotz & Balakrishnan
(1995, pp. 651-663). The interest for the BS distribution is due to its theoret-
ical arguments based on the physics of materials, its properties and its relation
to the normal distribution. Some extensions and generalization of the BS dis-
tributions are attributed to Díaz-García & Leiva (2005); Vilca & Leiva (2006);
Guiraud, Leiva & Fierro (2009). In particular, the BS-Student-t distribution has
been widely studied (Azevedo, Leiva, Athayde & Balakrishnan 2012). Although
BS distributions have their origin in engineering, these have been applied in sev-
eral other fields, such as environmental sciences and forestry (Leiva, Barros, Paula
& Sanhueza 2008, Podlaski 2008, Leiva, Sanhueza & Angulo 2009, Leiva, Vilca,
Balakrishnan & Sanhueza 2010, Leiva, Athayde, Azevedo & Marchant 2011, Vilca,
Santana, Leiva & Balakrishnan 2011, Ferreira, Gomes & Leiva 2012, Marchant,
Leiva, Cavieres & Sanhueza 2013). Podlaski (2008) employed the BS model to
describe DBH data for silver fir (Abies alba Mill.) and European beech (Fagus
sylvatica L.) from a national park in Poland, using theoretical arguments. In ad-
dition, based on goodness-of-fit methods, he discovered that the BS distribution
was the model that best described these data, displacing the Weibull distribution.

The aims of the present work are: (i) to introduce a methodology based on BS
distributions (one of them being novel) for describing DBH data that can be use-
ful for making decisions in forestry and (ii) to carry out practical applications of
real DBH data sets (some of them unpublished) that illustrate this methodology.
The article is structured as follows: In the second section, we explain the methods
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employed in this study, including a theoretical justification for the use of the BS
distribution to model DBH data. In the third section, we establish an application
with five real data sets of DBH using a methodology based on BS distributions.
This methodology furnishes statistical evidence in its favor, in relation to the stan-
dard methodology used in forestry. This application provides valuable financial
information that can be used for making decisions in forestry. Finally, we sketch
some discussions and conclusions.

2. Methods

2.1. A Fatigue Model

The BS distribution is based on a physical argument that produces fatigue
in the materials (Birnbaum & Saunders 1969). This argument is the Miner or
cumulative damage law (Miner 1945). Birnbaum & Saunders (1968) provided a
probabilistic interpretation of this law. The BS or fatigue life distribution was
obtained from a model that shows failures to occur due to the development and
growing of a dominant crack provoked by stress. This distribution describes the
total time elapsed until a type of cumulative damage inducted by stress exceeds a
threshold of resistance of the material producing its failure or rupture. Birnbaum
& Saunders (1969) demonstrated that the failure rate (hazard rate or force of
mortality) associated with their model has two phases. During the first phase,
this rate quickly increases until a maximum point (change or critical point) and
then a second phase starts when the failure rate begins to slowly decrease until it
is stabilized at a constant greater than zero. Fatigue processes have failure rates
which usually present in this way. In addition, these processes can be divided into
three stages:

(A1) The beginning of an imperceptible fissure;

(A2) The growth and propagation of the fissure, which provokes a crack in the
material specimen due to cyclic stress and tension; and

(A3) The rupture or failure of the material specimen due to fatigue.

The stage (A3) occupies a negligible lifetime. Therefore, (A2) contains most
of the time of the fatigue life. For this reason, statistical models for fatigue pro-
cesses are primarily concerned with describing the random variation of lifetimes
associated with (A2) through two-parameter life distributions. These parameters
allow those specimens subject to fatigue to be characterized and at the same time
predicting their behavior under different force, stress and tension patterns.

Having explained the physical framework of the genesis of the BS distribution,
it is now necessary to make the statistical assumptions. Birnbaum & Saunders
(1969) used the knowledge of certain type of materials failure due to fatigue to
develop their model. The fatigue process that they used was based on the following:
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(B1) A material specimen is subjected to cyclic loads or repetitive shocks, which
produce a crack or wear in this specimen;

(B2) The failure occurs when the size of the crack in the material specimen exceeds
a certain level of resistance (threshold), denoted by ω;

(B3) The sequence of loads imposed in the material is the same from one cycle to
another;

(B4) The crack extension due to a load li (Xi say) during the jth cycle is a random
variable (r.v.) governed by all the loads lj , for j < i, and by the actual crack
extension that precedes it;

(B5) The total size of the crack due to the jth cycle (Yi say) is an r.v. that follows
a statistical distribution of mean µ and variance σ2; and

(B6) The sizes of cracks in different cycles are independent.

Notice that the total crack size due to the (j + 1)th cycle of load is Yj+1 =
Xjm+1+· · ·+Xjm+m, for j,m = 0, 1, 2, . . . Thus, the accumulated crack size at the
end of the nth stress cycle is Sn =

∑n
j=1 Yj . Then, based on it, (B1)-(B6) and the

central limit theorem, we have Zn = [Sn−nµ]/
√
nσ2 ·∼ N(0, 1), as n approaches to

∞, i.e., Zn follows approximately a standard normal distribution. Now, let N be
the number of stress cycles until the specimen fails. The cumulative distribution
function (c.d.f.) of N , based on the total probability theorem, is P(N ≤ n) =
P(N ≤ n, Sn > ω) + P(N ≤ n, Sn ≤ ω) = P(Sn > ω) + P(N ≤ n, Sn ≤ ω).
Notice that P(N ≤ n, Sn ≤ ω) > 0, because Sn follows approximately a normal
distribution, but this probability is negligible, so that P(N ≤ n) ≈ P(Sn > ω),
and hence

P(N ≤ n) ≈ P
(
Sn−nµ
σ
√
n

> ω−nµ
σ
√
n

)
= Φ

(√
ωµ

σ

[√
n
ω/µ −

√
ω/µ
n

])
(1)

where Φ(·) is the normal standard c.d.f. However, we must suppose the proba-
bility that Yj given in (B5) takes negative values is zero. Birnbaum & Saunders
(1969) used (1) to define their distribution, considering the discrete r.v. N as a
continuous r.v. T , i.e., the number of stress cycles until to fail N is replaced by
the total time until to fail T and the nth cycle by the time t. Thus, considering
the reparameterization α = σ/

√
ωµ and β = ω/µ, and that (1) is exact instead of

approximated, we obtain the c.d.f. of the BS distribution for the fatigue life with
shape (α) and scale (β) parameters given by

FT (t) = Φ

(
1
α

[√
t
β −

√
β
t

])
, t > 0, α > 0, β > 0 (2)

To suppose (1) is exact, it means to suppose Yj follows exactly a N(µ, σ2) distri-
bution in (B5).
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2.2. Birnbaum-Saunders Distributions

If an r.v. T has a c.d.f. as in (2), then it follows a BS distribution with shape
(α > 0) and scale (β > 0) parameters, which is denoted by T ∼ BS(α, β). Here,
the parameter β is also the median. Hence, BS (T say) and normal standard (Z
say) r.v.’s are related by

T = β

[
αZ
2

+
√{

αZ
2

}2
+ 1

]2
∼ BS(α, β) and Z = 1

α

[√
T
β
−
√

β
T

]
∼ N(0, 1) (3)

In addition, W = Z2 follows a χ2 distribution with one degree of freedom (d.f.),
denoted by W ∼ χ2(1). The probability density function (p.d.f.) of T is

fT (t) = 1√
2π

exp
(
− 1

2α2

[
t
β + β

t − 2
])

1
2αβ

[{
t
β

}−1/2

+
{
t
β

}−3/2
]
, t > 0 (4)

The qth quantile of T is tq = β[αzq/2 +
√
{αzq/2}2 + 1]2, for 0 < q < 1, where

tq = F−1
T (q), with F−1

T (·) being the inverse c.d.f. of T , and zq the N(0, 1) qth
quantile. The mean, variance and coefficient of variation (CV) of T are

E[T ] = β
2

[
2 + α2

]
, V[T ] = β2α2

4

[
4 + 5α2

]
and CV[T ] = α

√
4+5α2

2+α2 (5)

Although the BS distribution can be useful to model the DBH, there are several
reasons to consider that the DBH distribution could start from a value greater
than zero. In such a situation, a shifted version of the BS (ShBS) distribution,
with shape (α > 0), scale (β > 0) and shift (γ ∈ R) parameters, is needed, which is
denoted by T ∼ ShBS(α, β, γ). Leiva et al. (2011) characterized this distribution
assuming that if T = β[αZ/2 +

√
{αZ/2}2 + 1]2 ∼ ShBS(α, β, γ), then, Z =

[1/α][
√
{T − γ}/β −

√
β/{T − γ}] ∼ N(0, 1) and so again W = Z2 ∼ χ2(1).

Therefore, in this case, the p.d.f. and c.d.f. of T are

fT (t) = 1√
2π

exp
(
− 1

2α2

[
t−γ
β + β

t−γ − 2
])

1
2αβ

[{
t−γ
β

}−1/2

+
{
t−γ
β

}−3/2
]

(6)

and FT (t) = Φ([1/α][
√
{t− γ}/β −

√
β/{t− γ}]), for t > γ, respectively. In

addition, the qth quantile of T is similar to that from the non-shifted case plus
the value γ at the end of such an expression. The mean, variance and CV of T
are now

E [T ] = β
2

[
2 + α2 + 2γ

β

]
, V[T ] = β2 α2

4 [4 + 5α2] and CV[T ] = αβ
√

4+5α2

β[2+α2]+2γ (7)

2.3. Birnbaum-Saunders-t-Student Distributions

If an r.v. T follows a BS-t distribution with shape (α > 0, ν > 0) and scale
(β > 0) parameters, then the notation T ∼ BS-t(α, β; ν) is used. Thus, if T =
β[αZ/2+

√
{αZ/2}2 + 1]2 ∼ BS-t(α, β; ν), then Z = [1/α][

√
T/β−

√
β/T ] ∼ t(ν),

Revista Colombiana de Estadística 35 (2012) 349–370



Distributions Useful for Modeling Diameter and Mortality of Trees 355

with ν d.f., and W = Z2 ∼ F(1, ν). Therefore, in this case, the p.d.f. and c.d.f.
of T are

fT (t; ν) =
Γ( ν+1

2 )
√
νπΓ( ν2 )

[
1 +

{
t
β + β

t − 2
}
/{2α2 ν}

]− [ν+1]
2 1

2αβ

[{
t
β

}−1/2

+
{
t
β

}−3/2
]

FT (t; ν) = Φt(t) = 1
2

[
1 + I [1/α2][t/β+β/t−2]

[1/α2][t/β+β/t−2]+ν

(
1
2 ,

ν
2

) ]
, t > 0 (8)

respectively, where Ix(a, b) = [
∫ x

0
ta−1{1 − t}b−1 dt]/

∫ 1

0
ta−1{1 − t}b−1 dt is the

incomplete beta function ratio. The qth quantile of T is

tq = β[αzq/2 +
√
{αzq/2}2 + 1]2,

where zq is the qth quantile of the t(ν) distribution. The mean, variance and CV
of T are now

E[T ] = β
2

[
2 +Aα2

]
, V[T ] = β2α2

4

[
4A+ 5B α2

]
and CV[T ] = α

√
4A+5B α2

2+Aα2 (9)

where A = ν/[ν − 2], for ν > 2, and B = ν2[ν − 1]/[{ν − 6}{ν − 2}2], for ν > 6.
Such as in the case of the BS distribution, we can define a new shifted version

of the BS-t (ShBS-t) distribution, with shape (α > 0, ν > 0), scale (β > 0) and
shift (γ ∈ R) parameters, which is denoted by T ∼ ShBS-t(α, β, γ; ν). Thus, if T =
β[αZ/2 +

√
{αZ/2}2 + 1]2 ∼ ShBS-t(α, β, γ; ν), then Z = [1/α][

√
{T − γ}/β −√

β/{T − γ}] ∼ t(ν) and so again W = Z2 ∼ F(1, ν). Therefore, in this case, the
p.d.f. and c.d.f. of T are

fT (t; ν) =
Γ
(
ν+1

2

)
√
νπΓ

(
ν
2

) [1 +

{
t− γ
β

+
β

t− γ
− 2

}
/{2α2 ν}

]− [ν+1]
2

1

2αβ

[{
t− γ
β

}−1/2

+

{
t− γ
β

}−3/2
]

FT (t; ν) = Φt(t− γ) = 1
2

[
1 + I [1/α2][{t−γ}/β+β/{t−γ}−2]

[1/α2][{t−γ}/β+β/{t−γ}−2]+ν

(
1
2 ,

ν
2

) ]
, t > γ (10)

respectively. The qth quantile of T is obtained in an analogous way as in the ShBS
case. The mean, variance and CV of T respectively are now

E [T ] = β
2

[
2 +Aα2 + 2γ

β

]
, V[T ] = β2 α2

4 [4A+ 5Bα2] and CV[T ] = αβ
√

4A+5B α2

β[2+Aα2]+2γ

(11)
where A and B are as given in (9).

2.4. Force of Mortality

Hazard can be defined as the probability that a dangerous event that could
develop into an emergency or disaster. Origin of this event can be provoked by an
environmental agent that could have an adverse effect. Then, hazard is a chance
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and not a real fact. This means that hazard should be evaluated as the frequency
or intensity of an r.v., e.g., the DBH. A useful function in hazard analysis is the
hazard rate (h.r.) or force of mortality defined as hT (t) = fT (t)/[1−FT (t)], where
fT (·) and FT (·) are the p.d.f. and c.d.f. of the r.v. T , respectively (Johnson
et al. 1995). The h.r. can be interpreted as the velocity or propensity that a
specific event occurs, expressed per unit of the r.v. (in general, time, but in the
case of DBH is a unit of length). A characteristic of the h.r. is that it allows
us to identify statistical distributions. For example, distributions with shapes
similar for their p.d.f.’s could have h.r.’s which are totally different (such as is
the case with the BS and Weibull distributions). As mentioned in Subsection 2.1,
the BS distribution has a non-monotone h.r., because it is first increasing, until
a critical point in its phase I and then it is decreasing until its stabilization at a
positive constant greater than zero in its phase II. Specifically, for the BS case, if
t approaches to ∞, then the h.r. hT (t) converges to the constant 1/[2α2β] > 0,
for t > 0. Figure 1(a) shows the behavior of the BS p.d.f. for some values of the
shape parameter (α). Notice that, as α decreases, the shape of the BS p.d.f. is
approximately symmetrical. Graphical plots for different values of the parameter
β were not considered, because this parameter only modifies the scale. Figure
1(b) displays the behavior of the BS h.r. for some values of α. Notice that, as α
decreases, the shape of the h.r. is approximately increasing. For a recent study of
the BS-t h.r., the interested reader is referred to (Azevedo et al. 2012).
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Figure 1: BS p.d.f. (left), BS h.r. (center) and theoretical TTT plots (right) for the
indicated values.

When continuous data are analyzed (for example, DBH data) and we want
to propose a distribution for modeling such data, one usually constructs a his-
togram. This graphical plot is an empirical approximation of the p.d.f. How-
ever, it is always convenient to look also for the h.r. of the data. The problem
is that to approximate empirically the h.r. is not an easy task. A tool that
is being used for this purpose is the total time on test (TTT) plot, which al-
lows us to have an idea about the shape of the h.r. of an r.v. and, as conse-
quence, about the distribution that the data follows. The TTT function of the
r.v. T is given by H−1

T (u) =
∫ F−1

T (u)

0
[1 − FT (y)] dy and its scaled version by

WT (u) = H−1
T (u)/H−1

T (1), for 0 ≤ u ≤ 1, where once again F−1
T (·) is the in-

verse c.d.f. of T . Now, WT (·) can be approximated allowing us to construct
the empirical scaled TTT curve by plotting the points

[
k/n,Wn(k/n)

]
, where
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Wn(k/n) = [
∑k
i=1 T(i) + [n − k]T(k)]/

∑n
i=1 T(i), for k = 1, . . . , n, with T(i) being

the ith order statistic, for i = 1, . . . , n. Specifically, if the TTT plot is concave
(convex), then a model with increasing (decreasing) h.r. is appropriate. Now,
if the TTT plot is first concave (convex) and then convex (concave), an inverse
bathtub (IBT) shaped (bathtub –BT–) h.r. must be considered. If the TTT plot
is a straight line, then the exponential distribution must be used. For example, the
normal distribution is in the increasing h.r. class, while the gamma and Weibull
distributions admit increasing, constant and decreasing h.r.’s. However, the BS
and log-normal distributions have non-monotone h.r.’s, because these are initially
increasing until their change points and then decreasing (IBT shaped h.r.) to zero,
in the log-normal case, or to a constant greater than zero, in the BS case. This
last case must be highlighted because biological entities (such as humans, insects
and trees) have h.r.’s of this type (Gavrilov & Gavrilova 2001). In Figure 1(c), we
see several theoretical shapes of the TTT plot, which correspond to a particular
type of h.r. (Aarset 1987).

2.5. Model Estimation and Checking

Parameters of the BS, ShBS, BS-t and ShBS-t distributions can be estimated by
the maximum likelihood (ML) method adapted by a non-failing algorithm (Leiva
et al. 2011). To obtain the estimates of the parameters of these distributions,
their corresponding likelihood functions must be constructed using (4), (6), (8)
and (10), respectively. When these parameters have been estimated, we must
check goodness-of-fit of the model to the data. Distributions used for describing
DBH data can be compared using model selection criteria based on loss of in-
formation such as Akaike (AIC) and Bayesian (BIC) information criteria. AIC
and BIC allows us to compare models for the same model and they are given by
AIC = −2`(θ̂) + 2p and BIC = −2`(θ̂) + p log (n), where `(θ̂) is the logarithm of
the likelihood function (log-likelihood) of the model with vector of parameters θ

evaluated at θ = θ̂, n is the size of the sample and p is the number of model pa-
rameters. For the case of BS, ShBS, BS-t and ShBS-t models, as mentioned, `(θ)
must be obtained by (4), (6), (8) and (10), respectively. AIC and BIC correspond
to the log-likelihood function plus a component that penalizes such a function as
the model has more parameters making it more complex. A model with a smaller
AIC or BIC is better.

Differences between two values of the BIC are usually not very noticeable.
Then, the Bayes factor (BF) can be used to highlight such differences, if they
exist. Assume the data belongs to one of two possible models, according to prob-
abilities P(Data | Model 1) and P(Data | Model 2), respectively. Given proba-
bilities P(Model 1) and P(Model 2) = 1 − P(Model 1), the data produce condi-
tional probabilities P(Model 1 | Data) and P(Model 2 | Data) = 1 − P(Model 1 |
Data), respectively. The BF allows us to compare Model 1 (considered as cor-
rect) to Model 2 (to be contrasted with Model 1) and it is given by B12 =
P(Data | Model 1)/P(Data | Model 2), which can be approximated by 2 log(B12) ≈
2
[
`(θ̂1) − `(θ̂2)

]
− [d1 − d2] log (n), where `(θ̂k) is the log-likelihood function for
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the parameter θk under the kth model evaluated at θk = θ̂k, dk is the dimen-
sion of θk, for k = 1, 2, and n is the sample size. Notice that the above ap-
proximation is computed by sustracting the BIC value from Model 2, given by
BIC2 = −2`(θ2) + d2 log (n), to the BIC value of Model 1, given by BIC1 =
−2`(θ1) + d1 log (n). In addition, notice that if Model 2 is a particular case of
Model 1, then the procedure corresponds to applying the likelihood ratio (LR)
test. In this case, 2 log(B12) ≈ χ2

12 − df12 log(n), where χ2
12 is the LR test statis-

tic for testing Model 1 versus Model 2 and df12 = d1 − d2 are the d.f.’s asso-
ciated with the LR test, so that one can obtain the corresponding p-value from
2 log(B12) ·∼ χ2(d1 − d2), with d1 > d2. The BF is informative, because it presents
ranges of values in which the degree of superiority of one model with respect to
another can be quantified. An interpretation of the BF is displayed in Table 1.

Table 1: Interpretation of 2 log(B12) associated with the BF.
2 log (B12) Evidence in favor of Model 1

< 0 Negative (Model 2 is accepted)
[0, 2) Weak
[2, 6) Positive
[6, 10) Strong
≥ 10 Very strong

2.6. Quantity and Quality of Wood

Because the DBH varies depending on the composition, density, geographic
location and stand age, the diameter can be considered as an r.v. that we denote by
T . As mentioned, information on the distribution of T in a forest plantation is an
important element to quantify the products come from thinning and clearcutting
activities. This information can help to plan the management and use of forest
resources more efficiently. It is important to model the distribution of the DBH
since this is the most relevant variable in determining the tree volume and then
the forest production.

The forest volume quantification allows us to make decisions about the pro-
duction and forest management, for example, to know when the forest should be
harvested. However, the variable to maximize is diameter instead volume. Fur-
thermore, the DBH is related to other variables such as cost of harvest, quality and
product type. While the productivity is an important issue for timber industry,
wood quality is also relevant in order to determine its use. Thus, volume and di-
ameter distribution of trees determine what type of product will be obtained. For
example, large diameter trees are used for saw wood and those of small diameter
for pulpwood. This implies a financial analysis of forest harvest, i.e., how and
when to harvest and what method to use. Studies from several types of climates
and soils show trees growth as a function of the basal area. Making decisions using
the forest basal area are related to pruning and thinning. These activities aim to
improve tree growth and produce higher quality wood. The basal area of a tree is
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the imaginary basal area at breast height (1.3 m above ground level) given by

B =
π

4
T 2

where B is the basal area and T the DBH.
The sum of the individual basal area of all trees in one hectare leads to the

basal area per hectare. However, it is the volume which allows for the planning of
various forestry activities. There are several formulae to determine the volume of
logs using the mean diameter measured without bark, and the log length. Volume
allows for the planning of silvicultural and harvesting activities. In general, the
formula used for the volume of a tree is given by

V = F BH =
π

4
F T 2H (12)

where V is the tree volume, B its basal area, H its height and F the form factor,
which is generally smaller than a value equal to one depending on the tree species.

2.7. Mortality and Tree Regeneration

The DBH is related to tree mortality, which is affected by stress factors such as
light, nutrients, sunlight, temperature and water. The light and temperature can
cause stress in minutes, whereas lack of water can cause stress in days or weeks.
However, lack of nutrients in the soil can take months to generate stress. The
mortality of a tree is similar to the material fatigue process described in Section
2.1, because the force of mortality of trees is growing rapidly in phase I, reaching
a maximum and then decreases slowly until it is stabilized in phase II, which is
consistent for almost all tree species.

Podlaski (2008) identified in a national park in Poland the following stress
factors: (i) abiotic factors, such as severe weather (frost, hail, humidity, snow,
temperature, wind), deficiency or excess of soil nutrients and toxic substances in
air and soil, and (ii) biotic factors, such as bacteria (canker), fungi (dumping-off
spots, root rots, rusts), insects and worms (nematodes), mycoplasma (elm phloem
necrosis), parasitic plants (mistletoes) and viruses (elm mosaic). These factors
caused the death of trees of the species Abies alba. From a theoretical point of
view, the force of mortality of spruce could be more appropriately described by
the h.r. of the BS distribution rather than using other distributions employed to
model DBH. Podlaski (2008) indicated that mortality of spruce stand caused more
openings within the stand and the canopy. Thus, with more spaces and gaps, trees
of the species Fagus sylvatica, a kind that grows in temperate zones of the planet,
tended to regenerate.

The regeneration process has been closely connected with the death of fir,
whose speed in phase I also resulted in a rapid regeneration of beech, and the
subsequent occurrence of understory vegetation in the stand. The decrease in the
intensity of spruce mortality in phase II, as well as shading of soil by the understory,
caused a gradual decrease in the intensity of the regeneration of beech. The stands
generated by this process are characterized by a vertical structure of tree layers
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of different heights. These layers correspond to multiple layers of canopy whose
statistical distribution of the DBH is asymmetric and positively skewed, as in the
BS model. Most of the spruce stands had diameters of approximately 0.15 m
to 0.35 m. The interruption of the regeneration process resulted in the death of
these stands, which had a DBH of less than 0.1 m. The necessary condition for
the creation of stands with DBH distributions approximated by the BS model is
the simultaneous death of fir at all levels of the stand with regeneration of beech,
i.e., a death that considers the different forest layers and has a similar degree of
seasonality in the subsequent occurrence of the understory.

3. Application

Next, we apply the methodology outlined in this article using real data of the
DBH and a methodology based on BS models. First, we perform an exploratory
data analysis (EDA) of DBH. Then, based on this EDA, we propose statistical
distributions to model the DBH. We use goodness-of-fit methods to find the more
suitable distribution for modeling the DBH data under analysis. Finally, we make a
confirmatory analysis and furnish information that can be useful to make financial
and forestry decisions.

3.1. The Data Sets

The five DBH data sets to be analyzed are presented next. These data (all of
them given in cm) are expressed in each case with the data frequency in parentheses
and nothing when the frequency is equal to one.
Giant paradise (Melia azedarach L.) This is an exotic tree species originated
from Asia and adapted to the province of Santiago del Estero, Argentina. Giant
paradise produces wood of very good quality in a short time. We consider DBH
data of giant paradise trees from four consecutive annual measurements collected
since 1994 in 40 sites located at a stand in the Departamento Alberdi to the
northwest of the province of Santiago del Estero, Argentina. Specifically, we use
measurements collected at Site 7 due to the better conformation and reliability of
the database (Pece et al. 2000). The data are: 16.5, 16.6, 17.8, 18.0 18.4, 18.5,
18.8, 18.9, 19.2, 19.3, 19.8, 20.3, 20.4, 20.6(2), 22.1, 22.2 23.5, 23.6, 26.7.
Silver fir (Abies alba). This is a species of tree of the pine family originated
from mountainous regions in Europe. We consider DBH data of silver fir trees
from 15 sites located at Świeta Katarzyna and Świety Krzyzÿ forest sections of
the Świetokrzyski National Park, in Świetokrzyskie Mountains (Central Poland).
Specifically, we use measurements collected at Site 10 due to similar reasons to
that from Melia azedarach (Podlaski 2008). The data are: 11(2), 12, 13, 14(5),
15(4), 16(5), 17(4), 18(4), 19(3), 20(8), 21(4), 22(3), 23(4), 24(5), 25(6), 26(5),
27(5), 28(2), 29(5), 30(2), 31(7), 32(3), 33(2), 34(4), 35, 36(2), 37(2), 39(2), 40(3),
41(2), 42, 43(2), 44(3), 46(3), 47(2), 48, 50(2), 51, 52, 53, 54, 55, 56, 57, 59, 61,
66, 70, 89, 97.
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Loblolly pine (Pinus taeda L.) This variety of tree is one of several native
pines at the Southeastern of the United States (US). The data set corresponds to
DBH of 20 year old trees from a plantation in the Western Gulf Coast of the US
(McEwen & Parresol 1991). The data are: 6.2, 6.3, 6.4, 6.6(2), 6.7, 6.8, 6.9(3),
7.0(2), 7.1, 7.2(2), 7.3(3), 7.4(4), 7.6(2), 7.7(3), 7.8, 7.9(4), 8.1(4), 8.2(3), 8.3(3),
8.4, 8.5(3), 8.6(4), 8.7, 8.8(2), 8.9(3), 9.0(4), 9.1(5), 9.5(2), 9.6, 9.8(3), 10.0(2),
10.1, 10.3.

Ruíl (Nothofagus alessandrii Espinosa). This is an endemic species of central
Chile, which is at risk of extinction. This tree variety is the older species of the
family of the Fagaceae in the South Hemisphere, i.e., these stands are the older
formations in South America. The data set of DBH was collected close to the
locality of Gualleco, Región del Maule, Chile (Santelices & Riquelme 2007). The
data are: 16(2), 18(2), 20(2), 22, 24, 26(2), 28, 30(2), 32, 34.

Gray birch (Betula populifolia Marshall). This is a perennial species from
the US that has its best growth during spring and summer seasons. Gray birch
has a short life in comparison with other plant species and a rapid growth rate.
During its maturity (around 20 years), gray birch reaches an average height of 10
m. The data used for this study correspond to DBH of gray birch trees that are
part of a natural forest of 16 hectares located at Maine, US. This data set was
chosen because its collection is reliable and the database is complete, so it allows
an adequate illustration for the purpose of this study. The data are: 10.5(5),
10.6, 10.7, 10.8(3), 10.9, 11.0, 11.2, 11.3(5), 11.4, 11.5(3), 11.6(2), 11.7(3), 11.9(2),
12.0(3), 12.1(3), 12.2(2), 12.3, 12.4(3), 12.5(3), 12.6, 12.7(2), 12.8(3), 12.9(5),
13.0(7), 13.1(4), 13.2(2), 13.3(3), 13.5(2), 13.6(3), 13.7(5), 13.8(2), 14.0(3), 14.1(4),
14.2(3), 14.3, 14.4(2), 14.5(5), 14.6(3), 14.8(4), 14.9(3), 15.0, 15.1(3), 15.2, 15.3(2),
15.6(2), 15.7(2), 15.8, 15.9(2), 16.0(2), 16.1(2), 16.4, 16.5, 16.6(2), 16.7, 16.9(2),
17.0(2), 17.5(2), 17.8(2), 18.3, 18.4, 18.5, 19.2, 19.4(2), 19.9(2), 20.0, 20.3, 20.5,
21.3, 21.9, 23.1, 24.4, 26.0, 28.4, 39.3.

We call S1, S2, S3, S4 and S5 to the DBH data sets of the varieties of Melia
azedarach, Abies alba, Pinus taeda, Nothofagus alessandrii, and Betula populifolia,
respectively.

3.2. Exploratory Data Analysis

Table 2 presents a descriptive summary of data sets S1-S5 that includes me-
dian, mean, standard deviation (SD), CV and coefficients of skewness (CS) and
kurtosis (CK), among other indicators. Figure 2 shows histograms, usual and ad-
justed for asymmetrical data boxplots (Leiva et al. 2011) and TTT plots for S1-S5.
From Table 2 and Figure 2, we detect distributions with positive skewness, differ-
ent degrees of kurtosis, increasing and IBT shaped h.r.’s and a variable number of
atypical DBH data. Specifically, the TTT plot of the DBH presented in Figure 2
(fifth panel) shows precisely a h.r. as those that the tree DBH should theoretically
have and that coincides with the h.r. of the BS fatigue models. In addition, mini-
mum values for S1-S5 indicate to us the necessity for considering a shift parameter
in the modeling. As a consequence, based on this EDA, the different BS models
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presented in this paper seem to be good candidates for describing S1-S5, because
they allow us to accommodate the different aspects detected in the EDA for these
data sets. Particularly, BS-t and ShBS-t models allow us to accommodate atypical
data in a robust statistically way. Also, BS distributions have a more appropriate
h.r. to model such DBH data. This is a relevant aspect because DBH data have
been widely modeled by the Weibull distribution. However, this distribution has a
different h.r. to those that the tree DBH should theoretically have. Therefore, in
the next section of model estimation and checking, we compare usual and shifted
BS and Weibull models by means of a goodness-of-fit analysis in order to valuate
whether this theoretical aspect is validated by the data or not.

Table 2: Descriptive summary of DBH for the indicated data set
Set Median Mean SD CV CS CK Range Minimum Maximum n

S1 19.55 20.09 2.53 12.58% 0.82 3.20 10.20 16.50 26.70 20
S2 27.00 30.68 14.85 48.42% 1.52 6.33 86.00 11.00 97.00 134
S3 8.20 8.19 1.01 12.37% 0.05 2.16 4.10 6.20 10.30 75
S4 24.00 24.00 5.95 24.80% 0.14 1.50 18.00 16.00 34.00 15
S5 13.70 14.54 3.61 24.85% 5.89 13.97 28.80 10.50 39.30 160

3.3. Model Estimation and Checking

As mentioned, the parameters of the BS, ShBS, BS-t, ShBS-t distributions
can be estimated by the ML method adapted by a non-failing algorithm (Leiva
et al. 2011). The estimation of the parameters of the BS distributions, as well
as those of the usual and shifted Weibull distributions (as comparison), for S1-S5
are summarized in Table 3 together with the negative value of the corresponding
log-likelihood function. In addition to the model selection criteria (AIC and BIC)
presented in Section 2.1, the fit of the model to SI-S5 can be checked using the
Kolmogorov-Smirnov test (KS). This test compares the empirical and theoretical
c.d.f.’s (in this case of the BS and Weibull models). The p-values of the KS test,
as well as the values of AIC, BIC and 2log(B12) are also provided in Table 3.
Based on the KS test and BF results presented in Table 3, we conclude that the
BS distributions fit S1-S5 better than Weibull distributions. All this information
supports the theoretical justification given in Section 2.
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Figure 2: Histograms, usual and adjusted boxplots and TTT plots for S1 (first panel)
to S5 (fifth panel).
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Table 3: Indicators for the indicated data set and distribution.
Indicator BS BS-t ShBS ShBS-t ShWeibull Weibull

S1
α̂ 0.118 0.117 0.374 0.443 1.587 7.736
β̂ 19.950 19.934 6.161 3.260 4.810 21.228
ν̂ - 87 - 1 - -
γ̂ - - 13.498 16.498 15.900 -
−`(θ̂) 45.534 45.533 44.752 43.367 44.811 48.565
AIC 95.069 97.067 95.503 94.733 95.622 101.131
BIC 97.061 100.053 98.490 98.716 98.609 103.121
2 log(B12) - 2.992 1.429 1.655 1.548 6.060
KS p-value 0.806 0.829 0.986 0.963 0.882 0.385

S2
α̂ 0.452 0.448 0.590 0.588 1.440 2.193
β̂ 27.840 27.803 21.301 21.171 22.453 34.760
ν̂ - 100 - 100 - -
γ̂ - - 5.666 5.778 10.358 -
−`(θ̂) 525.820 525.889 524.255 524.306 524.772 540.361
AIC 1055.640 1057.777 1054.511 1056.612 1055.544 1084.721
BIC 1061.436 1066.472 1063.204 1068.203 1064.238 1090.518
2 log(B12) - 5.036 1.768 6.768 2.802 29.082
KS p-value 0.899 0.912 0.959 0.815 0.828 0.129

S3
α̂ 0.124 0.123 0.124 0.124 2.514 8.952
β̂ 8.125 8.127 8.125 8.127 2.635 8.636
ν̂ - 100 - 100 - -
γ̂ - - 0.000 0.000 5.850 -
−`(θ̂) 107.038 107.180 107.038 107.180 105.798 108.609
AIC 218.076 220.360 218.076 222.360 217.596 221.219
BIC 222.711 227.312 222.711 227.312 224.548 225.853
2 log(B12) - 4.601 - 4.601 1.837 3.142
KS p-value 0.876 0.874 0.876 0.874 0.918 0.840

S4
α̂ 0.245 0.2445 0.394 0.585 2.837 4.685
β̂ 23.298 23.304 14.625 9.207 16.568 26.282
ν̂ - 100 - 1 - -
γ̂ - - 8.240 15.995 9.300 -
−`(θ̂) 47.327 47.377 47.292 44.460 47.098 47.515
AIC 98.656 100.754 100.584 96.920 100.195 99.0294
BIC 100.070 102.878 102.708 99.752 104.084 100.446
2 log(B12) 0.319 3.126 2.956 - 4.332 0.694
KS p-value 0.933 0.934 0.858 0.936 0.894 0.852

S5
α̂ 0.208 0.151 0.727 0.563 1.502 3.467
β̂ 14.230 13.817 3.774 4.232 4.749 15.920
ν̂ - 4 - 8 - -
γ̂ - - 9.761 9.439 10.180 -
−`(θ̂) 399.776 389.438 380.330 378.912 386.075 448.921
AIC 803.553 816.853 766.659 765.826 778.152 901.842
BIC 809.702 794.102 775.886 778.125 787.376 907.992
2 log(B12) 33.817 18.216 - 2.239 11.490 132.107
KS p-value 0.052 0.400 0.530 0.773 0.467 < 0.001

Revista Colombiana de Estadística 35 (2012) 349–370



Distributions Useful for Modeling Diameter and Mortality of Trees 365

Due to space limitations, in order to visualize the model fit to the DBH data,
we only focus on S5. In addition, we only depict three plots corresponding to the
shifted versions of the BS, BS-t and Weibull distributions, which are those that fit
the data better. Comparison between the empirical (gray line) and ShBS, ShBS-t
and ShWeibull theoretical (black dots) c.d.f.’s are shown in Figure 3. Histograms
with the estimated ShBS, ShBS-t and ShWeibull p.d.f. curve are shown in Figure 4.
Probability plots with “envelopes” based on the BS, BS-t and Weibull distributions
for S5 are shown in Figure 5. The term “envelope” is a band for the probability plot
built by means of a simulation process that facilitates the adjustment visualization.
For example, for the BS distribution, this “envelope” is built using an expression
given in (3). From Figure 5, we can see the excellent fit that the ShBS-t model
provides to S5 and the bad fit provided by the ShWeibull model. Then, once the
ShBS-t model has been considered as the most appropriate within the proposed
distributions to model S5, we provide information that can be useful to make
economical and forestry decisions based on this model and the methodology given
in this study.
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Figure 3: Empirical (bold) and theoretical (gray) c.d.f.’s for S5 using the ShBS, ShBS-t
and ShWeibull distributions.

3.4. Financial Evaluation

We select S5 for carrying out a financial analysis. In this case, the ShBS-t
distribution is considered as the best model. Then, we propose a forest production
problem to illustrate the methodology presented in this article. Once the ShBS-t
model parameters are estimated, we determine the mean volume per tree in a
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Figure 4: Histogram with ShBS, ShBS-t and ShWeibull p.d.f.’s for S5.
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Figure 5: Probability plots with envelopes for S5 using the ShBS, ShBS-t and ShWeibull
distributions.
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stand by using (12) that leads to E[V ] = (250/3)πE[T 2], recalling that T is the
DBH, H the known height of the tree equal to 10 m (1000 cm, because the data
are expressed in cm) and F the form factor being it equal to 1/3 due to the birch
case, which has conical shape, with the DBH equivalent to the diameter at the
base of the cone. Using the expected value and variance of T given in (11), we get
the expected volume as

E[V ] = 250
3 π

[
β2

{
1 + α2(2A+ 5

4Bα
2 + A2α2

4 )

}
+ γ

{
γ + β(2 +Aα2)

}]
The stand considered in this study only produces native wood that can be sold to
sawmills at a price of US$250 (international price in US dollars) per cubic meter.
This stand of Maine, US, had in the spring of 2004 an amount of 3327 trees, of
which 160 (4.8%) were of the gray birch variety. Thus, the estimated expected
economical value for gray birch wood of this forest (stand) based on the ShBS-t
model is

US$0.25× Ê[V ]× 160 = 10000π
[
β̂2

{
1 + α̂2(2A+

5

4
Bα̂2 +

A2α̂2

4
)

}
+ γ̂
{
γ̂+

β̂(2 +Aα̂2)
}]

(13)

being its estimation based on the proposed methodology and S5 of US$7,342,267.

4. Concluding Remarks

In this paper, we have presented, developed, discussed and applied a statistical
methodology based on Birnbaum-Saunders distributions to address the problem
of managing forest production. Specifically, we have linked a fatigue model to a
forestry model through Birnbaum-Saunders distributions. This linkage has been
possible because the hazard rate of this distribution has two clearly marked phases
that coincide with the force of mortality of trees. This mortality is related to
the diameter at breast height of trees. We have modeled the distribution of this
diameter because this variable is the most relevant in determining the basal area of
a tree. For its part, the basal area allows the volume of a tree to be determinated
setting thus the production of a forest. Finally, we have shown the applicability of
this model using five real data sets, obtaining for one of them financial information
that may be valuable in forest decision making. The unpublished data used in
the economical evaluation corresponded to the diameter at breast height of 10 m
height mature gray birch trees collected in 2004, which are part of the inventory
of a natural forest of area 16 hectares of different species located at Maine, US.
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